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PREFACE

The purpose of the discipline is to provide a proper
fundamental mathematical training of students and to form in them
knowledge and ability to apply it for the analysis of various
phenomena according to diversity spheres of a professional
activity. Thus, the task of the discipline is to assist students learn
the basics of mathematical apparatus needed to solve theoretical
and practical problems, to develop skills and abilities of
mathematical research of applied tasks, to develop their analytical
and critical thinking, to teach students to understand the scientific
sources of professional applications of mathematics.

This syllabus of lectures is designed according to the
program of normative educational discipline  “Higher
mathematics” and the working curriculum of preparation of full-
time first year students of the “bachelor” education level of the
specialty 122 — Computer science.

All theoretical material in this lecture notes is structured and
coordinated with the classroom lectures conducted during the
study of Module 1 topics.

However, this synopsis is not final, because the volume of
the studied theoretical material may be changed due to some
changes in the curriculum. Therefore, students should follow the
classroom lectures carefully and use a wider range of scientific and
literary sources, which are presented at the end of the lecture notes,
in their preparation for all class.

The lecture notes contain theoretical material as a basic
knowledge of the topics of Module 1 that students need to acquire,
and self-checking questions.

The lecture notes have a significant number of examples of
solving typical tasks, as well as applied tasks, that help student to
switch their attention to the practical using of the knowledge to
solve professional-oriented tasks.

Some additional information and interest materials are in the
appendices, at the end of the lecture notes.



So many references to sources in which students can find
more detailed information about certain mathematical positions or
theorems proofs that are not presented in this lecture notes are also
given here as an aid to a more in-depth study and search for
reference information.

The presented lecture notes will help students to possess the
methods of solving practical tasks; it will promote the acquisition
of mathematical competencies and intensify students’ independent
work.

Students must realize that only active work with lecture
notes can help them to be successful in the study of higher
mathematics, achieve professional excellence.



CONTENTS OF MODULE 1

Module 1 Linear and vector algebra. Introduction to mathematical
analysis. Integral calculus

Content module 1.1 Linear algebra and analytic geometry

Matrices and actions on them. Determinants and their properties.
Systems of linear algebraic equations. Solving quadratic systems using
an inverse matrix, by Cramer's formulas. Rouch’e-Capelli theorem.
Solving systems by the Gaussian elimination method. Vectors and
actions on them®*. Straight line on the plane*. Second order curves*.
Polar coordinate system*. Parametrically form lines*. Straight line and
plane in the space*. Second order surfaces*

Content module 1.2 Complex numbers, elementary functions,
functions of several variables

Complex numbers and actions on them. Vector and complex
functions of a real variable. The concept of the function of a complex
variable. Limits theory. The first and second standard limits.
Uncertainties and their disclosure. Function. Elementary functions.
Continuity*. Properties of continuous functions*. Functions of many
variables*. Area of definition*. Level lines and surfaces*. Limit and
continuity of the function of many variables*

Content module 1.3 Differential calculus, integral calculus

Derivative and its properties. Derivatives of higher orders.
Function differential and its properties. Basic theorems of differential
calculus. Conditions of the function decreasing and increasing.
Necessary and sufficient conditions for the function extremum. The
smallest and largest value of the function on the segment. Conditions of
convexity and concavity of the function graph*. Antiderivative function
and indefinite integral. Integration methods. Defined integral. Newton
and Leibniz formula. Improper integrals*. Geometric applications of a
definite integral

* self-study topics



Lecture ] LINEAR ALGEBRA. MATRICES and DETERMINANTS

Definition 1.1 A matrix is defined as an ordered rectangular array
of numbers. They can be used to represent systems of linear equations,
as will be explained further.

You can see some examples of different types of matrices:

. Upper )
. | Diagonal . PP Lower Identity
Symmetric Triangular . Zero
Triangular
1 2 3 1 0 0 1 2 3 1 00 0 0 o0 1 0 0
2 0 -5 0 4 0 o 7 =5 -4 7 0 0 o0 o0 0 1 0
3 5§ 0 0 & 0 0 -4 12 5 3 0 0 0 0 0 1

On the right is an example of a 2 x4 matrix. It has 2 rows and 4
columns. We usually write matrices inside parentheses ( ) or brackets [ ].
We can add, subtract, and multiply matrices together, under certain
conditions.

We use matrices to solve problems in electronics, statics, robotics,
linear programming, optimization, intersections of planes, genetics.

We will use matrices to solve systems of equations, but for large
systems of equations, it is advisable to use a computer to find the
solution. However, we should understand what the computer is doing for
it and have opportunity to correct mistakes if it needs.

And a fully expanded m x n matrix A, would look like this:

ay a4y a,
A= ay Ay a,
anl anz ann

or in a more compact form: A= (ag/)
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Matrix addition and subtraction

Definition 1.2 Two matrices A and B can be added or
subtracted if and only if their dimensions are the same (i.e., both
matrices have the same number of rows and columns). Take:

3 -4 2 -7 5 -4
A= , B= .
-8 1 5 -8 3 2
Addition

If A4 and B above are matrices of the same type, then the sum is
found by adding the corresponding elements a; +b; . For example,

3 -4 2 -7 5 -4
A+B= + =
(—8 1 5) (—8 3 2)
B 3-7 —-4+45 2-4 B -4 1 =2
| -8-8 143 5+2) |-16 4 7
Subtraction

If A and B are matrices of the same type, then the subtraction is

found by subtracting the corresponding elements a; —bij. Here is an

example of subtracting matrices:

3 -4 2) (-7 5 -4
A-B= - -
[—8 1 sj [—8 3 2)

(347 —4-5 2+4) (10 -9 6
(-8+8 1-3 5-2) (0 -2 3



Matrix multiplication

Definition 1.3 When the number of columns of the first matrix is
the same as the number of rows in the second matrix then matrix

multiplication can be performed.
Here is an example of matrix multiplication for two 2x2 matrices.

o )y )

Here is an example of matrix multiplication for two 3x3 matrices:

a b c j k1
d e fl|-|lm n ol=
g h i p q r

(aj + bm+cp) (ak+bn+cq) (al+bo+cr)
=|(dj +em+ fp) (dk+en+ fq) (dl+eo+ fr)
(gj +hm+ip) (gk+hn+iq) (gl+ho+ir)

Now let’s look at the multiplication of the arbitrary matrices, in
the case, where A has dimensions m X n , B has dimensions nx p.
Then the product of 4 and B is the matrix C , which has dimensions
mx p . The ij™ element of matrix C is found by multiplying the

entries of the i" row of A with the corresponding entries in the ;®

column of B and summing the n terms.

In conclusion we should write down some remarks.

Remark 1.1. That AX B is not the same as Bx A4 .

Remark 1.2. Multiplication matrices can be performed only if the
number of columns in the first matrix is equal to the number of rows of
the second matrix:

=D

mxk kxn mxn *

A



For example, take A=(3 -1 1} and 32(7 5} find 4-B and

2 -2 3 0 -8
B-A4.
Solution: 1) 4.p= 3 -1 Y73 , as we see, we can’t
2 -2 310 -8

multiply these matrices, because the number of columns in the first
matrix are 3, and the number of rows in the second matrix are 2; but
multiplication B x A exists, find it:

2) We multiply the individual elements along the first row of
matrix 4 with the corresponding elements down the first column of
matrix B, and add the results and continue to do it with all rows

(7 5}(3 -1 1}
0 -8)(2 -2 3

73452 —1.745:(=2) 71453 ) (31 -17 22
0-3+(-8)-2 0-(-)-8-(-2) 0-1+(-8):3) \~-16 16 —24)

We need to know about the transposed matrix.
Definition 1.4 The transpose of a matrix is found by exchanging

. T .
rows for columns Matrix 4=(a;) and the transpose of A s
A" =(a j[) , where J is the column number and I is the row number of
matrix A . For example, the transpose of a matrix would be:

PG PR
3 -5 2) A= 3

In the case of a square matrix (m = n ), the transpose can be used

to check if a matrix is symmetric. For a symmetric matrix: 4 = A"

1 2 1 2
A= ;AT =
HEE

10



The determinant of a matrix

Definition 1.5 Determinants play an important role in finding the
inverse matrix and in a solving system of linear equations. In the
following we assume that we have a square matrix (7 =n). The

determinant of a matrix A4 will be denoted by det 4 or |A| . Firstly, the

determinant of a 2x2 and 3 %3 matrix will be introduced, then the
nXn case will be shown.

Determinant of a 2 X 2 matrix

Assuming A is an arbitrary 2x 2 matrix A, where the elements

a;; dp
4 :[ |
4y apn

then the determinant of this matrix is as follows:

are given by:

detd=|d=A,=|"" “2|=
¢ —‘ ‘— 2= =4y Ay — Ayt 4y,
a, a4y

) ) cos2x —sin2x
For example, calculate the given determinant

sin2x  cos2x

Using the appropriate rule and we get

cos2x —sin2 . .
) =c0Ss2x-cos2x—sin2x- (— sm2x) =
sin2x  cos2x

=cos’2x+sin’?2x =1.

11



Determinant of a 3 X3 matrix
The determinant of a 3x3 matrix is a little more tricky and is
found as follows (for this case assume A is an arbitrary 3x3 matrix
A , where the elements are given below).
g 4 dy
A=|ay ay ay
a3 Ay i3
then the determinant of a this matrix is as follows:
ap  dp 4
Ay=lay Gy Ayl =ay 0y G+, Ay Gy +
a3 4y 4y

Tay Ay Ay~ Q130 Ay Ay — Ay Gy gy — Ay Ay 4

This rule can be represented schematically as:

O O
O O
nyn

nmyn "n_n "_n
2 3 =2
For example, calculate the determinant -1 —2 3.
5 4 =2
Solution. Using the previous reviewed rule
2 3 -2
Ay=|-1 -2 3[=2.(-2)(-2)+3-3-5+
5 4 =2

(-1)4-(2-5(-2)(-2)-3:(-1)-(-2)-3-4-2=
= 8+45+8-20-6-24=-5.
12



where

Determinant of an 72 X /1 matrix

For the general case, where A is an nxn matrix, its determinant
is given by the rule: the determinant is equal to the sum of items of
elements of a certain row (column) on their cofactor

n n
A= kz:lal.k 'Aik or A= %akj .Ak'

A

—
i (— 1)1 TM i |is a cofactor of element of &

Also, M is the determinant of the (n—1)x (n —1) matrix that is

obtained by deleting row i and column j.

For example, we will calculate the determinant

215

321 2

Uy 3 g T A3 A Ay 1A, =

115 1
2 1 2 1

=2-(-1)"2 3 —4+3-(-1)" -2 3 -4+
15 1 1
151 15 1

w1 (=12 1 2+ (-2 1 2=
151 2 3 -4

2-(6+20—4-6-2+40)+3-(—1)-0+1-0+

+1-(=4+20+6—-2—6+40)=108+54 =162 .

13



The Inverse of a Matrix

Definition1.6 Assuming we have a square matrix A , which 1is
non-singular (i.e. det4 does not equal zero), then there exists an # X 7

matrix A7 which is called the inverse of A4, such that this property
holds:

A-A'=A4" 4=E|

where E is the identity matrix.

-1 1
We will find the inverse matrix of matrix A= 2 -1 2.
1 0 1
Solution. Calculate the determinant of matrix A
-1 1 1
detA=|2 -1 2/=2%0, thus matrix 4 is non-singular and
1 0 1

. . . . T .
the inverse of Ais. Find the transposed matrix A , 1t was

-1 2 1
A= 1 =1 0. We will find all the cofactor of element the
1 2 1

. T . . . -1
transposed matrix 4" and write down the inverse matrix 4~ :

A1 0 L0
An:(_l)ll ) 1:_1’ Alzz(_l)lzl 1‘:_1’

L=t 21
A T NI S )

14



-1 1 Ll-1 2
Azzz(_l)zz 1 1‘2—2, Ay, (_1)23 1 224,

L2 1 Sl-1 1
A31:(_1)13_1 0‘: > Asz (_1)23 1 021,

-1 -1 3

A —(—1)3*3_l 2 a2l 22 4
+ 1 -1 2 L |
Check out:

-1 -1 3)(-1 1 1
A‘-A:% 0 -2 4|2 -1 2|=

1 1 -1){1 0 1
~1-(~1)=1-2+3-1 —1-1-1-(=1)+3-0 —1-1-1-2+3-1

L 020440 0-2-(-1)+4-0 0-2-2+4-1 |=

2 L(=1)+1-2=1-1  1-1+1-(=1)+0  1-1+1.2—1-1
2.0 0) (1 00

Lo 2 o|=lo 1 0|=E

o0 2) lo o1

15



Lecture 2 SOLVING SYSTEMS OF EQUATIONS USING
MATRICES AND DETERMINANTS

Definition 2.1 A system of linear equations is a set of equations
with m equations and 7 variables, is of the form of

a,x, +a,x, +..+a, x, =b,
Ay X, +AyXy +...+a,,x, =b,,

a,x, +a,,x,+..+a, x =b, .

Variables are denoted by X,,X,,..., X, and the coefficients (¢ and

b above) are assumed to be given. In matrix form the system of
equations above can be written as:

Ay Ay e Gy | N b,
Ay Ay e Ay, || Xy | | by
Ami Ay oo Ay N\ X bm

A simplified way of writing above is like this:

4-X=8]

X a ay a,, b]

X, ay dy a, b,
X = ; A= "|; B=

Xm a, 4, .. a,, b,

After looking at this we will now look at two methods used to
solve matrices. These are: Inverse Matrix Method, Cramer's Rule.

16



Inverse Matrix Method

Definition 2.2 The inverse matrix method uses the inverse of a
matrix to help solve a system of equations, such like the above

A-X =B . By pre-multiplying both sides of this equation by A
gives:
A" AX=A"-B,asweknowthat A4 =A" A=E,

and we get
E-X=A4"-B

or alternatively

=48

So, by calculating the inverse of the matrix and multiplying this by
the matrix-column B we can find the solution to the system of equations
directly.

From the above it is clear that the existence of a solution depends
on the value of the determinant of A . There are three cases:

1) ifthe det A does not equal zero then solutions exist using;

2) if the detd is zero and B =0 then the solution will not be
unique or does not exist;

3) if the detA4 is zero and B =0 then the solution can be X =0

but as with 2 is not unique or does not exist.
Looking at system of equations we might have this

ay X, + apX,+a;x; =d,
Ay X, + Ay Xy Ay Xy = d, .

a3 X, +a3x)+tayx; =d,

Written in matrix form would look like

17



-1

X ay 4 ap d,
Xy | = dy Ay Ay ‘1dy |,
X3 a; dzp 4z d,

where |a, a, a,| =A" is the inverse matrix and we have to

a3 dyp Ay
find it due to following steps:
1. We should find the determinant of the matrix A, it will be
detA.

2. We should transpose matrix A and obtain the matrix A"
3. We should find all cofactors of each element of the matrix

A" and compose them in matrix A"

* 1
4. The obtained matrix A should be multiply by number ot
e

(the inverse of the value of the determinant), so it will be the desired

matrix 4.
After finding the inverse matrix, it is multiplied by the matrix B
and we will find the matrix-column, this is the required value of

variables X;,X,,X;. At the end we have to check our solution to

substitute the obtained values in equations of the system.

18



For example, solve a system of linear algebraic equations by the
matrix method

3x, = 2x,+x; =1
X =X, +2x;=-3 .

2x, —x,+3x; = —4

Solution. Find the inverse matrix of the system

3 -2 1 3 -2 1
A=[1 =1 2|, detd=[l -1 2|=-4%0.
2 -1 3 2 -1 3
31 2
AT =|-2 -1 -1|, 4,=-1,4,=5, 4;=-3, 4, =1,
1 2 3
A,=T7, 4y=-5, A4, =1, A, =-1, 4, =-1.
-1 5 -3 -1 5 -3
A=l1 7 —5,A*‘=i1 7 -5
1 -1 -1 B N R R |
-1 5 =3)(1
X:A‘-B:L4 1 7 -5[]-3 == ,

1 -1 -1) (-4
x=1,x=0,x=

After solution we need to check the found variable value, we substitute

the values of variables x,, x,, x; in the second equation and obtain the

identity: 1-0+42-(=2)=-3. So, it is correct answer.

19



Cramer’s Rule

Definition 2.3 Cramer’s rule uses a method of determinants to
solve systems of equations. Starting with equation below,

ay X, + apX,ta;x; =d,
Ay X +apXyt+ayx; =d,

a3 X) + a3x)+tasx; =d,

The first we should calculate the main determinant of the system is
composed of the coefficients for variables as a

ay 4 ap
det A=|a,, a,, ayl.

as; dip  dsy

After this we should calculate auxiliary determinants each of
which is obtained by successively replacing the columns of the
determinant by a column of numbers that are following in the equations
of the system after the sign of equal. Doing this we obtain three
determinants:

d a, ap a, d, ap a, a, d,
A=ldy ay ayl, Ay=lay dy ay|, As=lay ay dyl.
dy ay asy ay dy ay ay ayp d,

And we can find values of variables x,, x,, x; by formulas

A, A, A,
X = , Xy = , Xy = .
det A det A det A

Example 2.1 Solve a system of linear algebraic equations by
5%, —=3x, +x;, =2
Cramer’s rule 3x,+x, —5x, =4

X, —2x,+7x,=3

20



Solution. The main determinant and auxiliary determinants are
being calculating as

5 =3 1 2 -3 1
A=3 1 =5=56=#0, A/ =4 1 -5=112,
1 -2 7 3 -2 7
5 2 1 5 -3 2
A,=13 4 —5/=168, A, =3 1 4/=56.
1 3 7 1 -2 3
And values of x,, x,, x; are finding: xlzﬁ:E:L
A 56
x2:£:168_ —ﬁ—&—l

— =3, x; = = =1.
A 56 A 56
Check out: 5-2-3-3+1=2, 2=2.

Answer: x, =2, x,=3, x;=1.

Systems of linear equations: solving by Gaussian elimination

In linear algebra, Gaussian elimination (also known as row
reduction) is an algorithm for solving systems of linear equations. It is
usually understood as a sequence of operations performed on the
corresponding matrix of coefficients. This method can also be used to
find the rank of a matrix, to calculate the determinant of a matrix, and to
calculate the inverse of an invertible square matrix. The method is
named after Carl Friedrich Gauss (1777-1855), although it was known to
Chinese mathematicians as early as 179 CE.

To perform row reduction on a matrix, one uses a sequence of
elementary row operations to modify the matrix until the lower left-hand
corner of the matrix is filled with zeros, as much as possible. There are
three types of elementary row operations:

1) swapping two rows;

2) multiplying a row by a non-zero number;

21



3) adding a multiple of one row to another row.

Using these operations, a matrix can always be transformed into
an upper triangular matrix, and in fact that is named as a staged matrix
form. Once all of the coefficients under the main diagonal is 0, the
matrix is said to be in reduced row echelon form (a staged matrix form).
After that we are writing down a new system of equations and from this
system, we are finding the value of our unknowns. This final form is
unique; in other words, it is independent of the sequence of row
operations used. For example, in the following sequence of row
operations (where multiple elementary operations might be done at each
step), the next obtained matrices are the ones in row echelon form, and
the final matrix is the unique reduced row echelon form.

Example 2.2 Solve the following system of equations using
Gaussian elimination method:

5x, —3x, +x;=2
3x, +x, = 5x; =4
X, —2x,+7x3=3

Solution: We write down the matrix with number of the system, as

x-A+xn=2 (5 -3 1]2 1 -2 73
W4x—x=4=3 1 -34|=(R<=R)={3 1 —34
X—25+7%=3 |1 =2 73 53 1[2

22



For convenience, we will swap the first row by the third row. We
exclude the first coefficients from the first column, which are below the

first row. To do this, we add the first row, multiplied by (— 3), to the

second row. Then we will exclude the coefficients from the second
column, which are below the first row. Now we add the first row,

multiplied by (— 5), to the third. We perform actions in a consistent

manner. As a result, we will have:

5 -3 102) (1 -2 73} (1 -2 7 3
301 —34[~3 1 —34|~[0 1+(2):(B) —5+7-(3)4+3-(3) |~
1 -2 703/ (5 =3 1]2) |5 -3 1 2

1 ) 7 3 1 -2 713
~10 7 ~26 -5 |~|l0 7 -26-5|~

0 —3+(-2)-(=5) 1+7-(=5)2+3-(=5)) |0 7 -34-13

1 -2 7 3 1 -2 713
~10 7 -26| =5 |~|0 7 =26/-5
0 —-7+7 26-34/-13+5 0 0 -8|-8

The resulting matrix has an upper triangular appearance; therefore,
the system will have one singular solution, which we will find. Let's
make and solve a system of equations

X =2x,+7Tx;=3 |x—-2x,+7x;=3 |x—2x,+7x;=3
Tx, —26x, =5 =4 7x, —26x;=-5 =3 7x,-26-1=-5 =
8x; =8 x, =1 x, =1
X, —2x,+7x;,=3 x—-2-3+7=3 x =2
= Tx, =21 = x,=3 =x,=3

x, =1 x, =1 x, =1

23



Example 2.3 Solve the following system of equations using
Gaussian elimination method
X =X, +2x;—-3x, =2

X x, x3 x, b
1 -1 2 -3

| i 2 R, =R, -2R,
Solution: | » 5 _3 4 i -6 R, =R, -3R, -
31 -1 11!5
X X, X3 ox, b
1 -1 2 —3! 2 N R, =R,/4 N
0 4 -7 10 i—lO R, =R, —R,
0 4 -7 10! -1
XXy X Xy b
1 -1 2 -3 2
o1 -7/4 5/25—5/2
00 0 0109

Since the last row corresponds to an equation with zero
coefficients but a non-zero free term, the system is incompatible (no
solutions).

Example 2.4 Solve a homogeneous system of linear algebraic
equations by the Gaussian method:

X, +3x, +2x, =0;
2x,—x,+3x;, =0;
3x,—5x, +4x, =0.

24



Solution. We write the system in the form of an extended matrix

1 3 2
(the augmented matrix). A=2 -1 3| Multiply the first row by
3 -5 4

(—2) and add it to the second row, then, multiply the first row by (—3)
and add it to the third row, we get:

1 3 2
0 -7 -1].
0 -14 2

Multiply the second row by (—2 ) and add it to the third row:

1 3 2
0 -7 -1].
0 0 O

After this we can write down a system in the following form:
X, +3x, +2x, =0;
=T7x, —x,=0;
0-x,=0.

From the third row we get that a variable x; can be an arbitrary

value. Let it be: x;=¢. Substitute it at the second equation

t
~7x,—t=0, and get that x, = R Substitute all of them at the first

equation

x1+3-(—£]+2t20, o=t i2i=0, x =L o
7 7 7

3t—14t 1l
A
25




11z t
Answer: X, =——, X, :—7, x,=t,teR.

7

The matrix rank
We recall the definition of matrix minor.

Definition 2.4 Given the matrix A = (a4 )mxn , we call minor of

ij
order k the determinant of any square submatrix that can be constructed

by A cutting (a certain number) of rows and/or columns.

From this definition it is clear, that the order of the minors that can
be extracted by A cannot be larger than the minimum between m and
n . Suppose indeed that 71 < 1 (i.e. there are less rows than columns),
it is not possible to obtain a square matrix from A4 cutting rows or
columns, whose dimension is larger than m .

dor A 210
E le 2.5 Consi =
xample onsider 1 6 4

Find all minors of the matrix 4 of order 2 and at least one minor
of order 1 that is non-zero. Is it possible to obtain a minor of order
k>2?

Solution. The minors of order two are obtained by cutting one of

the three columns of A . Hence, we can define three minors of order 2.
These are

1
6

2 0
1 4

B B

1

2
6 4

1 1‘
Recall that the notation |A| states for the determinant of the matrix
A . Hence

1
‘:12—1:11, — 4,
6

2 0‘
=8,
4

I 0
6 4

26



11
=4-6=-2.
6 4

A minor of order one is the determinant of any entry of the matrix.

For instance,

a11| =2 is a minor of A of order 1. The determinant of a

scalar is the scalar itself so |2| =2 which is different from zero. This is

one example of non-zero minor of A4 of order 1. Concerning the
existence of minors of order k > 2. Take for instance k =3. It is not
possible to find such a minor. In fact, cutting rows or columns of A4 , we
cannot obtain a 3x3 matrix. Obviously, it is not possible to find an even
larger one.

Now we state an important result that can be useful when
computing the rank of a matrix.

Definition 2.5 We define 7r(A4) (rank of A) the maximum
number of linearly independent rows or columns of A .

Remark 2.1 The rank of the matrix 4 = (al./, )mxn coincides with the

order of the largest non-zero minor that can be extracted by A . Put
differently we say that a matrix 4 has rank & if and only if there exists
at least one minor different from zero of order k& whereas all the minors
of order larger than k are indeed zero. If there were a minor of order
k +1 different from zero, then the rank of A would be at least k +1.

Return to the previous example and solve it in another way.

Answer. Since there exists at least one minor of 4 different from

zero, for instance, =11, , the rank of A s at least 2. Moreover,

we have saw that it is not possible to extract a minor of order k > 2.

Thus, the rank of A4 is 2.
Rules for the calculus of the rank

Given the matrix 4 = (alj )mxn :
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1) rank A is an integer number; 2) rank A>0, in particular
rank A=0 if and only if A = 0, where 0 denotes the zero matrix;
3) rank A <min(m,n): the rank of A4 is at most equal to the minimum
between the number of rows and columns; 4) as a consequence the
following relationship holds: 0 < rank A < min(m,n).

Rouch’e-Capelli Theorem. The system AX =B admits

solutions (it is consistent) if and only if rank A=rank A (where
A= (A|B )). Moreover, if the system is consistent, the number of degrees

of freedom is equal to 7 itis a rank A, where n is the number of the

system unknowns.
The first part of the theorem tells us whether there are solutions or
not. The second part tells us that the solution is unique only if

rank A =n . In this case in fact the number of the freedom degrees is

zero. Otherwise, there are a positive number of the freedom degrees and
thus there are infinite solutions.

Example 2.6 Solve the homogeneous system of linear algebraic
equations

X, —x,+2x, =0
2x, +x, =3x, =0;
3x,+2x, =0.
Solution. Solve this system using the Gauss elimination method.

Write down the expanded matrix (or the augmented matrix) of the given
system of equations:

1 -1 2
A=|2 1 =3
30 2

28



Multiply the first row by (—2) and add it to the second row,
multiply the first row by (=3 ) and add it to the third row, we get:

)
0 -7
0 4

Multiply the second row by (—1) and add it to the third row

-1 2
=7 1.
3

Note, that the rank of the main matrix of a system is 2, and the
rank of the expanded matrix (or the augmented matrix) is 2 too.
Accordingly to the Rouch 'e-Capelli theorem we make the conclusion
that the given system has only one unique solution and we can find it.

Then we can write down a new system from the obtained matrix in
a form as:

X, —x,+2x;, =0;
3x, = 7%, =0;
3x, =0.

We get from the third equation that, mo x; = 0. From the second

equation: x, = 0. From the first equation: x, =0.

Check out:
0-0+2-0=0;
2:0+0-3-0=0;
3.0+2-0=0.

Answer: x;, =x, =x; =0
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Lecture 3 COMPLEX NUMBERS. VECTOR AND COMPLEX
FUNCTIONS OF A REAL VARIABLE

For instance, /-9 1isn’t a real number since there is no real
number that we can square and get a NEGATIVE 9.
Now we also saw that if @ and b were both positive, then

Jab =+va-\Jb. For a second let’s forget that restriction and do the
following.

V75 =10 = V1B =371

Now, +/—1 is not a real number, but if you think about it, we can
do this for any square root of a negative number. For instance,

V=100 =v=14100 =10--1,
\/I:\/—_l-\/S_:Q\/—_l etc.

So, even if the number isn’t a perfect square, we can still always
reduce the square root of a negative number down to the square root of a
positive number (which we or a calculator can deal with) times v/—1.

So, if we just had a way to deal with +/~1 we could deal with
square roots of negative numbers. Well, the reality is that, at this level,
there just isn’t any way to deal with \/—1 so instead of dealing with it we
will “make it go away” so to speak by using the following definition.

J-1=i.

Note that if we square both sides of this we get,
it =-1.

It will be important to remember this later. This shows that, in

some way, I is the only “number” that we can square and get a negative
value.
Using this definition all the square roots above become,

30



N=9=3i, V-81=9i, /-100=10;.

These are all examples of complex numbers.

The natural question at this point is probably just why do we care
about this? The answer is that, as we will see in the next lectures,
sometimes we will run across the square roots of negative numbers and
we’re going to need a way to deal with them. So, to deal with them we
will need to discuss complex numbers.

So, let’s start out with some of the basic definitions and
terminology for complex numbers. The standard form of a complex
number is

z=xx*iy,

where X and ) are real numbers and they can be anything, positive,

negative, zero, integers, fractions, decimals, it doesn’t matter. When in
the standard form x is called the real part of the complex number and
Y is called the imaginary part of the complex number. Denote it
x=Rez; y=Imz.

Here are some examples of complex numbers: 5—2i, 7+4i, —8i,
15.

The set (plural) of all complex numbers is denoted by C .

If the imaginary part is zero and we actually have a real number.
So, thinking of numbers in this context we can see that the real numbers
are simply a subset of the complex numbers. Any real number X can be
presented as a complex number z = x+i0 = x, in which the imaginary
part is zero: y =0. Thus, the set of real numbers R is a subset of the

set of complex numbers C: R < C. When the real part is zero, we
often will call the complex number a purely imaginary number:

z=iy=0+iy, y#0.
The conjugate of the complex number z =x+iy is the complex

number Z, =X —iy. In other words, it is the original complex number
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with the sign on the imaginary part changed. Here are some examples of
complex numbers and their conjugates.

complex number conjugate
5+8i 5-8i,
-3-2i -3+2i.

Notice that the conjugate of a real number is just itself with no
changes.

Definition 3.1 Two complex numbers 2z, =X, +iy, and

Z, =X, +1iy, are equal, if their real and imaginary parts are equal,

respectively:
Z,=Z, & X =X, L Y =Y,

Now we need to discuss the basic operations for complex
numbers. We’ll start with addition and subtraction. The easiest way to
think of adding and/or subtracting complex numbers is to think of each
complex number as a polynomial and do the addition and subtraction in
the same way that we add or subtract polynomials.

Definition 3.2 In particular, addition and subtraction of complex
numbers z, =X, +iy, and z, =x, +iy, are carried out component by

component:

zZ +z z(xl +x2)+i(y1 +y2);

2 (xl _x2)+l(J’1 _J’2)‘

zZ,—Z
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Multiplication of the complex numbers =z, =x, +iy, and
z, = X, +1iy, are carried out by the rules of multiplication of the of

binomials taking into account the condition ;> = —1 and the reduction of
similar:

Z1Zy = (xlxz _yly2)+i(xly2 +x2yl)

Remark 3.1 To multiply a complex number z =X +1iy by a real
number @ it is enough to multiply each of its components by this
numbera: dz =ax-+iay.

Remark 3.2 Find the natural powers of an imaginary unit:

.4k 4k+1 . c4k+2 4k+3
it=1, " =i, " =-1, "7 =

b

Remark 3.3 At raising of a complex number to a natural power it
is possible to apply the formulas of the reduced multiplication known
from elementary mathematics.

Remark 3.4 When we multiply or add a complex number by
Z =X +1y and its conjugate Z =X —iy we get a real number given
by:

z+z=2x. z-Z2=x"+Y".

2
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Definition 3.3 Division of complex numbers z;=Xx,+iy, 1
Z, =Xy +1y,, 2z, #0 is performed as follows: 1) the numerator and
denominator of the fraction z,/z, must be multiplied by the number z,

conjugated to the denominator z,; 2) consider that i 2 =_1, and reduce

similarities; 3) divide the numerator by the denominator and get the

fraction in algebraic form.

L _45h _ 55t 4N TN,
= 2, 2 2, .2

Z I3 X, Xy + V)

ZIIZZZ

Remark 3.5 The basic properties of the considered arithmetic
operations with complex numbers coincide with the corresponding
properties of similar operations with real numbers. Therefore, for
complex numbers all theorems, rules, formulas derived for real numbers
based on these properties remain valid.

Example 3.1 Do operations with complex numbers in the
algebraic form:

z=(2-3i)4+i)-(1-2i) +10(5-7i): (3 —4i).
Solution. Do the operation with polynomials:
z=(2-3i\4+i)-(1-2i) +10(5-7i): (3—4i) = (8+2i -
—12i =3 —1+4i — 4> +10((5- 7)) 3+ 4))(3—4i) 3+ 4i)) =
= 8+2i—12i+3-1+4i +4+10(15+20i - 21i— 287 ): (9
—16i2):14—6i+10(15+20i—21i+28):(9+16):14—6i+
+2(43-1):5=(70-30i +86—2i):5=156/5—(32/5)i.
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Geometric interpretation. Module and argument of the
complex number
If we have a Cartesian coordinate plane Oxy, then it is possible a
mutually unique correspondence between the set of all points of this
plane and the set of complex numbers
can be to established: each complex
number z =Xx+iy corresponds to a

single point M (x;y) and vice versa

(fig. 3.1). Real numbers  are
represented by points on the abscissa

Figure 3.1 Ox , therefore the axis Ox is called
the real axis. Purely imaginary
numbers are represented by points on the y-axis Oy, therefore the axis

Oy s called the imaginary axis. Number z =0 corresponds to the
origin 0(0;0).

A coordinate plane Oxy, that represents the set of all complex
numbers C, is called a complex plane C or z- plane.

Remark 3.6 The complex number z=Xx+iy can also be
represented by a radius vector O—A/f(x; V), starting from the origin
0(0;0) and ending at a point M (x;y) (fig. 3.1).

Remark 3.7 Addition and subtraction of complex numbers can be
carried out according to the rules

J) - ZI*Z2 (triangle and parallelogram) of the
corresponding operations on the
1 vectors (fig. 3.2).
If (fig. 3.1) also enter a polar
5 - X coordinate system Or¢@ on the

Figure 3.2 complex plane with a pole at the
beginning  of the  Cartesian
coordinate system and a polar axis aligned with the axis Ox, then the

point M (x;y) representing the complex number z = x+iy can be set
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by polar coordinates M (7;@).
Definition 3.4 Polar radius 7 (length (magnitude) of a radius-

_—

vector OM ) is called a module of a complex number z and it is denoted
as |z|=r.

Obviously, that 7 =-/x” +y* >0.

Definition 3.5 Polar angel ¢ (the angel between the radius-vector

e

OM and polar axis Ox) is called an argument of a complex number z
and it is denoted as Argz=¢.

Argument @, is an angel of rotation, is determined with accuracy
of the constant addition in the form 2mk, k=0,%£1,£2,... (arbitrary
number of full revolutions).

The single value ¢ that satisfies the condition —t< @< T is
called the main value of the argument, and it is denoted, argz. So,
Argz=argz+2nk, k=0,£1,£2,...

The main value of the argument is determined by the formula:

arctg(y/x), x> 0;

arctg(y/x)+m, x<0,y>0;

argz =< arctg(y/x)-mn, x<0,y<0;
n/2, x=0;y>0;

-n/2, x=0,y<0.

Remark 3.8 The module of the number z=0 1is equal to zero
r=|0]=0, and the argument @ is arbitrary.

Remark 3.9 The equal complex numbers z, =z, have equal
modules too, 7; =r,, and their arguments are related by a relation
Q, =0, +2nk, k=0,£1,£2,..., that is, they are differ in addition
2nk .
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Trigonometric and exponential forms of a complex number

Using the relation of Cartesian and polar coordinates x =7 cosQ,
y =rsin @, the complex number z = x+i) can be presented in a form
Z=X+iy=rcos@+irsin @ =r(cosQ+isin@).
Definition 3.6 The expression z =r(cos@+isin@) is called a

trigonometric form of a complex number.
The transition from the algebraic to the trigonometric form is
determined by the relations:
Y

_[2, 2.

Definition 3.7 If we turn to Euler's basic formula

; sing=

e'® = cosp+isin @,
then it is possible to pass from the trigonometric form to the exponential

form of a complex number z = re'.

Example 3.2 Plot on a complex plane and present in trigonometric
and exponential forms the following complex numbers given in algebraic
form:

zy=—3—i; 2, =2-2i; z,=2i; z,=-2; zg=-2+i.
Solution. Draw the given numbers on the complex plane (fig. 3.3).

Find the modulus and principal value of the argument of each of these
numbers and write them in trigonometric and exponential forms:

Y 7 =—3—i:

e Z3 -

x5 ==3; y=—1;

Zy X |zl|:\/)c12+yl2 =2;

|
\S)

I .
—_
(=)
-
)

| arg z, = arctg(y, /x,) - 7,
“1 - x, <0,y, <0;
2
-2 argz, = arctg(l/ NE) )— T
Figure 3.3

37



argz, =7/6—m =-571/6;

z, = 2(cos(—57/6)+isin(—57/6)); z, =2z, =22

z,|= m =22 ;

argz, = arctg(y, /x,), x, >0; argz, =arctg(~1)=—n/4;
2, =232 (cos(— m/4) + isin (= m/4)); z, =227 |

z| = Vg3 =2,

argzy =m/2, x=0,y>0;

X, =2 yy=-2;

zy=2i: x;=0; y;=2;

z, = 2(cos(n/2) +isin(n/2)); z, =2

[2 . 2 )

argz, =arctg(y,/x,)+ 7, x, <0,y,>0;

zy==2: x,=-2; y,=0;

argz, =arctg0+n=mn; z, =2(cosn+isinm); z, =2e™.

25| = /x5 + 3 =45

arg zs :arctg(ys/x5)+n, x5 <0,5>0;

Zg==2+4+1: x5=-2; ys=1;
argzs = arctg(—1/2)+

+m=n—arctg(1/2); zs= \/gei(n—arctg(l/z));

Zs = \/g(cos(n —arctg(1/2))+isin (n —arctg(1/2))).
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Definition 3.8 If z, =K (cos @, +isin @) and

Z, =1,(COS @, +isin @, ) are two complex number in a trigonometric
form, then their product is:

z,z, = r,(cos@, +isin@,)r,(cosp, +isinp,) =
=15 (cos(p, +¢,) +isin(@, +,)) =
= 117, (cos @, cos @, +icos@, sin @, +isin @, cosQ, +
+i” sin ¢, sin ¢2): 11, (cos(p, + @,) +isin(p, +9,)).

Definition 3.9 The product of two complex number z, and z,, is

a complex number which module equals product of modules, and its
argument is a sum of the multiplier’s arguments. So,

2,2, = rlrz(cos((p1 +@,)+isin(@, +(p2)); 2,2y =17y e(<P1+<P2)1;

; Arg(zlzz): Argz, + Argz, .

|212,| =|z1 |2

Definition  3.10 If z; =r(cos@, +ising,)  and

z, =1 (cos@, +isin ¢, ) are two complex numbers in a trigonometric

form, at the same time z, doesn’t equal zero z, # 0, the their division
is:

Z _ 1 (cos, +isin @) _

z, 1(cosQ, +isin@,)

_ 7 (cosq, +isin@,)(cosq, —ising,) _

- r, (cosQ, +isin@,)(cosp, —isin@,)

—:i-(COS(gol —¢2)+isi1’1((01 —(02))-

Z, h
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Definition 3.11 The division z,/z, of two complex numbers z; i
z,,when z, # 0, is a complex number, module of it is a division of the
given complex numbers z; and z,, and. the argument is a subtraction of

z, and z, . So,

2 r_l(cos((Pl —@,)+isin(g, - 0,)); A= oo ;
2 p) Z r

|Zl/Zz|:|Zl|/|Zz ; Arg(zl/zz)zArgzl—Argzz.
Definition 3.12 The natural power z" of a complex number z is
a complex number obtained by multiplying the number by itself »
times, where 7 is a natural number.
The first formula of Muavra follows from the rule of
multiplication of complex numbers in trigonometric form:

n

z" = (r-(cos@+isin ))" = r"(cosne+isin ne).

The root of the n-th power Q/; of a complex number z is a
complex number whose 7 -th power is equal to 7 -th power of z:

y
Z]
ri
z2
r2
Z1/22 02 o1
Q1-¢2
X 0 X
Figure 3.4 Figure 3.5

Remark 3.10 Obviously, the root of the n-th power from zero is
equal to zero.
If a complex number z doesn’t equal zero z # 0, then the root
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n -th power Q/; has n different values, it can be determined by the
second formula of Muavra:

?/_zz/r-(cosqwisin(p) =

2 ) 2
=1 F(COSM'FZSIHM],
n

n

where £ =0,1,2,...,n—1; 2/ is the arithmetic value of the root of a

positive number.

Remark 3.11 All roots of the n-th power Q/; of a complex
number z # (0 on the complex plane are represented by the vertices of a
regular n -angle, inscribed in a circle with center at the origin and radius

Remark 3.12 At least one root of the n -th power of a positive real
number will be real number.

Example 3.3 Calculate: («B +i)l0.

Solution. Write down the number /3 +i ina trigonometric form

/3 +i=2(cos(n/6)+isin (1/6)).
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Accordingly to the first Muavra formula
(V3 +i)" = (2(cos(n/6) + isin (n/6)))° =
=2'"%(cos(5n/3) +isin (51/3)) = 2'°(cos (m + 2m/3) +

+isin (1 +2n/3)) = 2'"°(~ cos(2n/3) — isin (27/3)) =

, =2(2-7-43/2)=2"—i- 243
) Z]
Example 3.4 Find all values of the
- /4 7 root of the fourth degree ¥/—1.
Solution. Write down the number
z3 74 —1 in a trigonometric form
—1=1(cosm+isin )
Figure 3.6

(look at the fig. 3.6).
Accordingly to the second Muavra formula

=1 =41(cos(n + 2nk)/ 4 +
T isin(m+ 2mk)/ 4), where k =0,1,2,3.
That is, the roots are complex numbers:
z, = cos(n/4) +isin(n/4) = (V2 /2) 1 +1) ;
2, = cos(3m/4) +isin(3n/4) = (V2 /2)(~1+1) ;
2, = cos(5m/4) +isin(5m/4) = (V2 /2)(-1-1) ;
z, = cos(Tn/4) + isin(7n/4) = (V2 /2)1 -7),

which are shown at the figure 3.6.
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The function of a complex variable
Definition 3.13 It

n

n -1
P(z)=ayz" +az" +..+a, z+a,

is called a polynomial of n-th power of a standard form.
There z is a complex argument: #-th power polynomial;
ay,a, ..., a, are constant complex coefficients; a, is called the highest

coefficient, so a, #0; a, is called the free item.

Theorem 3.1 (Bezu's theorem). The remainder of the division of
polynomial P,(z) by the subtraction Z—a is equal to P, (a).

Proof. P,(2)=0,,(z)(z=a)+R. Let z—>a, then
P,(a)=R. Thatwe need to get.

Corollary 3. 11f a is a root of a polynomial P,(z), then the
polynomial P, (z) is divided without remainder by the subtraction

z—a, that is, it decomposes into factors
f)n (Z) = anl (Z) : (Z - a) )

where a quotient O, _,(z) is a polynomial of power one less power.
Theorem 3.2 (the base algebra theorem). Any polynomial
P,(z) of nonzero power n 21 has at least one root (real or complex).
Corollary 3.2 Any polynomial P,(z) of nonzero power n >1 has
n roots, among them may be the equal roots.
Corollary 3.3 Any polynomial P,(z) of nonzero power n2>1

decomposes into factors in the form:

P(2)=ay(z—2)" (z=2,)" ... (z—2,)"",

where g, is the highest coefficient; z,,z,,...,Z,, are different roots

(real or complex); k,k,, ...,k, are corresponding multiplicities of

these roots, and &k, +k, + ...+k, =n.
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The roots of the quadratic equation az® +bz+c=0 (a#0) with
complex coefficients a,b,c can be found by:
NENLE
2a ’
where \/B — one of the values of the square root of the discriminant D .

Vieta's theorem remains valid on the set of complex numbers for
the roots of a quadratic equation:

Z1p = D =b*—4ac,

zy+z,==bla, zz,=cla.

Example 3.5 Solve the quadratic equation 4z —8z+5=0.
Solution. D=8—4-4.5=-16; /D =+-16=14i;

8+4i 1.
Zl,2 Zﬁzlizl.

The complex function Z of a real variable f of a real variable #

3 from some nonempty set DD of real numbers according to a certain law
corresponds to a single value of a complex variable Z from some area
E of the complex plane. The complex function z =2z(¢) of a real

variable ! is determined by the equality z = x(¢)+i y(¢), t € D, where

x(z) and y(¢) are the given real functions (respectively real and

imaginary parts of the variable z = z(¢) ).
The function z=2z(¢), t €[a;B] in a complex-parametric form

sets some flat line L . Parametric equations of this line are: x = x(¢),
y=y(), telo:f].
The complex variable z = z(Z) corresponds to a vector function.
To find the z'=z'(f) of a complex function z = x(¢)+i y()
of a real variable, it is necessary to differentiate separately the real Xx(?)

and imaginary J(?) parts: z'=x'(¢)+iy'(¢).
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Example 3.6 Determine the form and draw on the complex plane
the line given by the equation z =3cost+3isint.

Solution. To determine the type of

Y .
line, substitute in its equation Z=X+1Yy
3 and reduce it to the corresponding standard
3\ X form. Then let's draw this line.
0 x+iy =3cost+3isin t;
{x =3cost,
Figure 3.7 y =3sint.

is a circle with a radius 7 =3 centered at origin (look at the appendix
A), given in parametric form (figure 3.7). It can be implicitly given by

equations | Z |=3. Canonical equation of a circle is

x*+3*=9.
Example 3.7 Calculate the value of the function cos (3 + 4i) .
Solution.
i(3+4i) —i(3+4i) —4 3i 4 3i
. e +e e e tee
cos(3+4i) = = =

2 2
= (e‘4(c0s 3 +isin 3) + e*(cos 3 — isin 3))/2 =
= (cos 3 -(e_4 + e4) —isin 3 -(e4 - e_4)) 2=
4 -4 4 4

_8 te  os3-if __26 sin 3=ch4 cos3—ish4sin 3.

Example 3.8 Determine the form and plot the lines given by the
equations on the complex plane:

a)|z=2+i=1;b) z = (1 +2i)-t.
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Solution. To determine the type of line, substitute in its equation
and reduce it to the appropriate standard form. Then let's draw these
lines.

a) |x+iy—2+i|:1; ‘(x+2)+i(y+1)‘:1;

\/(x+2)2 +(y+1)*=1; (x+2)"+(y+1)*=1lis a circle with
radius R =1 and it's centered at a point O(2,~1);

bx+iy=(1+2i)t= x+iy=t+2it = ;

x=t

= { ) is a straight line given in parametric form, its explicit
y=2

equationis y =2x

Draw the lines graphs by yourself.
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Lecture 4 THEORY OF LIMITS

Definition 4.1 The number A4 is called the limit of the function
y=f (x) when x — a, if for all values of x that differ little enough

from the number a, the corresponding values of the function y = f (x)

differ little enough from the number A4 :

lim f(x)=4.

xX—a
If x<a and x —> a, then we write conventionally x > a—0;
similarly, if x >a and x — a, then we write x — a+ 0. The numbers

fla=0)= lim f(x) and f(a+0)= lim f(x)

are called, respectively, the limit of the function f(x) from the left and
the limit of the function f(x) from the right at the point a (if these
numbers exist).

For the existence of the limit of a function f(x) as x > a, it is

necessary and sufficient to have the following equality:

f(a-0)= f(a+0).
Example 4.1 Compute the limits on the right and left of the
function

1
f(x)=arctan—
X

when x —>0.
Solution:

1 1 Vg
+0) = lim | arctan — | = arctan — = arctan (4o )= —,
f(+0) ﬁ( x] m (+0) =3

1 1 T
—0) = lim | arctan— |= arctan — = arctan(—o ) =——.
f(=0) ﬁ( x] = (—0)=—3
Obviously, the function f'(x) in this case has no limitas x — 0.
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If the limits lim f(x) and lim f,(x) exist, then the following

theorems hold:
D lim[ f; (x) % £, (x) ] = lim £, (x) £ lim £, (x).
2) tim[ £, (x)- £, (x) ] = tim £, (x)-Tim f; (),
3) lim[ C- f; (x) ] = C-lim f(x).

fi(x) limfi(x)

4) lim 2oL = xoa (lim £, (x)#0).
x—a f2 (X) 1A1_13‘3f2(x) ¥a” 2
2
-x+4
Example 4.2 Compute lim w .Solution:

=2 x* 41

. xz_x+4_xl_i>n}2(x2—x+4)_
=2 xrel 1im(x2+l)

x— -2

2
lim x*+ lim x+ lim 4 | lim x| + lim x+ lim 4
x—> -2 x> -2 x> -2 _ \x>-2 x—= -2 x— -2

lim x*+ lim 1 B ( B

2
x— =2 x— =2 lim x| + lim 1
x—> =2 x—> =2

2 2
(lim xj + lim x+ lim 4 (lim (-2)) + lim (=2)+ lim 4
_\x—> -2 x— -2 x—>-2  \x>-2 x— -2 x— -2

2 2
(lim xj + lim 1 (lim (- 2)) + lim 1

x— -2 x— -2 x> =2 x—> =2
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Definition 4.2 The function f(x) is called infinitesimal as
x—a if

lim f(x)=0.
Definition 4.3 The function f(x) is called infinitude as x — a if

lim f(x)=o0.

xX—a
Properties of infinitesimal and infinitude functions:

1) if f(x) is infinitesimal function as x — @, then —f(x) is
also infinitesimal one;

2)if f,(x) and f,(x) are infinitesimal functions as x — a, then
Jf,(x) £ f,(x) is also infinitesimal one;

3) if f,(x) and f,(x) are infinitude functions as x — a, then
J,(x)+ f,(x) and f,(x)- f,(x) are also infinitude ones;

4) if £i_13ﬁ(x) =b =const, £i_1)1;1f2(x) = o0, then

im[ fi(x)+ f,(x)] =b+oo =00, lim[f,(x)- f,(x)]=b-c0=c0,

lim (£, ()" =0 =c0, Tim A%7, (x) =0 =0,

limM — ﬁ =
=0 fy(x) oo

5)if lim f(x) =b = const, lim f,(x) =0, then

2

limM = b =00
= fo(x) 0
We will now consider the cases where, for some assigned value of
X , the numerator and denominator are both zero or both infinities. The
fraction is then said to be indeterminate.
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During the computing of the limit of two integral polynomials

o0
ratio as x —> o0 and getting the indeterminate form [—} , it is necessary,
o0
firstly, to divide both terms of the ratio by x", where n is the highest
power of these polynomials. A similar procedure is also possible in
many cases for fractions containing irrational terms.

2
: —-3x+
Example 4.3 Compute hmx?—x5
xoo Dx" -3

Solution:
¥ 3x 5 13,5
2 _ 2_17. 2 2T 2 L)
lim™ 23x+5:oo 3zoo+5:2:hmx X 2 _jim x X
oo Qx" =3 200" =3 o | = 2x° 3 X0 2_1
T2 T 2 2
X X X
1 3+ 5
2_% 2-0 2
o0
2
Example 4.4 Compute lim al 3x3+ >
X—>00 x_
Solution:
£_§+i l_é i
X—0 x_3 00_3 0 X—0 i i X—0 l_i
¥ ox x X
1 5
_ ‘Oo+§:1—0+0:l:
l_i 0-0 0
o o0’
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If P(x) and Q(x) are integral polynomials and P(a)#0 or
Q(a) # 0, then the limit of the rational fraction

lim @
=2 0(x)

is obtained directly.
But if P(a)=Q(a)=0, then it is advisable to cancel the

once or several times. To do

binomial x =—a out of the fraction
O(x)

it, we can use the formulas of abridged multiplication:
1) @’ -b*>=(a-b)(a+Db),
2) @’ b’ z(aib)(a2 -T-ab+b2),
3) ax’ +bx+c=a(x—x)(x—x,), where x,, x, are roots of

the equation ax’+bx+c=0 which can be found by using the

—_b+JD

2a

discriminant:

D =b"-4ac, X, =

Example 4.5 Evaluate the following limits

2 2 o
2) limzx 2-l—x l;b) lim2x3 5x-3
x——1 x =1 x—3 x> =27
Solution:
2 +x—1 2(-1)'-1-1 2-1-1 [0
a) lim > = > = ===
x——1 x =1 (_1) -1 1-1 0

factorize the numerator and denominator and cancel:
2x% +x-1, xz—lz(x—l)(x+l),
D=1’ —4-2-(—1):1+8:9,
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x—_”*@—_l”—%—l
22 4 4 2
“1-49 -1-3 -4
X, = = =—z=-1,
2-2 4 4

2x° +x—l:2(x—%j(x+l).

2(x—;](x+l) " 2@—9 a2 -1 21 3 3

o1 (x=l)(x4) e x-l erlx-l -l -l 202

2

b) lim =
)Hs x =27 0

2x7 —5x-3=2(x-3)x+1/2
_ D=l;x1=3;x2=—l m 2(x—3)x+1/2) _
2 x—3 (x—3)(x2 +3x+9)
x* =27 :(x—3)(x2 +3x+9)

2x?—5x-3 _‘9‘_

_2x+1/2) 2341 7
=lim > = =—.
=3x 4+3x+9 9+9+9 27

To find the limit of an irrational expression, when one gets the
. . 0 L.
indeterminate value [6 or [oo—oo], it is necessary to transfer the

irrational term from the numerator to the denominator, or vice versa,
from the denominator to the numerator.

. X
Example 4.6 Compute lim —————.
=0 J1+3x —1

Solution.

fim—— =0 —[9}—
=0 J1+3x -1 J1+3-0-1 [0
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Multiply the numerator and denominator of the fraction under the
limit sign by the expression conjugate of the denominator, i.e. by

V1+3x +1:
x(m+l) x(«/@+l) x(ﬁ+l)

lim =lim =lim =

P31 (ie3et) (a0 (3]

X(V1+3x+1) . JI43x+1 J140+1 2

=lim =lim —.

x>0 3x x>0 3 3 3

We have two fundamental limits that help us to simplify the limits
calculation and they are frequently used.
Definition 4.4 The first fundamental limit is:

. sina
lim =

a->0

1

and some useful consequences from it:

tana arcsin o _ arctan _

lim =1, lim 1, lim 1,
a—0 o a—0 o a—0 (04
. a . o . o
lim — =1, lim =1, lIm——— =1,
a=>0 81N o =0 tan o =0 gresin o
. a
lim——=1.

a—0 arctan o
Definition 4.5 The second fundamental limit is:

lim(l+lj zlim(l+x)i =e~2,72|

xX—0 X x—0

0
If you get the indeterminate value [6} of the limit with

trigonometric expressions, it is necessary to factorize the numerator and
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denominator by using trigonometric formulas and cancel or apply the
frequently used limits for trigonometric functions.

Remark 4.1 Sometimes we need to use your school knowledge
about the trigonometric functions which we can find at Appendices C, D.

. sin3
Example 4.7 Compute llrr(} Smox
X x
Solution:
fim sin3x _sin0 _ [9} —lim sin3x-3 _ 3-lim sin3x _ 3123
x—0 X 0 0 x—0 X x=0  3x

1 4 . ctg(rn/4+
Example 4.8 Compute: a) hmﬂ b) lim M
>0 | —cos8x womt  dx—1

Solution:
. 1-cos4x 1-cos0 [0}
a) lim = =l—|=,
+=>0]—-cos8x 1—cosO |0
. I—-cos2a
firstly, we should use a trigonometric formula sin’ @ = T (look

at Appendices B, D), then frequently used limits for trigonometric

functions:
2sinzﬁ
=1—00820c=2sin204:11m 2 :hmsm 2x . sin2x-sin2x-2x- Zx
2 8 sin® 4x N sin’4x-2x-2x
. , )

:hmsm2x.hmsm2x.lim .426 1-1-Tim 4x Tim
0 2x a0 2y x0sin” 4x >0 sin 4x 0 sin4x
S TSR T T e T S LU P R

=0sin4x-4 0sin4x 4 4 4

u=x-r/4; x=n/d+u;

b) lim
xon/4 Adx -1

ctg(m/4+x) _|9 B
0

x—>r/4 = u—>0
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m ctg(n/d+u+rm/4) _lim ctg(m/2+u) _
0 Ar/d+u)-m u—0 4u
_ Ve, 1
4 u—0 y 4 4

When taking limits of the form

lim[ £ ()] = 4,

xX—a

one should bear in mind that:
1) if there are final limits

lim f(x)=B and limg(x)=C,

then 4 =B°;
2)if lim f(x) =B #1 and lim g(x) =+,
then
B 0, B<I;
- o, B>1;

3) if lim f(x)=B=1 and limg(x)=o, then we get the
indefinite value [lw] and should use frequently used limits for

exponential functions.

2x+3\"
Example 4.9 Compute lim( . ] .
X—>0 X —

Solution:

f@ =222 g =4x.

X —

2x 3 3
— 4 24— 2+;o_2+0_

3
T 10
X

lim/()=

o0 x—0 X 1 x%l 1_7

o x—] o1 x 1
o0

X X
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lim g(x) =lim(4x)=4-00=00.

o (2x+3)"
Thus, we have the second case and hm( a ] =27

:CD’
X—>0 x_l
because 2 >1.
. (x+3 =
Example 4.10 Compute lim 7]
X—>0 x_
Solution:
x+3
S)=——, g(x)=4x,
x—1
x,3 1+é 1+é
limf(x)= lnnx—Jr3:O°—+3:°—o “lim® ¥ X =0 10
> x—1 oo—1 |oo x 1 x—ml_l 1_1 1-0
X X X o0

lim g(x) =lim(4x)=4-c0=00.

4x
. +3
Thus, we have the third case: 11m(x J = [1“’} =
x>0\ x — 1

and to find the limit we should use frequently used limits for exponential
functions:

dx 4x 4x 4x
i 1{x_+3_} O e A e A T P
X—»0 x_l X—»0 x_l X—»0 x_l X—»0

x-1

4 x- 1 =
4\ e e ]

:hm l+— :hm 1+_ _e—ww\l_eool_ o] _
X—0 x_ X—>0 x_
16x
i 16 16
L R S S )
—e *r=e *z=e ®=e0=¢"



Table 4.1 — Equivalent infinitely small values

sinx ~ x arctgx ~ x a' -1~ xlna
x—0 x—0 x—0
2
gx ~ x 1-cosx ~ x*/2 In(1+x) ~ x
x—0 x—0 x—0

arcsinx ~ x

x—0

e' -1~ x
x—0

(+x)" -1 ~ ax

Example 4.11 Evaluate the following limits:

1) lim

Inf1-6x*)

x>0 arctg x

2) lim arcsin 3x — x’ '

x—0

1-{1+x

2
Solution: 1) 1imM -9 \1n(1 — 627 )~ —6x7;
x>0 arctgx 0
2
arctgx~x‘:1im 6x =0;
x=>0 x
. 2
2) limM = ‘9‘ = |arcsin 3x ~3x;
=0 17/ 1+x 0
2 —
=T = = lim 2 i =) i G0 )

7

x—0 _x/7 _x—>0 _x/7
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Lecture 5 The DERIVATIVE OF FUNCTION. TECHNIQUES of
DIFFERENTIATION

Let consider function f(x) identified on the interval (a;b) and

Figure 5.1

Xy €(a;b). We choose an
arbitrary point X belonging to
the graph of the function f(x),

then the increment of the
argument will be  called
expression as Ax =x-—x,. Since

the point X, is fixed, then the

increment of the function will
have the form

Ay = f(x,+Ax)— f(x,) and depend on Ax. We will compose the

ratio the increment Ay of the function to the increment of the argument

Ax , when the Ax approaches to zero and we also will find the limit of

Ay

its ratio as lim ——. This is such an important limit, and it arises in so

Ax—0

many places that we give it a name. We call it a derivative. Here is the

official definition of the derivative. On the other words, the derivative is

a slope of a curve at point, it is formula.

Definition 5.1 The derivative of a function f(x) with respect X

is the function f'(x) and defined as

lim Q = lim

f(xo +Ax)—f(x0) =f'(x)

Ax—>0 Ax  Ax—0

Ax

Definition 5.2 The derivative of a function f(x) is denoted f'(x)

and we often read as “ f prime of X 7.

The geometric meaning of the derivative consists of the fact that
the derived function for each value is equal to the angular coefficient of
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the tangent line (Figure 5.1) to the graph of this function at the
corresponding point M, as f'(x)=tga ; where a — is the angle that
forms the tangent line to the graph with the positive direction of the
abscissa; this angle is an argument of function is X . The equation of the
tangent line to the graph of the function y= f(x) has the following

form:
Y= = y'(xo)(x—xo) ,

where X, is abscissa of a point of tangency M, ), the corresponding
ordinate of a point M, y'(x,) —is derivative of the function y = f(x)
computed at the point M, (and also y'(x,)=k , where k— angular
coefficient of tangent); y,x arbitrary variables.

For example, find the equation of tangent line to a curve of the
function y = x? at the point M(l/2; 1/4).

Solution: To find derivative of the function y =x? it will be:
y'=2x. Thus:

tgo=y'(x))=2-(1/2)=1; a=arctgl=45" — the angle of
the slope of tangent line; y—1/4=1-(x—1/2); y=x-1/4 — the
equation of tangent line.

Physical or mechanical content consists of the fact that the non-
uniform motion of a material point is expressed by a function s = f(¢) .

This function changes in time ¢; the derivative s'(z) is the rate of
function’s changes at a certain time #, (say: instantaneous velocity), that
is f'(t,)=v(t,), where v(t,) is a velocity of changes s=f(t) at a
certain time ¢=t¢,. Thus, the velocity of occurrence of physical,

chemical, and other processes is expressed by derivative.
We know that f’(x) carries important information about the

original function f(x).In one example we saw that f'(x) tells us which
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a steep (slope) of the graph of the function f(x) is; in another we saw
that f'(x) tells us the velocity of an object if f(x) tells us the position
of the object at time X . As we said earlier, this same mathematical idea
is useful whenever f(x) represents some changing quantity and we
want to know something about how it changes, or roughly, the “velocity”
at which it changes. Most functions encountered in practice are built up
from a small collection of “primitive” functions in a few simple ways,
for example, by adding or multiplying functions together to get new,
more complicated functions. To make good use of the information
provided by f’(x) we need to be able to compute it for a variety of such
functions.
To recall the form of the limit, we sometimes say instead that

fim & _ i G0t A= fl)_dy
Ax—>0 Ax  Ax—0 Ax dx
In other words, % is another notation for the derivative, and it
X

reminds us that it is related to an actual slope between two points. This
notation 1S called Leibniz notation, after Gottfried Leibniz, who
developed the fundamentals of calculus independently, at about the same
time that Isaac Newton did. Again, since we often use f and f(x) to

. . . d d
mean the original function, we sometimes use d_y and dl to refer to
X X

the derivative. If the function f(x)is written out in full we often write

the last of these something like
f'(x)= (\/5x2 —4) or di[Vsz —4}
X

with the function written to the side, instead of trying to fit it into the
numerator.
Let’s compute a couple of derivatives using the definition.
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Example 5.1 Find the derivative of function Y =sinx and

calculate it at the point y'[g) .

Solution: f(x)=sinx,
f(x+Ax)=sin(x+Ax); Ay = f(x+Ax)— f(x)=
X+Ax—x X+Ax+x
cos 5 =

=sin(x + Ax) —sin x = 2sin

2x+ Ax

2sin ﬂ cos
2

Let us compose the ratio of the increment of the function to the
2x+Ax

. Ax
Ay 2s1n700s >
increment of the argument ™ = and calculate the

Ax

limit:

Ax
A 25111& cos 2x+Ax sinAr 00{x+2J
Y 2 2 _lim - lim

lim —= = lim
A0 Ax  Av0 Ax A0 Ay A Ax

=C0SX,.

!

So, (Sin x) =cosx. Now we will calculate the value of
derivative at point x = 3 and obtain that it is cosg = 3

Example 5.2 Determine f'(0) for the function f(x)= |x|

Solution. Since this problem is asking for the derivative at a
specific point we’ll go ahead and use that in our work. It will make our
life easier and that’s always a good thing. So, plug into the definition and
simplify.

hmgzhm f(xO+Ax)_f( Xo |0+AX|—|0|_1m|AX|

Ax—>0 Ax  Ax—0 Ax Ax—)O Ax Ax—>0 Ax

We saw a situation like this back when we were looking at limits
at infinity. As in that section we can’t just cancel the Ax’s. We will
have to look at the two one sided limits and recall that
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|Ax| |7 i Ax< 0, in a right-hand limit we
Ax, if Ax>0
Ax
have lim |—= lim g=1, in a left-hand Ilimit we have
Ax—>+0 Ax  A—0 Ax
Ax _

lim u = lim —Ax =—1. The two one-sided limits are different and so
Ax—>-0 Ax  A&—0 Ax

.|y . . . .

lim ~— doesn’t exist. However, this is the limit that gives us the
Ax—0 Ax

derivative that we’re after. If the limit doesn’t exist, then the derivative
doesn’t exist either.

Remark 5.1 In the last example we have seen a function for which
the derivative doesn’t exist at a point. This is a fact of life that we’ve got
to be aware of. Derivatives will not always exist. Note as well that this
doesn’t say anything about whether the derivative exists anywhere else.
In fact, the derivative of the absolute value function exists at every point
except the one we just looked at x =0 .

The preceding discussion leads to the following definition.

Definition 5.3 A function f(x) is called differentiable at x = a

if f'(a) exists and if f(x) is called differentiable on an interval if the

derivative exists for each point in that interval.

The next theorem shows us a very nice relationship between
functions that are continuous and those that are differentiable.

Theorem 5.1 If the function f(x) is differentiable at x =a then

f(x) is continuous at x =a

Note that this theorem does not work in reverse.
Consider f(x)=|x| and take look at lim /(x) = 1in3)|x| =0=1(0).

So, f (x)=|x| is continuous at X =d but this function is not

differentiable at X =a. In really, the function must be continuous.
However, continuity is a necessary but no sufficient condition for
differentiability.
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We should note that computing most derivatives directly from the
definition is a fairly complicated process filled with opportunities to
make mistakes. So, we need to start mastering formulas and/or properties
that will help us to take the derivative of many of the common functions
and we won’t need to resort to the definition of the derivative too often.

This does not mean however that it isn’t important to know the
definition of the derivative! It is an important definition that we should
always know and keep in the back of our minds. It is just something that
we’re not going to be working with all that much.

There are a few important rules for computing derivatives of
certain combinations of functions. Derivatives of sums are equal to the
sum of derivatives so that

(uiv)' =u'tV'
In addition, if C is a constant,
(C-u)' = C(u)' , C=const

The product rule for differentiation states

!

(u-v) =u"-v+v'-u

Where u' denotes the derivative of u with respect to x. This
derivative rule can be applied iteratively to yield derivative rules for
products of three or more functions, for example,

(u-v-g) =u'-v-g+vV-u-g+g'-vu

The quotient rule for derivatives states that

!’

u u'-v—v'u
i :—2, Vio.
y y

Simple derivatives of some elementary functions will be presented
at the table 5.1 below
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Table 5.1 — Elementary function derivatives

Function Derivative
1 Constant C'=0
2 Powerful function (u”) =au®tu
2a X x'=1
% Ju (V) =1
2u
1 !’
2c l = _LZ u'
u u u
3 Indicative function (a” ) =ad"lna-u'
3a Exponent (e”) =ée"-u
o , S
4 Logarithmic function (loga u) = ‘U
ulna
. 1,
4a Natural Logarithm (ln u) =—-u
u
5 Sine (sinu) =cosu-u’
6 Cosine (cosu) =—sinu-u'
’ 1 ,
7 Tangent (tg u) = >—u
COos u
’ 1 ,
8 Cotangent (ctg u) =———F—"U
sin”u
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Continued Table 5.1

Function Derivative
Y 1 ,
9 Arcsine (arcsmu) = U
1—u
2 1 ,
10 Arccosine (arccosu) =- U
1—u
11 Arctangent (arctg u) = 3 u'
1+u
2 1 ,
12 Arccotangent (arcctg u) =- > U
1+u
(Look at the Appendix E).

The chain rule says that the derivative of composition of
functions f(g(x)) equals multiplication the derivative of outside

function and the derivative inside function

[Ftee] = r'en-g/(x) or <L een]=-C (g} lewo]
x dx dx

Example 5.3 Differentiated functions

a) y=5%"_In3-x%) ; b) y =xarccosdx.
Solution. a) y=5"*—\[In3-x7),

J= (Sc,gu ) _ [ W j =592 5. (ctg2X)' —5\7%% -

=5€tg2xln5-( -2 J_ 1 —2)(;
2

sin” 2x /In(3—x?) 32

0) y= Vx arccos4x ,
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'
1 —4

V= (xS J arccos4x +3/x (arccos 4x)' = lx? arccos 4x +3/x 4 .
5 V1-16x>
Go on and study topic about the non-common function derivative.
Questions which we have to consider, as
1. How we must differentiate the exponential-power function, or a
function in degree function.
2. How we must differentiate the parametric function
3. What is the implicit function and how we must differentiate it.
First, you should understand the exponential-power function (we
often call her as a function in degree function), what is it? It is a function
which has the form as y =[f(x)]’"™”, where f(x) and @(x) - functions.

If we need to find her derivative we can use two different techniques, for
example,

1) the first technique could be named as logarithmic
differentiation, because it is performed by two steps. At beginning, we
logarithm the function, and then differentiate it.

Remark 5.2: logarithmic function, remember the following
formulas

In(u-v)=Inu+Inv; ln(z)zlnu—lnv;
v

In(w)* =k-Inu, k= const .
Remark 5.3 The same technique we could use if your function
presentedas ¥ = f1(x)- f5(x)- f5(x)-...;

2) the second technique involves the formula using

=) = ooy L0 freop

Example 5.4 Find the derivative of the functions
(4x+1)° &

G
:Z’ =
)= ) Y e (x+4)
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Solution. We will use the first technique

a) y= tgx‘/; ,Iny= ln(tgx*/;), Iny= \/;-ln(tgx),

(ln y) (\/_ In (tgx)) L_ ln(tgx) \/;
¥y tgx - cos’x’
x X
2\/_ lgx cos’ x x l‘gx COS X
_(x+l)’e 5 o (4x+1)* &
logs(x+4) ’ logs(x+4) ’

Iny=1In(4x+1)° +In e’ —Inlogs(x+4),

Iny=3In(4x+1)+5x> —Inlogs(x+4),

Yy 2 1 1
vy 4x+1 log,(x+4) (x+4)In5”’
3 5x3
Na 12 154 — 1 . 1 (4x+1) e '
4x+1 logs(x+4) (x+4)In5 ) logs(x+4)

We quite often can meet in engineering the function called as
parametric. It is the function as the form x=¢(¢), y =y (¢), where ¢ is

a parameter. If these function ¢(¢) and y(¢) are differentiable at the
some interval and also the function y(r) has inverse function and
wherein it is not equal zero (¢@)(¢)#0) then the derivative of this
function equal ratio of the derivation of functions
=y' )/ ') =y, /x|
Example 5.5 Find the derivative of the function

x=a(t—sint)
y=a(1—cost)'

67



Solution. We can find the derivative of each function separately as
x' and y/: x =a(l—cost);y, =asint. After this we can substitute

them in the formula, and we obtain answer:

J = asint _ sint —ctgt
" a(l-cost) 1-cost 2

The process of differentiation of the implicit function is no less
interesting than previous themes. The function will be called the implicit
function if it has a such form F(x,y)=0 or F(x,y)=®(x,y). Then if

we need to get its derivative you should differentiate both sides of the
function and it should be taken into account that the function y is a

complex (composed) function.
Example 5.6 Find the derivative of the function

2
1g(2x=y)=x"y
Solution. tg(zx—y)=x2y, tg(2x-y)-x*y =0,

(tg 2x - 1)) - (xzy)’ = (o).

Qx> y_x2yr=0
cos*(2x—y) ’
2—)" 2
—2xy—x"y =0
cos”(2x— ) 4 4 ’
2 4 —2xy —x’y'=0

cos*(2x — y) - cos*(2x — y)
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y 2.0
+ X = - 2.x
cos’(2x — y) Y 0052(2X =) .
' 2x
4 (cos (2x - y) J cos (2x - ) &
1+x%cos?(2x— ) —2xy cos > (2x—y)
cos 2 (2x — y) cos > (2x—y) ’

B

1+ x%cos’(2x— ) 2 2xycos 2x—-y)
cos*(2x — y) cos>(2x — )

) = 2 — 2xy cos (2x - )
1+ x%cos 2(2x — )

The second-order derivative or the second derivative of a function
y=f(x) is the derivative of the derivative f'(x). The second

derivative is denoted by »", ",

pa A}

The derivative of the second derivative of a function y = f(x) is
called the third-order derivative, y" =(y") . The n-th-order derivative
of the function y = f(x) is defined as the derivative of its (n—1)th

derivative:

="y

The n-th-order derivative is also denoted by yi") > o f “(x) .

When finding higher order derivatives of an implicit function use
the same rules as for the finding the first order derivative of an implicit
function.

If the function is parametrically defined, then the derivatives of the
second order and above are found by the formulas:
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" _ (y;)’t mo_ (y;"x)’t y(n) _ (yin 1)) )

yxx_ ' > Jxxx T ' >0t Jx '

X, Xy X

Example 5.7 Find the third-order derivative of the function:

yz%(x2 +9)(x—6).

Solution:

’

(é(:sx ~12x+9) é (6x-12)=

6(x 2)

y”':(x—2)’ =1.
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Lecture 6 APPLICATION OF THE DIFFEFERENTIAL
CALCULUS

L’Hospital’s rule. If f(x) and g(x) are both infinitesimals or

(x)

both infinites as x — a, that is, if the quotient )
g(x

,at x=a, 1s one
. . 0 o
of the indeterminate forms 6 or | — |, then

o0
X "(x
limf( ) = lim f,( )
X% g(x) =% g (x)
provided that the limit of the ratio of derivatives exists.
The rule is also applicable when g =0 .

/(%)
g'(x)

point x =a, of one of the two above-mentioned types and f ’(x) and

If the quotient

again yields an indeterminate form, at the

g’(x) satisfy all the requirements that have been stated for f(x) and

g(x), we can then pass to the ratio of second derivatives, etc.

. 1 1
Example 6.1 Compute lim| ——-—|.
-0\smm x x

Solution:

lim Lt —L—L—l—l—[oo—oo]—
—0\sinx x*) sin’0 0° 0 0
Reducing to a common denominator, we get

=lim
x—0 X

3 — | =

x*—sin’x 0% —sin’0 _[0}
0

-2 T N2 s 2n
sin” x 0°-sin“ 0
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Before applying the L’Hospital’s rule, we will use one of special

limits for trigonometric functions, i.e., im——=1:
a=0s1n o
2 in2 2 2 2 .2 2 .2
. X —sm x)-x . X . x —sin“x . X" —sin” x
= lim — —=lim ——-1lim ——=1lim——=
x>0 xX“sm° - x-x x>0 sin” x x>0 X -x x—>0 X
The L’Hospital’s rule gives
. (xz—sinzx) . 2x —2sin xcos x . 2x —sin 2x
= 111’1’10 ; = 111’1’10 S = 11rn0 —_—=
x> (x 4 ) x> 4 x x> 4 x

. (2x —sin 2x) . 2—2cos 2x
im - = lim =

=1

_2-O—sin0_[0}

4.0° 0 x50 (4x3) x50 12 x2
. l—cos2x .. 2sin*x .. sinx-sinx 1, sinx . sinx 1
=lim — = lim =lim =—lim -lim =—.
x—0 6x x—0 6x - X x—0 3 XX 3 x>0 x x>0 x 3

To evaluate an indeterminate form like [0-00], one should

/(%)

transform the appropriate product f(x)-g(x), into the quotient I
2(x)
g(x ) . . 0 oo
or to get one of the indeterminate forms 6 or | — |, and then

) i

to apply the L’Hospital’s rule.

Example 6.2 Compute hn(} x*-Inx.

Solution:

lim x* -In x = 0’ -an:[O-oo]:limln—x:m—O:[f}:
x=0 x=0 1

2 2
X 0
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Example 6.3 Compute lim (ex + x); .

X—>+0

Solution:

xlitg)(ex +x)i' = (e“” +oo)+°o = [000] .
Taking logarithms and applying the L’Hospital’s rule, we get
lim In(e” + x) =1im - In(e* +x):11m1n(L+x):[f} _

x—=0 x—0 x x—0 X o0

oo [ T oimw oF
x> (€x+X) x>0 ¥ 41

Therefore, lim (e*' + x)l =e.

X—>+0

Now we should consider the topic about the behavior of the
function and how to determine it with the function derivative concept,
namely, search answer about the function decreasing and increasing.

Increasing or decreasing?

Let y= f(x) be continuous on an interval X and differentiable

on the interior of X

1) If f'(x)>0 forall xe€ X, then function is increasing on X
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2)If f'(x)<0 for all x e X, then function is decreasing on X
Example 6.4 The function

y=3x*—4x* —12x* +3 has the first derivative

as e O++++++++

| | | |

Y =12x" —12x% - 24x = a0 1z
=12X(x2—x—2)=12x(x—2)(x+1), BRI

| | | |

If we trace the sign of the derivative, we '1 EI % é

will see that it changes (pictures on the left).

Thus, f(x) is increasing on intervals L ? T

I I I I

(-1,0)0U(2,0) and decreasing on (—oo,1)U(0,2) . 012
Definition 6.1 Points in which the __.g++g------ 0+ +

derivative equals zero or not exists we will call 1

-1 1] 1 2

critical points (critical number).

To know how to find the extremum of a
function (the highest or lowest point on the
interval where the function is defined) we should calculate the first
derivative of the function and make a study of sign. The extremum of a
function is reached when this derivative is equal to zero and changes of
sign.

Definition 6.2 A minimum of a function m exists for all x if
f(x)=m is greater than or equal to a minimum.

Definition 6.3 A maximum of a function M exists for all X if
f(x)<M is less than or equal to a maximum.

An extremum of a function is always defined over interval (that
may be domain of definition of a function). For example, the function

f(x)=x? defined over R (that xe (— oo;+oo)), it has minimum in x=0
because f(x)>0 over R (forall x#0).

Suppose the function in question is continuous and differentiable
in the interval. Then, there are a few shortcuts to determining extrema.

All local extrema are points at which the derivative is zero (though it is
possible for the derivative to be zero and for the point not to be a local
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extrema). While they can still be endpoints (depending upon the interval
in question), the absolute extrema may be determined with a few
shortcuts too. These are the derivative tests.

Theorem 6.1 (The First Derivative Test)

Suppose y = f(x)is a real-valued function and it has an interval on

which it is defined and differentiable. Then, if x, is a critical point of

y=f(x) in,

1.If f'(x)>0 on an open interval extending left from x,and
f'(x)<0 on an open interval extending right from X then a function

has a relative maximum at X .

2.1f f'(x)<0 on an open interval extending left from x, and

f'(x)>0 on an open interval extending right from X, then a function has

arelative minimum at X .

3.If f'(x) has the same sign on both open interval extending left
from x, and an open interval extending right from x, then a function
does not have a relative extremum at x,,.

In simpler terms, a point is a maximum of a function if the
function increases before and decreases after it. Conversely, a point is a
minimum if the function decreases before and increases after it.

There may not exist an absolute maximum or minimum if the
region is unbounded in either the positive or negative direction or if the
function is not continuous. If the function is not continuous (but is
bounded), there will still exist a supremum or infinum, but there may not
necessarily exist absolute extrema. If the function is continuous and
bounded and the interval is closed, then there must exist an absolute
maximum and an absolute minimum. If a function is not continuous,
then it may have absolute extrema at any points of discontinuity.
Generally, absolute extrema will only be useful for functions with at
most a finite number of points of discontinuity. The absolute extrema
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can be found by considering these points together with the following
method for continuous portions of the function.

All local maximums and minimums on a function’s graph —
called local extrema — occur at critical points of the function (where the
derivative is zero or undefined). (Don’t forget, though, that not all
critical points are necessarily local extrema.)

The first step in finding a function’s local extrema is to find its
critical numbers (the x-values of the critical points). You then use the
First Derivative Test. This test is based on the Nobel-prize-caliber ideas
that as you go over the top of a hill, firstly, you go up and then you go
down, and that when you drive into and out of a valley, you go down and
then up. This calculus stuff is pretty amazing, eh?

Example 6.5 The figure 6.1 shows the graph of

t y= 3x° —20x°
r : Find the critical numbers of this
| \ s [ function, here’s what you do.
[ | ¥ 1. Find the first derivative of

function using the power rule.

e ey =30 - 200°) =15x* - 60x°

3 [ -2 -1 \ 2 | 3
-10 | ) ]
|| ar N 2. Set the derivative equal to zero
| < "\ ,u'l and solve for X .
' MR 15x* —60x> =0,15x%(x* —4)=0,
15x%(x = 2)x+2)=0, x=0 or

x=2orx=-2.

Figure 6.1 o
lues are the critical numbers of y= f(x).

Additional critical numbers could exist if the first derivative were
undefined at some X -values, but because the derivative

¥y =15x* — 60x?
is defined for all input values, the above solution set, 0;2;-2, is the
complete list of critical numbers. Because the derivative (and the slope)
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of y= f(x) equals zero at these three critical numbers, the curve has

horizontal tangents at these numbers.

Now that you’ve got the list of critical numbers, you need to
determine whether peaks or valleys or neither occur at those x-values.
You can do this with the First Derivative Test. Here’s how:

1. Take a number line and put down the critical numbers you have
found: 0, -2, and 2.

' 2
critical |

numbers

> 0

You divide this number line into four regions: to the left of —2,
from -2 to 0, from 0 to 2, and to the right of 2.

2. Pick a value from each region, plug it into the first derivative,
and note whether your result is positive or negative.

For this example, you can use the numbers —3, —1, 1, and 3 to test
the regions.

y'(-3)=15(=3)" —60(-3)* =15-81-60-9=675>0,
V(1) =15(-1)* —60(~1)* =15-60=-45<0,
y'(3)=15(3)' =60(3)° =15-81-60-9=675>0,

y' (1) =15(1)* =60(1)* =15-60=-45<0

These four results are, respectively, positive, negative, negative,
and positive.

3. Take your number line, mark each region with the appropriate
positive or negative sign, and indicate where the function is increasing
and decreasing.

It’s increasing where the derivative is positive and decreasing
where the derivative is negative. The result is a so-called sign graph for
the function.

77



e : —_— : —_— = ! —

i 1 1
increasing | decreasing | decreasing, increasing
+ : - ' - i +
-2 0 2

T— critical numbers—T

This figure simply tells you what you already know if you’ve
looked at the graph of function that the function goes up until -2, down
from -2 to 0, further down from 0 to 2, and up again from 2 on.

Now, here’s the rocket science. The function switches from
increasing to decreasing at —2; in other words, you go up to —2 and then
down. So, at —2, you have a hill or a local maximum. Conversely,
because the function switches from decreasing to increasing at 2, you
have a valley there or a local minimum. And because the sign of the first
derivative doesn’t switch at zero, there’s neither a min nor a max at that
X -value.

4. Obtain the function values (in other words, the heights) of these
two local extrema by plugging the X -values into the original function.

¥(=2)=3(-2) —20(-2)’ =64, y(2)=3(2)" -20(2)’ =64
Thus, the local max is located at (-2, 64), and the local min is at

(2, -64). You’re done.
Theorem 6.2 (The Second Derivative Test)

Suppose ¥ = f(x) is a real-valued function and xe€ X is an

interval on which ¥ = f(x) is defined and twice-differentiable. Then, if
X 1is a critical point:

1. If f”(xo) >0 then Y= f(x) has a local minimum at
the X .

2. If f”(xo) <0, then y= f(x) has a local maximum at
the X .
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Remark 6.1 In simpler terms, a point is a maximum of a function if
the function is concave down, and a point is a minimum of a function if
the function is concave up.

The derivative tests may be applied to local extrema as well, given
a sufficiently small interval. In fact, the second derivative test itself is
sufficient to determine whether a potential local extremum (for a
differentiable function) is a maximum, a minimum, or neither.

Example 6.6 Find the extrema of a  function

fx)=(x=1)’(x+1)’
Solution: Our function is defined for D(x):x e (—0,+0);
E(y):y e(—0,400).

2) Calculate the first derivative:

') =30 =1 (x+1) +2(x +1)x - 1)’
3) And find the critical point due to solve the equations as
J'(x)=0:
(x=D*(x+1)5x+1)=0, (x—=1)> =0, x+1=0, 5x+1=0,
so, we obtained x, =1,x, =—1,x, =—1/5 are critical points.

Exanimate the sign of f"(x) (the second derivative) at the all-out

critical points, however, first of all we will calculate the second
derivative:

F'(x)=2(x-D(x+DGx+1D)+(x-1)>(5x+1+5(x+1)) =
=(x—1D)(10x> +12x+2+10x" —4x—6) =
(x—1)(20x" +8x—4);

after that we substitute each values of critical points at the

expression of the second derivative and we will get the following results

as f"(-1)=-16<0 , so at this point we will have a local maximum;

f"(=1/5)=114/25 > 0, so at this point we will have a local minimum,
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f"(1) =0, unfortunately, we can’t say definitely, we need to perfume
other acts to examine this point. Take appoint x =0 , which located on
the left hand of this point Bix x =1, and define the sign of the first
derivative, it is: f'(0) =1> 0; then we take a point x =2 , on the right
hand of x=1, and define the sign of the first derivative, it is:
f'(2) =33>0. Insomuch as the first derivative don’t change the sign

nearby of the point x =1, so we don’t have the extremum at this point.
Compute the values of extrema:

X, =—1/5= y . =y(~1/5)=-3456/3125,

x . =—1=y =y-=1)=0.
Example 6.7 Find the extrema of the function
X
1+x*

Solution. The domain of function definition is:

1+x*#0, xeR.

Find the derivative of the given function:

,_( X J'_x'-(1+x2)—x-(1+x2)'_1-(1+x2)—x-2x_1+x2_2x2_ 1-¥
e 2] () () (1)

Solve the equation y'=0:

1-x*

—2:0’ ]—xZ:O, x2:1, x=41.
(l+x2)

Put all critical point taking into account the point where our
function does not exist (or undetermined) on the axis and investigate the
sign at the obtained intervals.
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\—I}/vll\y

min

> X

To determine what the sign of )’ is in the interval (—o0;—1), it is
sufficient to determine the sign of )’ at some point of the interval. For
example, taking x = -2, we get

-2 -2 2
y’(_z) = P = =7,
1+(-2)" 1+4 5

hence, ' <0 in the interval (—o0;—1) and the function in this interval

decreases.

Therefore, the function increases in the interval xe(—l,l),

decreases in the interval xe(—oo,—l)U(l,+oo), x=-1 1is the

minimum point of the function, x =1 is the maximum one.

-1 1
Vo (-)=————=-0,5, y_ (1)=—==0,5,
1+(-1)° 1417
A(-1;-0,5), B(1;0,5) are the extremal points.
Find maximum and minimum values of a function over a closer
interval.

Let a function f(x) be a function on [a,b] and C is a inner point
in the interval [a,b]. Then:

1) if for any point X in [a,b], f(x)= f(c) (respectively,
f(x)< f(c)) then f(c) is the absolute (or global) minimum value

(respectively, absolute (or global) maximum value) of f(x) on [a,b];
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2) if a<c<b, and for any point X in an open interval
containing ¢, f(x)> f(c) (respectively, f(x)< f(c))then f(c) is

the local minimum value f(x) (respectively, local maximum value) on
[a,b]:

3) if f(x) is continuous on [a,b] and differentiable in (a,b), a
point C in [a,b] is a critical point of a function f(x) if either f'(c)
does not exist, or f'(¢)=0;

4) important:_if f(x) is continuous on [a,b] and differentiable

in (a,b) and if for some C in (a,b), f(c) is the local minimum or

maximum, then ¢ must be a critical point. Any absolute minimum or
maximum must take place at critical point inside the interval or at the

boundaries point @ and b .

Example 6.8 Find the largest and smallest values of a function
y=x"+9x>—1 on a segment [-2,2].
Solution. Since
' 3 2 ' 2
y =(x +9x —l) =3x"+18x,
it follows that the critical points of the function are
3x* +18x =0,
3x- (x + 6) =0,
x=0e[-2;2], x=-6¢[-2:2].

Comparing the values of the function at x=0 and at the
endpoints of the given interval

y(0)=0+9-0°-1=-1,
y(-2)=(-2) +9-(-2)" ~1=-8+36-1=27,
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y(2)=2°+9-2> ~1=8+36-1=43,

we conclude that the function attains its smallest value m =—1 at the
point x =0 and the greatest value M =43 at the point x =2

max y = y(2)=43, [rgi;%y:y(O):—l.

[-2:2]

Example 6.9 Find the maximum value and the minimum value

attained by f(x)= 11 in the interval [2,3].
x

Solution. Note that the domain of f (x) does not contain x=0
and x=1, and these points are not in the interval [2,3]. Find critical

points. Compute

7 =-—=2 r(x)=o0, L’“zzo,zxﬂ,x:%.

(1 —x)? )

Therefore, the only possible critical point is x = 3 As this point is not

in the interval [2,3] , it is not a critical point. Compute f (x) only at the

boundaries of the closed interval

1 1 1 1
f(3):3(1—3) "6 f(z)zza—z) T

Compare the data resulted in Step 2 to make conclusions: ' (x)

1
attains its absolute maximum value f (3) = —g at x =3 and f(x) attains

1
its absolute minimum value f (2) = at x=2
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Lecture 7 THE INDEFINITE INTEGRAL. METHODS OF
INTEGRATION.

Anti-differentiation or integration is the reverse process to

differentiation. For example, if f(x)=x?, we know that this is the

3
derivative of F(x)= % Could there be any other possible answers? If

3
we shift the cube parabola F(x) = % by sliding it up or down vertically,

all the points on the curve will still have the same tangent slopes, i.e.
derivatives.

Definition 7.1 Where possible, check your answer by
differentiating, remembering that the derivative of a constant, C, is zero.
In mathematical notation, this anti-derivative is written as

[ f(x)dx =F(x)+C, where F'(x)= f(x).

In words, if the derivative of F(x) is f(x), then we say that an
indefinite integral of f(x) with respect to x is F(x). The integration
symbol “J ” is an extended S for “summation”. the “dx” part
indicates that the integration is with respect to x. For instance, the

integral .[xzdt cannot be found, unless x can be rewritten as some

function of ¢ as Jtzdt.

Remark 7.1 However, you are NOT encouraged to memorize
integration formulae, but rather to become VERY familiar with the list
of derivatives and to practice recognizing a function as the derivative of
another function. If you try memorizing both differentiation and
integration formulae, you will one day mix them up and use the wrong
one. And there is absolutely no need to memorize the integration
formulae if you know the differentiation ones. It is much better to recall
the way in which an integral is defined as an anti-derivative. Every time
you perform integration you should pause for a moment and check it by
differentiating the answer to see if you get back the function you began
with. This is a very important habit to develop. There is no need to write
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down the checking process every time, often you will do it in your head,
but if you get into this habit, you will avoid a lot of mistakes

Table 7.1 — The standard integrals

Basic integrals

1 deuzC 5 .[sinu du=—cosu +C
a+1
2 .[u du— +C 6 .[cosu du=sinu +C
a+l
du
2a jdu=u+C 7 J‘ —=igu+C
cos” u
26 _[du—Z\/;JrC 8 j .dzt =—ctgu+C
sin” u

du 1

m | [Eegee | 0| e

= arcsm —+C

du f
3 J-@:ln‘u‘-i-c 10 B :1“‘”"' u2+b‘+C
u Nu“-+b
u d 1
4 .[a”duz 4 ic 11 j > “ farctngrC
Ina w+a®> a a
du 1 u—a
4 du=¢ée" +C 12 =—1n +C
a '[ qu—az 2a u+a

Some rules for calculating integrals. Properties.
Rule 1. [C- f(x)dx =C[ f(x)dx
Rule 2.
[IA@+ L@ = £k = [ f@)dx+] fo(x)de+[ f(x)dx

Rule 3. (] f(x)dx)' = £(x)
Rule 4._d| f(x)dx = f(x)dx
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Rule 5._[dF (x)=F(x)+C
The most interesting rules for using will be rules 1 and 2.

Presented it.
Example 7.1 To find the indentified integrals:

a)j[x3+4x—Tde b)jm

Solution: a) using rules 1,2 and according to the standard integral
(basic integral formula Ne2), we will get:

T

1/4+1 x*3/5+1 4 4x5/4 loxz/s

forir-

4
—2.[x 3/de— -2 +C ="+
1/4+1 -3/5+1 4 5 2

de .[x3dx+.[\/_dx .[—dx .[x3dx+.[xl/4dx—

+C;

b) using formula 9 for basic integrals, we have performed some
transformations before, we will get:

dx dx 1 dx 1 . 3x
= =— =—arcsin—=+C.
J\/7—9x2 J\/ (7 2) 3J\/(7 2) 3 J7
95—)( §—x

Consider some useful methods for the non-table integrals.
Integration by substitution

Integration by Substitution (also called "u-Substitution” or "The
Reverse Chain Rule") is a method to find an integral, but only when it
can be set up in a special way. The first and most vital step is to be able
to write our integral in this form:

= ¢(x),
dt = ¢'(x)dt

[ /(p(x))-¢'(x)dx = =[ f(©)dt =F () + C = F(p(x))+C

or
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To do this integral we will need to use integration by parts so let’s derive

th

fu

_ x:(p(t); _ / _ I P _ -
10| O = b a0 |- o )
etg2x
Example 7.2 To find the indentified integral:J S—dx.
cos” 2x
Solution.
t=1tg2x,
tg2x
I 82 dx=Ie’g2x+dx=dt= % dx|:2,| =
cos” 2x cos” 2x cos” 2x
dt 1
—=——dx
2 cos”2x

1
= J.et o lJ.e'a’t == le' +C=—e®"+C.
2 2 2 2

Remark 7.2 We must come back to the ¢(x).

Integration by parts

Consider the integral of product of function as .[ f(x)-g(x)dx.

e integration by parts formula. We’ll start with the product rule.

Definition 7.2 Let u=u(x) and v=v(x) are two continuous

nctions, they have continuous derivatives. As we know, the differential

of products of those functions is

or

d(u-v)=vdu +udv.
Now, integrate both sides of this.

.[d(uv) = .[vdu +.[udv ,

Judv:uv—'[vdu.

The last formula is formula integration by parts.
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Remark 7.3 To use this formula, we will need to identify u and dv,
compute du and v and then use the formula. Note as well that computing

v is very easy. All we need to do is integrate d: v = Jdv .

Example 7.3 Evaluate the following integrals: Jx- 2% dx

Solution. Notice as well that in doing integration by parts anything
that we choose for u will be differentiated. So, it seems that choosing
u = x will be a good choice since upon differentiating the x will drop
out. Now that we’ve chosen u we know that dv will be everything else
that remains. So, here are the choices for u and dv as well as du and
V.

Uu=x,
dv =2"dx, ps
'23xd = — = — d = —_
_[x X = \du = dx, . uv Ivu x3 n2
v:_[23xdx:l-2—
3 In2

3x 3x
—szh‘dx:x 2 1.2 ¢
3In2 3In2 3In2 3In2
However, those methods are not universal, so sometimes we

should use appropriated techniques to some functions classes’ integrals.
Consider any of them that are most common.

Integration of rational fractions
We will base on two theorems:
Theorem 7.1 (Fundamental Theorem of Algebra over the Real
Numbers). A real polynomial of degree n>1 can be factored as a

constant times a product of linear factors x—x and irreducible

quadratic factors ax® +bx +c.
Note that ax’ +bx +c=a(x—x)(x—x,), where x, =a +if3,

X, =0 —if3 are complex conjugates.
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0,(x)

Theorem 7.2 Every rational function when degree of

P,(x) less than degree of (,(x), n>=m, can be decomposed into

partial fraction.
£, (x)

n

According to that: the rational function , where P, (x) Ha

0, (x) are both polynomials, can be integrated in four steps:
4. Reduce the fraction if it is improper (i.e. degree of P (x)is
greater than degree of 0, (x) ;

5. Factor O, (x) into linear and/or quadratic (irreducible) factors;

6. Decompose the fraction into a sum of partial fractions;
7. Calculate integrals of each partial fraction.

Consider these steps in more details.

Step 1 Reducing an Improper Fraction

If the fraction is improper (i.e. degree of P, (x) is greater than
degree of Q,(x)), divide the numerator P, (x) by the denominator

PO g s RO e R
0,( 0, " 0,

0,(x) to obtain is a proper
fraction.
Step 2 Factoring O, (x) into Linear and/or Quadratic Factors

Write the denominator O, (x) as

Q.(x)=(x—-a)-...(x + px+q) -
where quadratic functions are irreducible, i.e. do not have real
roots.
Step 3 Decomposing the Rational Fraction into a Sum of Partial
Fractions.
Write the function as follows:
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P(x) 4 4 4 4
= - Fok <+
0 (x-a) (x-a)” (x-a)” " (x-q)
Ax+B, A x+B,, Ax+B
v +
(x2 +px+q) (x +px+qy x +PX+Q)

The total number of undetermined coefficients A4,, 4, ,B,,..

must be equal to the degree of the denominator O, (x). Then equate the
coefficients of equal powers of x by multiplying both sides of the latter

expression by O (x) and write the system of linear equations in 4, ,

A, ,B, ,... The resulting system must always have a unique solution.

Step 4 Integrating partial fractions.
Use the following formulas to evaluate integrals of partial
fractions with linear and quadratic denominators:

1) .[Adx =Aln|x—a|+C;

+C, k=22;

_ o\ kH
Adx = AI (x—a)Fdx= A—(x @)
(x— a —k+1

2 |

3) (B g
X +px+q
Ax+ B
B 7—"
X"+ px+ q
Consider some cases of integration of rational function.
CASE 1. Distinct linear factors.
Example 7.4 Evaluate the following integral:

—I 4x* —13x+7
(x —5x+6)(x+1)
4x*> —13x+7 dx J.Adx+J.de+J.Cdx.
(x=2)(x=3)(x+1) x=2 "x=-3 “x+1

Solution. I = f
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There

4y’ —13x+7 = A(x =3)(x+ 1)+ B(x=2)(x + 1)+ C(x = 2)(x = 3).
Find the coefficients (do it by yourself)), obtain: A=1;

B=1;,C=2.

1= dx +[ dx +j2dx:1n|x—2|+1n|x—3|+21n|x+1|+c.
x=2 “x=-3 “x+l1

CASE 2. Repeated linear factors

2
Example 7.5 Compute J-4x+—25x+8 X
(x+2)(x-1)
Solution. We have two repeated factors, so our partial fractions
will have the form as

45 +5x+8 [ A B C |\,
I(x+2)2(x—l)dx_1((x+2)2+(x+2)+x—de_

we reduce them to the common denominator and obtain

Alx—1)+ B(x +2)x—1)+ C(x +2)

/ (—1)x+2)

We will use the method of dominate roots to find the

dx =

undetermined coefficients. Since the number 2 of multiple roots, then
the third value of the variable X will be chosen arbitrarily

A(x=1)+B(x+2)x —1)+ C(x+2) = 4x> +5x +8,

(x—l)(x+2)2=0, x=1 x=-2, x=-1,

x=1,9C=17, Cz%,

x=-2, =34 =14, Azgj,

x=-1,-24-2B+C =9, _2B=‘9ﬂ,3=%
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14 10

~ _14/3 10/9 17/9 +?1n‘x+2‘+%1n‘x—l‘+c

_I((ﬂz)2 +(x+2)+x—1jdx:3(x+2)

Example 7.6 Evaluate the following integral

—2xt—x —6x? +18x+13
X —x*=3x-5x*-10x-6

Solution. P(x)=-2x*-x>—6x* +18x+13,
O(x)=x"—x*-3x"=5x"—10x-6.

Polynomial ~ Q(x) can be factorized as  follows:
O(x) = (x+1)*(x—3) (x* +2), then the required expansion has the form:
P(x) A B C Dx+FE

= + + + ,
O(x) x-3 (x+D* x+1 x*+2
where numbers 4,B,C,D i E we should find. We reduce the right-

hand side to the common denominator, that is ((x), according to the

condition of equality of fractions, we will get identity for polynomials:
A(x +1)* (x> +2) + B(x = 3)(x” +2) + C(x = 3)(x + 1)(x* +2)
= +(Dx+ E)(x =3)(x +1)* = P(x) '
Find unknown coefficients A,B,C,D,E by the method of

undetermined coefficients A, B,C,D, E. We open parentheses and give

similar, equate the coefficients at the same powers of x in the left and
right sides of our identity. We obtain a system of five equations with five
unknowns and solve its Gauss method:

x4+C+D=-2, A=—1:
x| 24+B-2C-D+E=-1, B=1;
x*|34-3B-C-5D-E=-6, C=-2;
x'| 44+2B-4C-3D-5E=18 ,| D=L
x| 24-6B-6C-3E=13; E=-3.
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P(x):_ 1 N 12 +x—3
O(x) x=3 (x+17 x+1 x*+2

After this we can integrate separately all obtained rational
fractions:

1 1 2 x-3
J.—x_3dx+_|.mdx—_[x+ldx+_[x2+2dx:
1
x+1

We get that -

—In[x—3|-

—21n|x+l|+lln‘x2 +2‘—
2

arcti+C
2R

Integration of trigonometric functions

At this point we will have learned more about integrating powers
of sine and cosine. If we have the integral in form as

jsin " x - cos " xdx
we should pay attention to the powers of sines () and cosines (n),

because we will have different ways to solve depending on it.
In this integral if the power on the sines () is odd we can strip out one

sine, convert the rest to cosines using identity cos®x+sin’ =1 and then
use the substitution # = cosx . Likewise, if the power on the is odd we
can strip out one cosine and convert the rest to sines and use the
substitution # =sinx .

Of course, if both powers are odd then we can use either method.
However, in these cases it’s usually easier to convert the term with the
smaller exponent. The one case we haven’t looked at is what happens if
both exponents are even? In this case the technique we used in the first
couple of examples simply won’t work and in fact there really isn’t any
one set method for doing these integrals.

Each integral is different, and, in some cases, there will be more
than one way to do the integral. With that being said most, if not all, of
integrals involving products of sines and cosines in which both powers
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are even can be done using one or more of the following formulas to
rewrite the integrand.

1 : 1.
5(1 +¢0s2x) = cos’ x, %(I—cost): sin’ x, COSX-SIn x = Esm 2x.
Example 7.7 Find integrals:
a) Jsin3 xcos” xdx ; b) J cos® 2xdx .
Solution. a) J.sins xcos” xdx= J.sinz xcos” xsin xdx =

u =cosx, du=—sinxdx,

—du =sin xdx, sin®x=1-cos*x=1-—u>

5 3
—J‘uzdu+J‘u4du=ug —% +C= coj X coj i +C=—J(l—u2)1/2du=

5 3 5 3
u u COS" X COS X
—Juzdu+Ju4du =?—?+C=

5 3

+C;

b) [cos’ 2xdx = [cos® 2x - cos’ 2xdx :j%(l +c0s4x)- %(1 +cosdx)dx =

+1J‘cos4xa’x+l‘|‘cos2 dxdye =X 450 ax
4 4 4 16

%J‘(l+2cos4x+cos2 4x)2’x=%_[dx+

sindx x sin8x
16 8 64
In general, when we have products of sines and cosines in which
both exponents are even we will need to use a series of half angle and/or
double angle formulas to reduce the integral into a form that we can
integrate. Also, the larger the exponents the more we’ll need to use these
formulas and hence the messier the problem.
If powers of sine and cosine are negative (m,n <0) and their sun

+C.

+%j(l +cos8x x :§++

is a even number, we should use the substitution as u = tgx (u = cigx),

which allows us to reduce the integrand assignments to the integral of
the power function
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In the case, where one of the powers of sines or cosines is zero and

X
the other negative, then a universal trigonometric substitution |U =g E
is used. The universal trigonometric substitution could be used also if we
dx

have the integral in form as or if we have integral

acos x+bsinx+d
of the rational function of sines and cosines as R(sinx,cos x), and the
powers of sines and cosines are odd. According to the trigonometric
formulas of the half angle, we obtain the following expressions for
sinx and cos x:

sin cosx I=u
x= ; = .
u’ 1+u?
. dx
Example 7.8 Find integral: J'—
3+5cosx
Solution.
U SN 2du
i dx :u—gz, x_l+u2’:J' 2du - 2du_ _
3+5cosx cosle_uz w345 1—u? 8 —2u’
1+ u? (+u™) 3+ .1+ 2
2+tgx
1. lu-2 1 )
:J' 2du2:j' duzz— 2du — Ay c=—1 72+C,
8—2u 4—u u -4 4 |lu+2 4 2—to
_gE
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Lecture § DEFINED INTEGRAL AND ITS APPLICATIONS

Integration can be used to find areas, volumes, central points and
many useful things. But it is often used to find the area under the graph
of a function like this:

A

b
y S= .[ f(x)dx
y=f(x) a

A definite integral is an
b
integral [ f (x)x with upper

and lower limits. If x is
restricted to lie on the real line,
the definite integral is known

Figure 8.1 i i o
as a Riemann integral (which is

the usual definition encountered in elementary textbooks). However, a
general definite integral is taken in the complex plane, resulting in the
contour integral

;ff(x)dx.

So, we have this important thing to remember (Fundamental
Theorem of Calculus):

Theorem 8.1 The fundamental theorem of calculus establishes the
relationship between indefinite and definite integrals and introduces a
technique for evaluating definite integrals without using Riemann sums,
which is very important because evaluating the limit of Riemann sum
can be extremely time-consuming and difficult. The statement of the
theorem is: If f'(x) is continuous on the interval [a;5], and F(x) is any

antiderivative of f(x) on [a;b], then

[ £ (M = F)| = F(b)— F(a), F'x)= £().

In other words, the value of the definite integral of a function on
[a;b] is the difference of any antiderivative of the function evaluated at
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the upper limit of integration minus the same antiderivative evaluated at
the lower limit of integration. Because the constants of integration are
the same for both parts of this difference, they are ignored in the
evaluation of the definite integral because they subtract and yield zero.
Keeping this in mind, choose the constant of integration to be zero for all
definite integral evaluations after

Properties:

1. Adding Functions (or subtraction)

T/ () g(o)ldx = | £ + [ gy
2. Reversiralg theinterval ”
[ £ =] F(x)dx
3. Interval of zero laength b
[ f(odx=0
4. Adding intervals a
[ fGds =] f)det [ f()dx, c e [ab].

5. A constant factor can be taken as a sign of a definite integral:
b b
[e-f(x)dx =c-[ f(x)dx , c=const.

6. A derivative of indefinite integral is a function

b
Of@)wJ=fuy
Example 8.1 Calculate the defined integrals:

2) fs‘”*‘dx; b) f[i/}+ ! 3jdx.
1 0

X+
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Solution:

1 5tf 1 (52 —5)- 24
"3 m5|  3Is 755’

2 7 2 dx 3x4/3
b) | ¥x + —— [dx = [x"dx+7
).([( x x+3)dx jx x j 2

0x+3

a).[543¢\d —

0

3
+7 I +3]] ==%—0 7-n5-7-m3 =22 +41n§.
Remark 8.1 Keep in mind that the definite integral is a unique real
number and does not represent an infinite number of functions that result
from the indefinite integral of a function.
Theorem 8.2 (The Mean Value Theorem for Definite Integrals): 1f
f(x) is continuous on the closed interval [a;b], then at least one

number C exists in the open interval [a;b] such that
b
[ /(= (o)~ a)

The value of f(c) is called the average or mean value of the

function f{x) on the interval [a;b] and

flx)= %af F(x)dx .

The numerous techniques that can be used to evaluate indefinite
integrals can also be used to evaluate definite integrals. The methods of
substitution and change of variables, integration by parts, trigonometric
integrals, and trigonometric substitution are illustrated in the following
examples.

1.2
Example 8.2 Calculate defined integral: .[ dx
ol+x°

Solution: So, we have function with its derivative, we should use
the substitution method, as
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t=x

1
= —arctgt | = Earctg 1- Earctg 0= %

3
Example 8.3 Calculate defined integral: J.\/ 9—x"dx.
0

Solution. So, we have the irrational expression with non-linear
radical, we will use the trigonometric substitution

: X
x =3sint, ¢t =arcsin —,
dx =3costdt,

i~/9—x2dx= 9—x?=9cos’t,
0

.0
t, = arcsin 3" 0,

.3
t, = arcsin — = —
2
/2 5 /2 97r/2
[ V9cos®t -3costdr = 9J cos’ tdt = 5 (l+c0s2t)dt=
0 0
/2 /2
/2 /2 9 9
=2 j dt += fcostht——t +osin2e] =ox.
2 0 4 0 2

1
Example 8.4 Calculate defined integral: _[ln(x +1)dx .

Solution: We should use integration by part applying this formula
to it

b p b
[udv = uv‘a — [ vdu
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u=In(x+1),
1 dv=dx,
[In(x +1)dx = dx |=
) du =",
x+1
V=X
—xln(x+1)‘ x—dx_l 2- jx” Liv=tn2-
0
tx+1 Lol 1 1
= dx+[——dx=In2-x| +In(x+1)[ =2m2-1.
ox+1 ox+1 0 0

Applications of integration
Area. We have seen how integration can be used to find an area
between a curve and the X -axis. With very little change we can find

some areas between curves; indeed, the area between a curve and the X -
axis may be interpreted as the area between the curve and a second
"curve" with equation y=0. In the simplest of cases, the idea is quite

easy to understand.
b
S =[f(x)dx (8.1)

Example 8.5 Find the area below f,(x) = x” +4x+3 and above
f(x)=—x"+7x* -10x+5

A _
Y /,—\/\/y_fZ(x) over the interval 1<x<2.

g Solution. In figure 8.2 we
y=/5(x)

E/—\/ show the two curves together, with

: the desired area shaded, then

0 ; > f,(x) alone with the area
a

under fz(x) shaded, and then

Figure 8.2 f,(x) alone with the area under

100



f,(x) shaded. It is clear from the figure that the areca we want is the area

under f,(x) minus the area under f(x), which is to say

S=[[/,(x)- f,(x)]dx. (82)

Note that a=1, b=2.

It doesn't matter whether we compute the two integrals on the left
and then subtract or compute the single integral on the right. In this case,
the latter is perhaps a bit easier:

S=j[x2+4x+3—(—x3+7x2—10x+5)]dx=
1

:_z[[x3 —6x° +l4x—2]dx:
1

2

4 3 2
X X X 24 23 22
S| 6= 414" 2x | =2t 72
2 1 1
1

4 3 4
14 49 2
—|—==2-1P+7-1" -2 |=—(unit?).
4 12

Arc lenght. Therefore, a definite integral is used to calculate the
length of an arc of a curve.
Thus, if the function is presented as y = f(x), xe [a;b], so the

arc of the curve will be calculated by formula:
b
[=[y1+y"dx; (8.3)

if the function is presented as y=¢(¢), x=¢(t) te [Oc;ﬁ], sO

the arc of the curve will be calculated by formula:

B
[=[yx"?+y"dt; (8.4)
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if the function is presented as p = p(@), @ € [(01;(02], so the arc

of the curve will be calculated by formula:

= wf«/pz +pde. (8.5)
P

Example 8.6 Find the arc length of a single arch of cycloid
(Figure 8.3), if it is given in parametric equations:
y=2(1-cost), x=2(t—sint).

¥
4
M 7 2a
N
ogs ’ Zna z
Figure 8.3

Solution: so given function is presented in parametric equations;

we will use formula (8.4). First, we will find the derivatives y; and x; :
y =2sint, x| =2(1—-cost), x> +'> =8 —8cost =16sin#/2.

A moving point describes one arch of a cycloid when the
parameter changes from zero to 27 . Find the length of this arch:

5 . o 2z
=[x+ y?dt= [ 16sin’t/2dt =4 [sint/2dt = —SCos; =
0 0

a 0

= —-8¢cos 2771- +8cos0 =16 (length units).
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Volume. The volume of the body obtained by rotating the figure
around the abscissa (figure 8.4) can be
calculated by

V.= ﬁ./ffz(x)dx

v

In the case when a figure is
retained round the ordinate axis then
the volume should calculate by one of
formulas below

v, =x[f )y

or

V,= ZﬂJ.x - f(x)dx.

Example 8.7 Calculate the volume of the body obtained by

rotating a figure bounded by lines
y=4—x2, y=3x,x=0.

Solution. Construct a figure bounded by
lines y=4-x*, y=3x, x=0 (figure 8.5).
As we can see, the volume of the desired body
should be found as the difference between the
larger (volume of the outer body) and smaller
(volume of the inner body) volumes.

But first we find the points of
intersection of the graphs of the given
functions. To do this, we solve a system of
equations

y=4-x%, [x*+3x-4=0, [»=3,=-12
x,=Lx, =-4.

Figure 8.5

y=3x; y=3x;
The second point with coordinates (—4;-12) does not satisfy the
condition of the problem, because the body is bounded by the y-axis. So,
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a=0, b=1 are our limits of the integration. We will find it gradually
v

out

and ¥V, , using the formula to the volume calculation:

1 1 3 5
T T P e
0 0

0

203
= 157[ (units®); V. —ﬂj9x dx =3mx ‘ =37 (units?).
So, the desired volume is V, = 2(1)?1 -3r = 1587 (units?).

Therefore, the following formula is finally used to calculate the
surface area of rotation:

S, =2x[ f(x1+(f'(x)) dx

Example 8.8 Calculate the surface area of a spherical belt formed
by rotation around the axis of an arc of a circle with center at the origin
and radius 5.

Solution. As is known, the equation of a circle with center at the

origin and radius 5 looks like this: x° + y2 =25, then y2 =25-x%,a

function that is given implicitly and its derivative is equal to: yy' =—x,
y'= r ——x. Calculate the area of the spherical belt by the
y 25-x°

formula above:

2njd§§_§fJ1+(VE§_;T]2

If we consider the expression (b —a) the height H of this belt,

dx = 271.[25dx 50 (b—a).

then we get, that is S, =507/ , in the case, when H =2r =10, the

surface area of the sphere is equal to S, = 5007 .
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QUESTIONS TO CONSOLIDATE LECTURES

Lecture 1 -2

1. What is a determinant?

2. What is a minor? 3. What is a cofactor of a determinant
element?

4. By what rule the value of the determinant of the 7 -th order is
calculated?

5. Formulate the rules of the “cross” and “triangles” for
calculating respectively the determinants of the second and third order

6. What are the basic properties of the determinant? Which of
them can we use to calculate it.

8. Will be the value of the determinant changed if the elements of
some column are multiplied by 5? If so, how much?

9. Which of the properties can we use to simplify calculation the
determinant of any order? Explain your answer.

10. What is a matrix? Which of matrix is called non-degenerate?

11. How are doing the operations of adding (subtracting) matrices
and multiplying the matrix by the number?

12. What is the difference between multiplication of the matrix by
the scalar and the multiplication of the determinant by the number?

13. How is operation of multiplication of the matrixes carried out?
What are the properties of this operation?

14. Which of matrix has determinant? What is an inverse matrix
and how is it calculated?

15. Does any matrix have an inverse matrix? Why?

16. How can you check the accuracy of the found inverse matrix?

17. What is the system of linear algebraic equations which has all
free terms are zeros? Does such system have a solution? How many?

18. How can we find a solution of a square SLR with an inverse
matrix?

19. How to solve the square system of linear equations by
Cramer’s rule?

20. How is an arbitrary SLAE solved by the Gaussian elimination
method?

21. Is it possible to determine the consistency of the system using
the Gaussian elimination method? Explain your answer.

22. How can we know by performing the Gaussian elimination
method that the system does not have a solution?
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Additional Questions to Self-study Topics
1. What is a general equation of a straight line on a plane?
2. What do know special cases of the general equation of a straight
line? How to write the equation of a straight line?
3. How to find the slope of a line? What is happened with line if
its slope is zero?
4. How to find the coordinates of the lines intersection point?
5. What is a normal vector?
6. Tell all special case of a plane general equation.
7. What kind of plane equations do you know?
8. What are relationships between two planes in space have?
9. What is the condition of perpendicularity of two planes?
10. What are the differences between a normal vector and a
direction vector?
11. What is a circle? What is its standard equation of a circle?
12. What is an ellipse? What are the foci of the ellipse and where
are they located?
13. What does the eccentricity of the ellipse characterize?
14. What properties of the ellipse could we learn from its canonical
equation?
15. What is a hyperbola? What features do have a hyperbola?
16. What are hyperbola asymptotes?
17. What is a parabola? Give some examples of special case of its
graphs.
18. What are polar coordinates? What are the relationships between
polar and Cartesian coordinates?

Lecture 3

1. What is the complex number?

2. How can be resented the complex number at the Cartesian
frame?

3. What is a conjugate complex number? What is the relationship
between a complex and its conjugate number?

4. What can you say about equal complex numbers?

5. What are differences between trigonometric and exponential
complex number forms?

6. What can we do operations with the complex numbers?

7. How can we do these operations? Do they have depended on
complex numbers forms?
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8. What is Euler's basic formula?

9. What is the first and second Muavre's formulas?

10. How can be presented graphically the found complex numbers
powers?

11. What is the base algebra theorem?

12. What is a complex variable function? What is the area of its
definition? Where does it exist?

13. Explain how to draw the complex variable function? and how
to calculate its value?

Lecture 4
1. Explain how do you understand this “limit of the function
f(x) from the left and the limit of the function f(x) from the right at

the point a ”? Is it enough to assert that a function have the limit at the
point a?

2. What is an infinitesimal function?

3. Call some properties of infinitesimal and infinitude functions.

4. Which of fundamental limits do know?

5. What kinds of indeterminate forms do you know? Tell us the
features of disclosing some of them.

6. Call the types of uncertainties you know and explain how they
should be evaluated.

7. What are the consequences of the standard limits do you know?
What are infinitesimal small equivalent quantities? How can we use it to
evaluate the limits?

Additional Questions to Self-study Topics

1. What is the function continuity? What properties do continuous
functions have? Call some elementary continuous functions.

2. What could we tell about the limit of a function at the point at
which it has a breaking?

3. What is the function of any variables? How can be it presented
graphically?

4. What is the difference between the definition domain of a
function of one variable and the definition domain of a function of two
(or three) variables?

5. What is the level line? How can a level line be drawn on a
surface?

6. What are partial derivatives? Tell us about the peculiarity of
finding them.
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7. What rules are used for this?
8. What is the geometric meaning of partial derivatives?
9. What is a function gradient? What is its physical meaning?

Lecture5-6
1. What is an increment of a variable?
. What is a derivative of a function?
. How to find the derivative of a compose function?
. In which case should we use the Chain Rule?
. How to find the derivative of an implicit function?
. What is a logarithmic differentiation? When could we use it?
. Explain, how to find the derivative of an implicitly given
function.
8. How could be found the derivative of a parametric function?
9. What is the second-order differential? How can we find it?
10. Explain the L’Hospital’s rule.
11. Can we use the L’Hospital’s rule at all examples or not?
12. How can we use this rule if you need to compute the limit

having one of these indeterminate forms [lw] , [ooo} , [00] ?

13. Can you combine the using of the L’Hospital’s rule with other
ways or previously learned technology?

19. What are conditions of increasing and decreasing the function?

20. What are properties of a critical point?

21. How can be found critical points?

22. What is a necessary condition for the existence of an
extremum?

23. What are the exteremal points?

24. How can we find the largest (smallest) value of a function

f(x) on a segment [a,b] ?

NN DWW N

Additional Questions to Self-study Topics

1. What is a point of inflexion? How to find it?

2. What does it mean when we say that the curve is concave
upwards?

3. What is a sufficient condition for the concavity upwards
(downwards) of a function graph?

4. How can we determine that this cure is concave upwards?

5. What is an asymptote? What kind of them do you know?
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6. What should we do to find an asymptote to the graph of a
function?

7. What is a general scheme of a function analysis?

8. Should we calculate the arbitrary points to draw a graph of a
function?

Lecture 78

1. What is the antiderivative of a function?

2. What is the indefinite integral? Call its properties.

3. What integration methods do you know? Explain in what cases
each of them can be applied.

4. Tell us about other integration techniques and what classes of
integrals they are used for.

5. What is a definite integral? Call its properties.

6. How will the definite integral change if the upper and lower
boundaries of integration are reversed?

7. Could we calculate the approximate value of the defined
integral? In which way?

8. What is the value of the definite integral if the boundaries of
integration are the same (the contour will be closed)?

9. What is the geometric meaning of the definite integral?

10. What other geometric applications of the definite integral do
you know?

Additional Questions to Self-study Topics

1. What is an improper integral?

2. What types of improper integrals do you know? Tell us about
the features of calculating each of them.

3. Explain the geometric meaning of the improper integral.
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APPENDICES

APPENDIX A

Table A.1 — The second order curve

»
»
X

() Equation .
g Form Figure
2 3
0(0;0) — circle center;
MO - radius
y
M __R
x2 + yZ — RZ
W "x
=2
= C(a;b) — circle center;
o MC —radius
5 Y
(x —a)” + R
Hy -y =R° Casb)
0|
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Continued table A.1

2

3

Ellipse

+
S
[}

ellipse vertices;

4,(=a;0), 4,(a;0), B,(0;=D), B,(0;0) -

Fi(=c;0), F,(c;0) — ellipse focuses

Hyperbola

a|><
(3] (3]
|
®|‘<
(3] (3]
Il
[S—

B,(0;b) — imagine vertices;

F,(—c¢;0), F,(c;0) —hyperbola focuses

VA

A,(=a;0), A,(a;0) — real vertices, B,(0;—-50),
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Continued table A.1

2

Parabola

y2 =2px

y° =-2px

<Y

x* =2py
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Continued table A.1

2

X

—2py

" 4
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APPENDIX B

Frequently used trigonometric formulas

sina +cos*a =1,

sina cosa
tano = , cota=— ,
cosa sina
2 1 2
I+tan" oo =———, I+cot"a=—5—,
cos’ o sin” o

. . 2 .2
sin 2a =2 sina cosa, c€os 2a=cos”  a—sin" a ,

. 9 1—cos2a ) 1+cos2a
sin“"gg =———, cos  g=—-—,
2 2
. . . a+ o -
sinq +sin f =2 sin ﬁcos 2ﬂ,
. . a+p . a-
sina —sin B =2 cos ﬂsm ﬁ,
2 2
a+ o -
cos a +cos B =2 cos ﬂcos ﬂ,
2 2
. a+p . a-
cos o —cos f =-2 sin ﬂsm 2ﬁ.
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APPENDIX C

Table C.1 — The values of trigonometric functions

Value of angle Functions
a
degrees | radians | sing | COS« tan o cota
0° 0 0 1 0 does not
exist (—©)
S A A V3
6 2 7 3
45° 2|2 1 1
4 2 2
60° z 31 NE 3
3 2 2 3
90° s 1 0 does not exist 0
2 (+o0)
180° T 0 -1 0 does not
exist (4+0)
270° 3 -1 0 does not exist 0
2 (—o0)
360° 27 0 1 0 does not
exist (—©)
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APPENDIX D

PRE-CALCULUS UNIT CIRCLE
In pre-calculus, the unit circle is sort of like unit streets, it’s the
very small circle on a graph that encompasses the 0,0 coordinates. It has
a radius of 1, hence the unit. The figure here shows all the measurements

of the unit circle:
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APPENDIX E

Table E.1 — Supplementary integrals

[ du =Inlgl|+C |2 | Wy tg(qunj +C
sinu 2 cosu 2 4
.[tgu du:—ln‘cosu‘+C 4 Jctgu duzln‘sinu‘+C
.[shu du=chu+C 6 .[chu du=shu +C
.[dzl =thu+C 8 .[dzl =—cthu +C
ch’u sh-u
.[ u’ +a® duz%u\/uziazi
9
%aZ In|u+vu’+a* |+C
.[ a® —u? duzlu\/az—uer
10 a
1, .u
—a” arcsin— +C
2 a
11 .[e””sinbuduz_be cosl;uﬂ;e smbu+c
a +b
ae™ cosbu+be™ sinbu
e cosbu du = +C
12 '[ a* +b*
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