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PREFACE 
The purpose of the discipline is to provide a proper 

fundamental mathematical training of students and to form in them 
knowledge and ability to apply it for the analysis of various 
phenomena according to diversity spheres of a professional 
activity. Thus, the task of the discipline is to assist students learn 
the basics of mathematical apparatus needed to solve theoretical 
and practical problems, to develop skills and abilities of 
mathematical research of applied tasks, to develop their analytical 
and critical thinking, to teach students to understand the scientific 
sources of professional applications of mathematics.  

This syllabus of lectures is designed according to the 
program of normative educational discipline “Higher 
mathematics” and the working curriculum of preparation of full-
time first year students of the “bachelor” education level of the 
specialty 122 – Computer science. 

All theoretical material in this lecture notes is structured and 
coordinated with the classroom lectures conducted during the 
study of Module 1 topics. 

However, this synopsis is not final, because the volume of 
the studied theoretical material may be changed due to some 
changes in the curriculum. Therefore, students should follow the 
classroom lectures carefully and use a wider range of scientific and 
literary sources, which are presented at the end of the lecture notes, 
in their preparation for all class. 

The lecture notes contain theoretical material as a basic 
knowledge of the topics of Module 1 that students need to acquire, 
and self-checking questions.  

The lecture notes have a significant number of examples of 
solving typical tasks, as well as applied tasks, that help student to 
switch their attention to the practical using of the knowledge to 
solve professional-oriented tasks. 

Some additional information and interest materials are in the 
appendices, at the end of the lecture notes. 
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So many references to sources in which students can find 
more detailed information about certain mathematical positions or 
theorems proofs that are not presented in this lecture notes are also 
given here as an aid to a more in-depth study and search for 
reference information. 

The presented lecture notes will help students to possess the 
methods of solving practical tasks; it will promote the acquisition 
of mathematical competencies and intensify students’ independent 
work.  

Students must realize that only active work with lecture 
notes can help them to be successful in the study of higher 
mathematics, achieve professional excellence.  
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CONTENTS OF MODULE 1 
 

Module 1 Linear and vector algebra. Introduction to mathematical 
analysis. Integral calculus 

 
Content module 1.1 Linear algebra and analytic geometry 
Matrices and actions on them. Determinants and their properties. 

Systems of linear algebraic equations. Solving quadratic systems using 
an inverse matrix, by Cramer's formulas. Rouch´e-Capelli theorem. 
Solving systems by the Gaussian elimination method. Vectors and 
actions on them*. Straight line on the plane*. Second order curves*. 
Polar coordinate system*. Parametrically form lines*. Straight line and 
plane in the space*. Second order surfaces* 

Content module 1.2 Complex numbers, elementary functions, 
functions of several variables  

Complex numbers and actions on them. Vector and complex 
functions of a real variable. The concept of the function of a complex 
variable. Limits theory. The first and second standard limits. 
Uncertainties and their disclosure. Function. Elementary functions. 
Continuity*. Properties of continuous functions*. Functions of many 
variables*. Area of definition*. Level lines and surfaces*. Limit and 
continuity of the function of many variables* 

Content module 1.3 Differential calculus, integral calculus 
Derivative and its properties. Derivatives of higher orders. 

Function differential and its properties. Basic theorems of differential 
calculus. Conditions of the function decreasing and increasing. 
Necessary and sufficient conditions for the function extremum. The 
smallest and largest value of the function on the segment. Conditions of 
convexity and concavity of the function graph*. Antiderivative function 
and indefinite integral. Integration methods. Defined integral. Newton 
and Leibniz formula. Improper integrals*. Geometric applications of a 
definite integral 

 

________________ 
* self-study topics 
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Lecture 1 LINEAR ALGEBRA. MATRICES and DETERMINANTS 

Definition 1.1 A matrix is defined as an ordered rectangular array 
of numbers. They can be used to represent systems of linear equations, 
as will be explained further. 

You can see some examples of different types of matrices: 

Symmetric Diagonal 
 

Upper 
Triangular 

 

Lower 
Triangular 

Zero Identity 
 

On the right is an example of a 42  matrix. It has 2 rows and 4 
columns. We usually write matrices inside parentheses ( ) or brackets [ ]. 
We can add, subtract, and multiply matrices together, under certain 
conditions. 

We use matrices to solve problems in electronics, statics, robotics, 
linear programming, optimization, intersections of planes, genetics. 

We will use matrices to solve systems of equations, but for large 
systems of equations, it is advisable to use a computer to find the 
solution. However, we should understand what the computer is doing for 
it and have opportunity to correct mistakes if it needs. 

And a fully expanded nm  matrix A , would look like this:  





















nnnn

n

n

aaa

aaa
aaа

A

...
............

...

...

21

22221

11211

 

or in a more compact form: )( ijaA   



8 

Matrix addition and subtraction 

Definition 1.2 Two matrices A  and B  can be added or 
subtracted if and only if their dimensions are the same (i.e., both 
matrices have the same number of rows and columns). Take: 














518
243

A , 












238
457

B . 

Addition 
If A  and B  above are matrices of the same type, then the sum is 

found by adding the corresponding elements ijij ba  . For example, 


















































7416
214

253188
425473

238
457

518
243

BA

 

Subtraction 
If A  and B are matrices of the same type, then the subtraction is 

found by subtracting the corresponding elements ijij ba  . Here is an 

example of subtracting matrices: 

















































320
6910

253188
425473

238
457

518
243

BA
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Matrix multiplication 
Definition 1.3 When the number of columns of the first matrix is 

the same as the number of rows in the second matrix then matrix 
multiplication can be performed. 

Here is an example of matrix multiplication for two 2×2 matrices. 

   
   


























dhcfdgce
bhafbgae

hg
fe

dc
ba

 

Here is an example of matrix multiplication for two 3×3 matrices: 



































rqp
onm
lkj

ihg
fed
cba

 

     
     
     





















irhogliqhngkiphmgj
freodlfqendkfpemdj
crboalcqbnakcpbmaj

 

Now let’s look at the multiplication of the arbitrary matrices, in 
the case, where A  has dimensions nm  , B  has dimensions pn . 
Then the product of A  and B  is the matrix C , which has dimensions 

pm . The ijth  element of matrix C  is found by multiplying the 

entries of the ith row of A  with the corresponding entries in the jth 
column of B  and summing the n  terms.  

In conclusion we should write down some remarks. 
Remark 1.1. That BA  is not the same as AB . 
Remark 1.2. Multiplication matrices can be performed only if the 

number of columns in the first matrix is equal to the number of rows of 
the second matrix:  

nmnkkm DBA   . 
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For example, take  












322
113

A  and 











80

57
B , find BA   and 

AB  .  

Solution: 1) 





















80

57
322
113

BA , as we see, we can’t 

multiply these matrices, because the number of columns in the first 
matrix are 3, and the number of rows in the second matrix are 2; but 
multiplication AB   exists, find it: 

2) We multiply the individual elements along the first row of 
matrix A with the corresponding elements down the first column of 
matrix B, and add the results and continue to do it with all rows 























322
113

80
57

AB























241616
221731

3)8(10)2(8)1(02)8(30
3517)2(5712537

. 

We need to know about the transposed matrix. 
Definition 1.4 The transpose of a matrix is found by exchanging 

rows for columns  Matrix )( ijaA   and the transpose of TA  is: 

)( ji
T aA  , where j  is the column number and i  is the row number of 

matrix A . For example, the transpose of a matrix would be: 














253
327

A  ;   






















23
52

37
TA  

In the case of a square matrix ( nm  ), the transpose can be used 

to check if a matrix is symmetric. For a symmetric matrix: TAA  . 











32
21

A  ;   









32
21TA  
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The determinant of a matrix 
Definition 1.5 Determinants play an important role in finding the 

inverse matrix and in a solving system of linear equations. In the 
following we assume that we have a square matrix ( nm  ). The 

determinant of a matrix A  will be denoted by Adet  or A . Firstly, the 

determinant of a 22  and 33  matrix will be introduced, then the 
nn  case will be shown. 

Determinant of a 22  matrix 
Assuming A  is an arbitrary 22  matrix A , where the elements 

are given by: 











2221

1211

aa
aa

A , 

then the determinant of this matrix is as follows:  

12212211
2221

1211
2det aaaa

aa
aa

AA  . 

For example, calculate the given determinant  
xx
xx

2cos2sin
2sin2cos 

. 

Using the appropriate rule and we get  

 


xxxx
xx
xx

2sin2sin2cos2cos
2cos2sin
2sin2cos

 

12sin2cos 22  xx . 
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Determinant of a 33  matrix 
The determinant of a 33  matrix is a little more tricky and is 

found as follows (for this case assume A  is an arbitrary 33  matrix 
A , where the elements are given below). 


















333231

232221

131211

aaa
aaa
aaa

A  

then the determinant of a this matrix is as follows: 

112332332112312213133221

312312332211

333231

232221

131211

3

aaaaaaaaaaaa

aaaaaa
aaa
aaa
aaa




 

This rule can be represented schematically as: 

For example, calculate the determinant 

245
321
232





. 

Solution. Using the previous reviewed rule 

  





 533)2(22
245
321
232

3

       243)2(13)2(25)2(41  
5246208458  . 

" "  " "-  " " " "-  
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Determinant of an nn  matrix 
For the general case, where A  is an nn  matrix, its determinant 

is given by the rule: the determinant is equal to the sum of items of 
elements of a certain row (column) on their cofactor 

 


n

k
ikik Aa

1
 or  



n

k
kjkj Aa

1
, 

where   ij
ji

ij MA  1  is a cofactor of element of ija  

Also, ijM  is the determinant of the )1()1(  nn  matrix that is 

obtained by deleting row i and column j. 
For example, we will calculate the determinant  


 41312111 1132

1511
4321

2123
1512

AAAA

     

151
432

151
13

151
432

212
12 1211  

    


 

432
212
151

11
151
212
151

11 1413  

 010)1(3)40264206(2  

16254108)40626204(1  . 
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The Inverse of a Matrix 
Definition1.6 Assuming we have a square matrix A , which is 

non-singular (i.e. Adet  does not equal zero), then there exists an nn  

matrix 1A  which is called the inverse of A , such that this property 
holds: 

EAAAA   11 ,  

where E  is the identity matrix. 

We will find the inverse matrix of matrix 




















101
212
111

A . 

Solution. Calculate the determinant of matrix A  

02
101
212
111

det 


A , thus matrix A  is non-singular and 

the inverse of A is. Find the transposed matrix TA , it was 





















121
011
121

TA . We will find all the cofactor of element the 

transposed matrix TA  and write down the inverse matrix 1A : 

  1
12
01

1 11
11 


 A ,           1

11
01

1 21
12  A , 

  3
21
11

1 13
13 


 A ,              0

12
12

1 12
21  A , 
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  2
11
11

1 22
22 


 A ,           4

21
21

1 32
23 


 A , 

  1
01
12

1 31
31 


 A ,              1

01
11

1 32
32 


 A , 

  1
11

21
1 33

33 



 A ,     























111
420
311

2
11A . 

Check out:  

   
 

   

E

AA





































































































100
010
001

200
020
002

2
1

11211101111112111
142200412014220

132111031111132111

2
1

101
212
111

111
420
311

2
11

 

. 
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Lecture 2 SOLVING SYSTEMS OF EQUATIONS USING 
MATRICES AND DETERMINANTS 

Definition 2.1 A system of linear equations is a set of equations 
with m  equations and n  variables, is of the form of 
















....
...............................................

,...
,...

2211

22222121

11212111

mnmnmm

nn

nn

bxaxaxa

bxaxaxa
bxaxaxa

 

Variables are denoted by nxxx ,...,, 21  and the coefficients ( a  and 
b  above) are assumed to be given. In matrix form the system of 
equations above can be written as: 

























































mmmnmm

n

n

b

b
b

x

x
x

aaa

aaa
aaа

......
...

............
...
...

2

1

2

1

21

22221

11211

 

A simplified way of writing above is like this:  

BXA  , 





















mx

x
x

X
...

2

1

 ;   





















mnmm

n

n

aaa

aaa
aaа

A

...
............

...

...

21

22221

11211

 ;   





















mb

b
b

B
...

2

1

 . 

After looking at this we will now look at two methods used to 
solve matrices. These are: Inverse Matrix Method, Cramer's Rule. 



17 

Inverse Matrix Method 
Definition 2.2 The inverse matrix method uses the inverse of a 

matrix to help solve a system of equations, such like the above 
BXA  . By pre-multiplying both sides of this equation by 1A  

gives: 
BAAXA   11 , as we know that EAAAA   11 ,  

and we get  

BAXE  1  

or alternatively  

BAX  1 . 

So, by calculating the inverse of the matrix and multiplying this by 
the matrix-column B  we can find the solution to the system of equations 
directly.  

From the above it is clear that the existence of a solution depends 
on the value of the determinant of A . There are three cases: 

1) if the Adet  does not equal zero then solutions exist using; 
2) if the Adet  is zero and 0B  then the solution will not be 

unique or does not exist; 
3) if the Adet  is zero and 0B  then the solution can be 0X  

but as with 2 is not unique or does not exist. 
Looking at system of equations we might have this   













2333232131

2323222121

1313212111

dxaxaxa
dxaxaxa
dxaxaxa

. 

Written in matrix form would look like  
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
















































3

2

1

3

2

1

333231

232221

131211

d
d
d

x
x
x

aaa
aaa
aaa

 

and by rearranging we would get that the solution would look like  




















































3

2

1
1

333231

232221

131211

3

2

1

d
d
d

aaa
aaa
aaa

x
x
x

, 

where  1

1

333231

232221

131211




















A

aaa
aaa
aaa

 is the inverse matrix and we have to 

find it due to following steps: 
1. We should find the determinant of the matrix A , it will be 
Adet . 

2. We should transpose matrix A  and obtain the matrix TA  
3. We should find all cofactors of each element of the matrix 

TA and compose them in matrix *A  

4. The obtained matrix *A  should be multiply by number 
Adet

1  

(the inverse of the value of the determinant), so it will be the desired 

matrix 1A . 
After finding the inverse matrix, it is multiplied by the matrix B  

and we will find the matrix-column, this is the required value of 

variables 321 ,, xxx . At the end we have to check our solution to 
substitute the obtained values in equations of the system. 
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For example, solve a system of linear algebraic equations by the 
matrix method 













432
32
123

321

321

321

xxx
xxx

xxx
. 

Solution. Find the inverse matrix of the system 






















312
211
123

A , 04
312
211
123

det 




A . 

















321
112

213
TA , 111 A , 512 A , 313 A , 121 A , 

722 A , 523 A , 131 A , 132 A , 133 A .    






















111
571
351

*A , 























111
571
351

4
11A . 













































































 

2
0
1

8
0
4

4
1

4
3

1

111
571
351

4
11 BAX ,  

11 x , 02 x , 23 x . 

After solution we need to check the found variable value, we substitute 
the values of variables 1x , 2x , 3x  in the second equation and obtain the 

identity: 3)2(201  . So, it is correct answer. 
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Cramer’s Rule 
Definition 2.3 Cramer’s rule uses a method of determinants to 

solve systems of equations. Starting with equation below, 













2333232131

2323222121

1313212111

dxaxaxa
dxaxaxa
dxaxaxa

 

The first we should calculate the main determinant of the system is 
composed of the coefficients for variables as a  

333231

232221

131211

det
aaa
aaa
aaa

A  . 

After this we should calculate auxiliary determinants each of 
which is obtained by successively replacing the columns of the 
determinant by a column of numbers that are following in the equations 
of the system after the sign of equal. Doing this we obtain three 
determinants: 

33323

23222

13121

1

aad
aad
aad

 , 

33331

23221

13111

3

ada
ada
ada

 , 

33231

22221

11211

3

daa
daa
daa

 . 

And we can find values of variables  1x , 2x , 3x  by formulas  

A
x

det
1

1


 , 
A

x
det

2
2


 , 

A
x

det
3

3


 . 

Example 2.1 Solve a system of linear algebraic equations by 

Cramer’s rule            












372
453
235

321

321

321

xxx
xxx
xxx
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Solution. The main determinant and auxiliary determinants are 
being calculating as 

056
721
513

135






 ,  112

723
514

132

1 





 , 

168
731
543

125

2  , 56
321
413
235

3 



 .  

And values of 1x , 2x , 3x  are finding: 2
56

1121
1 




x , 

3
56

1682
2 




x , 1
56
563

3 



x .   

Check out: 213325  , 22  . 
Answer: 21 x , 32 x , 13 x . 
 

Systems of linear equations: solving by Gaussian elimination 

In linear algebra, Gaussian elimination (also known as row 
reduction) is an algorithm for solving systems of linear equations. It is 
usually understood as a sequence of operations performed on the 
corresponding matrix of coefficients. This method can also be used to 
find the rank of a matrix, to calculate the determinant of a matrix, and to 
calculate the inverse of an invertible square matrix. The method is 
named after Carl Friedrich Gauss (1777–1855), although it was known to 
Chinese mathematicians as early as 179 CE. 

To perform row reduction on a matrix, one uses a sequence of 
elementary row operations to modify the matrix until the lower left-hand 
corner of the matrix is filled with zeros, as much as possible. There are 
three types of elementary row operations:  

1) swapping two rows;  
2) multiplying a row by a non-zero number;  
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3) adding a multiple of one row to another row.  
Using these operations, a matrix can always be transformed into 

an upper triangular matrix, and in fact that is named as a staged matrix 
form. Once all of the coefficients under the main diagonal is 0, the 
matrix is said to be in reduced row echelon form (a staged matrix form). 
After that we are writing down a new system of equations and from this 
system, we are finding the value of our unknowns. This final form is 
unique; in other words, it is independent of the sequence of row 
operations used. For example, in the following sequence of row 
operations (where multiple elementary operations might be done at each 
step), the next obtained matrices are the ones in row echelon form, and 
the final matrix is the unique reduced row echelon form. 

Example 2.2 Solve the following system of equations using 
Gaussian elimination method:  













372
453
235

321

321

321

xxx
xxx
xxx

 

Solution: We write down the matrix with number of the system, as  

 
























































2
4
3

135
513

721

3
4
2

721
513

135

372
453
235

31

321

321

321

RR
xxx
xxx
xxx
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For convenience, we will swap the first row by the third row. We 
exclude the first coefficients from the first column, which are below the 
first row. To do this, we add the first row, multiplied by  3 , to the 
second row. Then we will exclude the coefficients from the second 
column, which are below the first row. Now we add the first row, 
multiplied by  5 , to the third. We perform actions in a consistent 
manner. As a result, we will have: 

~
2

)3(34
3

135
)3(75)3()2(10

721
~

2
4
3

135
513

721
~

3
4
2

721
513

135
































































 

~
13
5

3

3470
2670
721

~
)5(32

5
3

)5(71)5()2(30
2670
721

~















































 

















































8
5

3

800
2670
721

~
513

5
3

3426770
2670
721

~  

The resulting matrix has an upper triangular appearance; therefore, 
the system will have one singular solution, which we will find. Let's 
make and solve a system of equations 








































1
51267
372

1
5267
372

88
5267
372

3

2

321

3

32

321

3

32

321

x
x

xxx

x
xx

xxx

x
xx

xxx
 










































1
3
2

1
3

3732

1
217

372

3

2

1

3

2

1

3

2

321

x
x
x

x
x

x

x
x

xxx
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Example 2.3 Solve the following system of equations using 
Gaussian elimination method 














53
64322

232

4321

4321

4321

xxxx
xxxx
xxxx

. 

Solution:  ~
3:
2:

~

51113
64322

23211

133

122

4321

RRR
RRR

bxxxx
























   

~
:

4:
~

110740
1010740
23211

~
233

22

4321

RRR
RR

bxxxx
























 




















90000
25254710

23211
~

4321 bxxxx

 .   

Since the last row corresponds to an equation with zero 
coefficients but a non-zero free term, the system is incompatible (no 
solutions). 

Example 2.4 Solve a homogeneous system of linear algebraic 
equations by the Gaussian method: 

1 2 3

1 2 3

1 2 3

3 2 0;
2 3 0;

3 5 4 0.

x x x
x x x

x x x

  
   
   
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Solution. We write the system in the form of an extended matrix 

(the augmented matrix): 
1 3 2
2 1 3
3 5 4

А
 
   
  

. Multiply the first row by 

( 2 ) and add it to the second row, then, multiply the first row by ( 3 ) 
and add it to the third row, we get:  

1 3 2
0 7 1
0 14 2

 
   
   

. 

Multiply the second row by ( 2 ) and add it to the third row:  

1 3 2
0 7 1
0 0 0

 
   
 
 

. 

After this we can write down a system in the following form:  

1 2 3

2 3

3

3 2 0;
  7 0;

0 0.

x x x
x x

x

  
   
  

 

From the third row we get that a variable 3x  can be an arbitrary 

value. Let it be: 3x t . Substitute it at the second equation 

27 0x t   , and get that 2 7
tx   . Substitute all of them at the first 

equation 

1 3 2 0
7
tx t      

 
,   1

3 2 0
7
tx t   ,   1

3 2
7
tx t  , 

1
3 14

7
t tx 

 ,   1
11
7

tx 
 . 
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Answer: 1
11
7
tx   , 2 7

tx   , 3x t , t R . 

The matrix rank  
We recall the definition of matrix minor.  
Definition 2.4  Given the matrix  

nmijaA


 , we call minor of 

order k  the determinant of any square submatrix that can be constructed 
by A  cutting (a certain number) of rows and/or columns.  

From this definition it is clear, that the order of the minors that can 
be extracted by A  cannot be larger than the minimum between m  and 
n . Suppose indeed that nm   (i.e. there are less rows than columns), 
it is not possible to obtain a square matrix from A  cutting rows or 
columns, whose dimension is larger than m . 

Example 2.5  Consider 









461
012

A  

Find all minors of the matrix A  of order 2 and at least one minor 
of order 1 that is non-zero. Is it possible to obtain a minor of order 

2k ?  
Solution. The minors of order two are obtained by cutting one of 

the three columns of A . Hence, we can define three minors of order 2. 
These are 

61
12

, 
41
02

, 
46
11

. 

Recall that the notation A  states for the determinant of the matrix 

A . Hence      

,11112
61
12

  ,8
41
02
  ,4

46
01
   



27 

264
46
11

 . 

A minor of order one is the determinant of any entry of the matrix. 
For instance, 211 a  is a minor of A  of order 1. The determinant of a 

scalar is the scalar itself so 22   which is different from zero. This is 

one example of non-zero minor of A  of order 1. Concerning the 
existence of minors of order 2k . Take for instance 3k . It is not 
possible to find such a minor. In fact, cutting rows or columns of A , we 
cannot obtain a 33  matrix. Obviously, it is not possible to find an even 
larger one.  

Now we state an important result that can be useful when 
computing the rank of a matrix. 

Definition 2.5 We define )(Ar  (rank of A ) the maximum 
number of linearly independent rows or columns of A .  

Remark 2.1 The rank of the matrix  
nmijaA


  coincides with the 

order of the largest non-zero minor that can be extracted by A . Put 
differently we say that a matrix A  has rank k  if and only if there exists 
at least one minor different from zero of order k  whereas all the minors 
of order larger than k  are indeed zero. If there were a minor of order 

1k  different from zero, then the rank of A  would be at least 1k . 
Return to the previous example and solve it in another way. 
Answer. Since there exists at least one minor of A  different from 

zero, for instance, ,11
61
12
 , the rank of A  is at least 2. Moreover, 

we have saw that it is not possible to extract a minor of order 2k . 
Thus, the rank of A  is 2. 

Rules for the calculus of the rank 
Given the matrix  

nmijaA


 :  
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1) Arank  is an integer number; 2) 0Arank , in particular 

0Arank  if and only if A = 0, where 0 denotes the zero matrix; 

3) ),min( nmArank  : the rank of A  is at most equal to the minimum 

between the number of rows and columns; 4) as a consequence the 
following relationship holds: ),min(0 nmArank  . 

Rouch´e-Capelli Theorem. The system BAX   admits 
solutions (it is consistent) if and only if ArankArank   (where 

 BAA  ). Moreover, if the system is consistent, the number of degrees 

of freedom is equal to n  it is a Arank , where n  is the number of the 

system unknowns.  
The first part of the theorem tells us whether there are solutions or 

not. The second part tells us that the solution is unique only if 
nArank  . In this case in fact the number of the freedom degrees is 

zero. Otherwise, there are a positive number of the freedom degrees and 
thus there are infinite solutions. 

Example 2.6 Solve the homogeneous system of linear algebraic 
equations 

1 2 3

1 2 3

1 3

2 0;
2 3 0;

3 2 0.

x x x
x x x

x x

  
   
  

 

Solution. Solve this system using the Gauss elimination method. 
Write down the expanded matrix (or the augmented matrix) of the given 
system of equations:  

1 1 2
2 1 3
3 0 2

А
 

   
  

. 
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Multiply the first row by ( 2 ) and add it to the second row, 
multiply the first row by ( 3 ) and add it to the third row, we get: 

1 1 2
0 3 7
0 3 4

 
  
  

 

Multiply the second row by ( 1 ) and add it to the third row 

1 1 2
0 3 7
0 0 3

 
  
 
 

. 

Note, that the rank of the main matrix of a system is 2, and the 
rank of the expanded matrix (or the augmented matrix) is 2 too. 
Accordingly to the Rouch´e-Capelli theorem we make the conclusion 
that the given system has only one unique solution and we can find it. 

Then we can write down a new system from the obtained matrix in 
a form as:  

1 2 3

2 3

3

2 0;
  3 7 0;

3 0.

x x x
x x

x

  
  
 

 

We get from the third equation that, що 3 0x  . From the second 

equation: 2 0x  . From the first equation: 1 0x  . 
Check out: 

0 0 2 0 0;
2 0 0 3 0 0;

3 0 2 0 0.

   
     
    

 

Answer: 1 2 3 0x x x   .
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Lecture 3 COMPLEX NUMBERS. VECTOR AND COMPLEX 
FUNCTIONS OF A REAL VARIABLE 

For instance, 9  isn’t a real number since there is no real 
number that we can square and get a NEGATIVE 9. 

Now we also saw that if a  and b  were both positive, then 
baab  . For a second let’s forget that restriction and do the 

following. 

1391919  . 

Now, 1  is not a real number, but if you think about it, we can 
do this for any square root of a negative number. For instance, 

1101001100  , 

1981181   etc. 

So, even if the number isn’t a perfect square, we can still always 
reduce the square root of a negative number down to the square root of a 
positive number (which we or a calculator can deal with) times 1 . 

So, if we just had a way to deal with 1  we could deal with 
square roots of negative numbers. Well, the reality is that, at this level, 
there just isn’t any way to deal with 1  so instead of dealing with it we 
will “make it go away” so to speak by using the following definition. 

i1 . 
Note that if we square both sides of this we get, 

12 i . 

It will be important to remember this later. This shows that, in 
some way, i  is the only “number” that we can square and get a negative 
value. 

Using this definition all the square roots above become, 
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i39  , i981  , i10100  . 

These are all examples of complex numbers. 
The natural question at this point is probably just why do we care 

about this? The answer is that, as we will see in the next lectures, 
sometimes we will run across the square roots of negative numbers and 
we’re going to need a way to deal with them. So, to deal with them we 
will need to discuss complex numbers. 

So, let’s start out with some of the basic definitions and 
terminology for complex numbers. The standard form of a complex 
number is 

iyxz  , 

where x  and y  are real numbers and they can be anything, positive, 
negative, zero, integers, fractions, decimals, it doesn’t matter. When in 
the standard form x  is called the real part of the complex number and 
y  is called the imaginary part of the complex number. Denote it 

zyzx Im;Re  . 
Here are some examples of complex numbers: i25  , i47  , i8 , 

15 . 
The set (plural) of all complex numbers is denoted by C .  
If the imaginary part is zero and we actually have a real number. 

So, thinking of numbers in this context we can see that the real numbers 
are simply a subset of the complex numbers. Any real number x  can be 
presented as a complex number xixz  0 , in which the imaginary 
part is zero:  0y . Thus, the set of real numbers R  is a subset of the 

set of complex numbers C :  CR  . When the real part is zero, we 
often will call the complex number a purely imaginary number:  

0,0  yiyiyz . 

The conjugate of the complex number iyxz 1  is the complex 

number iyxz 2 . In other words, it is the original complex number 
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with the sign on the imaginary part changed. Here are some examples of 
complex numbers and their conjugates. 

complex number                     conjugate 

i85                                i85 , 

i23                            i23 . 

Notice that the conjugate of a real number is just itself with no 
changes. 

Definition 3.1 Two complex numbers 111 iyxz    and  

222 iyxz   are equal, if their real and imaginary parts are equal, 
respectively:   

212121 yyixxzz  . 

Now we need to discuss the basic operations for complex 
numbers. We’ll start with addition and subtraction. The easiest way to 
think of adding and/or subtracting complex numbers is to think of each 
complex number as a polynomial and do the addition and subtraction in 
the same way that we add or subtract polynomials. 

Definition 3.2 In particular, addition and subtraction of complex 
numbers 111 iyxz    and  222 iyxz   are carried out component by 
component:  

   212121 yyixxzz  ;  

   212121 yyixxzz   .  
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Multiplication of the complex numbers 111 iyxz   and 

222 iyxz   are carried out by the rules of multiplication of the of 

binomials taking into account the condition 12 i   and the reduction of 
similar:  

   1221212121 yxyxiyyxxzz   .  

Remark 3.1 To multiply a complex number iyxz   by a real 
number a  it is enough to multiply each of its components by this 
number a :   iayaxaz  .   

Remark 3.2 Find the natural powers of an imaginary unit:   

1,,1 234232  iiiiiiiii . 

So, 

iiiiii kkkk   3424144 ,1,,1 .  

Remark 3.3 At raising of a complex number to a natural power it 
is possible to apply the formulas of the reduced multiplication known 
from elementary mathematics.  

Remark 3.4 When we multiply or add a complex number by 
iyxz   and its conjugate iyxz   we get a real number given 

by:  

xzz 2 ;    .22 yxzz   
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Definition 3.3 Division of complex numbers 111 iyxz   і 

222 iyxz  , 02 z  is performed as follows:  1) the numerator and 

denominator of the fraction 21 zz  must be multiplied by the number 2z  

conjugated to the denominator 2z ;  2) consider that 12 i , and reduce 
similarities;  3) divide the numerator by the denominator and get the 
fraction in algebraic form.  

2
2

2
2

2112
2
2

2
2

2121

22

21

2

1
21 :

yx
yxyxi

yx
yyxx

zz
zz

z
zzz












 .  

Remark 3.5 The basic properties of the considered arithmetic 
operations with complex numbers coincide with the corresponding 
properties of similar operations with real numbers. Therefore, for 
complex numbers all theorems, rules, formulas derived for real numbers 
based on these properties remain valid.  

Example 3.1 Do operations with complex numbers in the 
algebraic form:   

     )43(:)75(1021432 2 iiiiiz  .  

Solution.  Do the operation with polynomials:  

      iiiiiiz 28()43(:)75(1021432 2  

    )43()43()43()75(10441312 22 iiiiiiii  

    9:282120151044131228 2iiiiii  

    iiiii 614)169(:282120151061416 2  

  iiii )5/32(5/1565:)2863070(5:432  . 
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Geometric interpretation. Module and argument of the 
complex number 

If we have a Cartesian coordinate plane Oxy , then it is possible a 
mutually unique correspondence between the set of all points of this 

plane and the set of complex numbers 
can be to established: each complex 
number iyxz   corresponds to a 
single point );( yxM  and vice versa 
(fig. 3.1). Real numbers are 
represented by points on the abscissa 
Ox , therefore the axis Ox  is called 
the real axis. Purely imaginary 

numbers are represented by points on the y-axis Oy , therefore the axis 
Oy  is called the imaginary axis. Number 0z  corresponds to the 
origin )0;0(O .  

A coordinate plane Oxy , that represents the set of all complex 
numbers C , is called a complex plane C  or z - plane.  

Remark 3.6 The complex number iyxz   can also be 

represented by a radius vector );( yxOM , starting from the origin 
)0;0(O  and ending at a point );( yxM  (fig. 3.1). 

Remark 3.7 Addition and subtraction of complex numbers can be 
carried out according to the rules 
(triangle and parallelogram) of the 
corresponding operations on the 
vectors (fig. 3.2).  

If (fig. 3.1) also enter a polar 
coordinate system Or  on the 
complex plane with a pole at the 
beginning of the Cartesian 

coordinate system and a polar axis aligned with the axis Ox , then the 
point );( yxM  representing the complex number iyxz   can be set 

0 x
x

 

y 

y 

r  
);( yxM  

Figure 3.1  

z1 
z2 

z1+z2 

0 
x

y 

Figure 3.2  

z1–z2 
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by polar coordinates );( rM .  
Definition 3.4 Polar radius r  (length (magnitude) of a radius-

vector OM ) is called a module of a complex number z  and it is denoted 
as rz || .  

Obviously, that 022  yxr .  
Definition 3.5 Polar angel   (the angel between the radius-vector 

OM  and polar axis Ox ) is called an argument of a complex number z  
and it is denoted as zArg .  

Argument  , is an angel of rotation, is determined with accuracy 
of the constant addition in the form ...,2,1,0,2  kk  (arbitrary 
number of full revolutions).  

The single value   that satisfies the condition   is 
called the main value of the argument, and it is denoted,  zarg .  So,  

...,2,1,0,2arg  kkzzArg  
The main value of the argument is determined by the formula:  

 
 
 
























.0,0,2
;0;0,2

;0,0,arctg
;0,0,arctg

;0,arctg

arg

yx
yx

yxxy
yxxy

xxy

z   

Remark 3.8 The module of the number 0z  is equal to zero 
0|0| r , and the argument   is arbitrary.  

Remark 3.9 The equal complex numbers 21 zz   have equal 

modules too, 21 rr  , and their arguments are related by a relation 

k 221 , ...,2,1,0 k , that is, they are differ in addition 
k2 .  
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Trigonometric and exponential forms of a complex number 

Using the relation of Cartesian and polar coordinates  cosrx ,  
 sinry , the complex number iyxz   can be presented in a form 

)sin(cossincos  irirriyxz .  
Definition 3.6 The expression )sin(cos  irz  is called a 

trigonometric form of a complex number.  
The transition from the algebraic to the trigonometric form is 

determined by the relations:  
22 yxr  ;  

22
cos

yx

x


 ;  

22
sin

yx

y


  .  

Definition 3.7 If we turn to Euler's basic formula  

 sincos iei ,   
then it is possible to pass from the trigonometric form to the exponential 

form of a complex number  irez .  
Example 3.2 Plot on a complex plane and present in trigonometric 

and exponential forms the following complex numbers given in algebraic 
form:  

iz  31 ;  iz 222  ;  iz 23  ;  24 z ;  iz  25 .  

Solution. Draw the given numbers on the complex plane (fig. 3.3). 
Find the modulus and principal value of the argument of each of these 
numbers and write them in trigonometric and exponential forms:  

iz  31 :  

1;3 11  yx ;  

22
1

2
11  yxz ;  

  ,arctgarg 111  xyz  

0,0 11  yx ;  

   31arctgarg 1z  
Figure 3.3 

y

0  1  2  
x  

1  

2  

12  

2  

1  1z  

2z  

3z  

4z  

5z  
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656arg 1  z ;  

 

      65
11 2;65sin65cos2   ieziz ; iz 222  :   

2;2 22  yx ;   222
2

2
22  yxz ;  

  0,arctgarg 2222  xxyz ;   41arctgarg 2 z ;  

      4
22 22;4sin4cos22  ieziz .  

iz 23  :    2;0 33  yx ;   22
3

2
33  yxz ;  

0;0,2arg 3  yxz ;  

      2
33 2;2sin2cos2  ieziz .  

24 z :    0;2 44  yx ;   22
4

2
44  yxz ;  

  0,0,arctgarg 44444  yxxyz ;  

 0arctgarg 4z ;     ieziz 2;sincos2 44 .  

iz  25 :   1;2 55  yx ;   52
5

2
55  yxz ;  

   555 arctgarg xyz , 0,0 55  yx ;  

 )2/1(arctgarg 5z    

)2/1(arctg ;    )2/1(arctg
5 5  iez ;  

    )2/1(arctgsin)2/1(arctgcos55  iz . 
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Definition 3.8 If )sin(cos 1111  irz  and 

)sin(cos 2222  irz  are two complex number in a trigonometric 
form, then their product is:  

 )sin(cos)sin(cos 22211121  irirzz   

  )sin()cos( 212121  irr  

  21212121 cossinsincoscoscos iirr   

  )sin()cos(sinsin 21212121
2   irri .  

Definition 3.9 The product of two complex number 1z  and 2z , is 
a complex number which module equals product of modules, and its 
argument is a sum of the multiplier’s arguments. So, 

 )sin()cos( 21212121  irrzz ;    ierrzz 21
2121

 ;   

2121 zzzz  ;       2121 zArgzArgzzArg   .  

Definition 3.10 If  )sin(cos 1111  irz  and 

)sin(cos 2222  irz  are two complex numbers in a trigonometric 

form, at the same time 2z  doesn’t equal zero 02 z , the their division 
is:  






)sin(cos
)sin(cos

222

111

2

1

ir
ir

z
z

  






)sin)(cossin(cos
)sin)(cossin(cos

2222

2211

2

1

ii
ii

r
r

 

    2121
2

1

2

1 sincos   i
r
r

z
z

.  
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Definition 3.11 The division 21 zz  of two complex numbers 1z  і 

2z , when 02 z , is a complex number, module of it is a division of the 

given complex numbers 1z  and 2z , and. the argument is a subtraction of  

1z  and 2z . So,  

    2121
2

1

2

1 sincos  i
r
r

z
z

;   ie
r
r

z
z

21

2

1

2

1  ;   

2121 zzzz  ;         2121 zArgzArgzzArg  . 

Definition 3.12 The natural power nz  of a complex number z  is 
a complex number obtained by multiplying the number by itself n  
times, where n  is a natural number.  

The first formula of Muavra follows from the rule of 
multiplication of complex numbers in trigonometric form:  

   )sin(cossincos  ninrirz nnn . 

The root of the n -th power n z  of a complex number z  is a 
complex number whose n -th power is equal to n -th power of z :  

  

Remark 3.10 Obviously, the root of the n -th power from zero is 
equal to zero.  

If a complex number z  doesn’t equal zero 0z , then the root 

y 

0 x 

r1 

r2 

z1 

z2 

φ1-φ2 
z1/z2 φ2 

φ1 

y 

0 x 

r1∙r2 

r2 

z1∙z2 

z2 

φ1 
r1 

φ1+φ2 

z1 
φ2 

Figure 3.4 Figure 3.5 
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n -th power n z  has n  different values, it can be determined by the 
second formula of Muavra:  

   nn irz sincos  







 





n

ki
n

krn 2sin2cos , 

where 1,,2,1,0  nk  ;  n r  is the arithmetic value of the root of a 
positive number.  

Remark 3.11 All roots of the n -th power n z  of a complex 
number 0z  on the complex plane are represented by the vertices of a 
regular n -angle, inscribed in a circle with center at the origin and radius 
n r .  

Remark 3.12 At least one root of the n -th power of a positive real 
number will be real number. 

Example 3.3 Calculate:    103 i .   

Solution.  Write down the number i3   in a trigonometric form  

 )6(sin)6(cos23  ii .  
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Accordingly to the first Muavra formula  

      1010
)6(sin)6(cos23 ii   

    )32(cos2)35(sin)35(cos2 1010 i   

   )32(sin)32(cos2)32(sin 10 ii   

  32223212 9910  ii .    

 
Example 3.4 Find all values of the 

root of the fourth degree 4 1 .   
Solution.  Write down the number 

1  in a trigonometric form   

)sin(cos11  i   

(look at the fig. 3.6).  
Accordingly to the second Muavra formula  

 4/)2(cos(11 44 k   

)4/)2sin( ki  , where 3,2,1,0k .   

That is, the roots are complex numbers:  

  )1(2/2)4/sin()4/cos(1 iiz  ; 

  )1(2/2)4/3sin()4/3cos(2 iiz  ; 

  )1(2/2)4/5sin()4/5cos(3 iiz  ; 

   )1(2/2)4/7sin()4/7cos(4 iiz  , 

which are shown at the figure 3.6.   
 

y 

x 

z2 z1

-1 1 

z3 z4 

/4 

Figure 3.6  
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The function of a complex variable 
Definition 3.13 It 

nn
nn

n azazazazP  


1
1

10 ...)(  
is called a polynomial of n-th power of a standard form.  

There z  is a complex argument: n -th power polynomial;  

naaa ,...,, 10  are constant complex coefficients;  0a  is called the highest 
coefficient, so  00 a ;  na  is called the free item.  

Theorem 3.1 (Bezu's theorem). The remainder of the division of 
polynomial )(zPn  by the subtraction az   is equal to )(aPn .  

Proof. RazzQzP nn   )()()( 1 . Let az  , then  

RaPn )( .     That we need to get. 

Corollary 3. 1 If a  is a root of a polynomial )(zPn , then the 

polynomial )(zPn  is divided without remainder by the subtraction 
az  , that is, it decomposes into factors   

)()()( 1 azzQzP nn   , 

where a quotient )(1 zQn  is a polynomial of power one less power.  
Theorem 3.2 (the base algebra theorem). Any polynomial 

)(zPn  of nonzero power 1n  has at least one root (real or complex).  

Corollary 3.2 Any polynomial )(zPn  of nonzero power 1n  has 
n  roots, among them may be the equal roots.  

Corollary 3.3 Any polynomial )(zPn  of nonzero power 1n  
decomposes into factors in the form:  

mk
m

kk
n zzzzzzazP )(...)()()( 21

210  ,   

where 0a  is the highest coefficient;  mzzz ,...,, 21  are different roots 

(real or complex);  mkkk ,...,, 21  are corresponding multiplicities of 

these roots, and nkkk m  ...21 .  
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The roots of the quadratic equation  002  acbzaz  with 
complex coefficients cba ,,  can be found by:  

acbD
a

Dbz 4;
2

2
2,1 


 ,  

where D  – one of the values of the square root of the discriminant D .  
Vieta's theorem remains valid on the set of complex numbers for 

the roots of a quadratic equation:  

abzz  21 ,     aczz 21 .   

Example 3.5 Solve the quadratic equation 0584 2  zz .  

Solution.  1654482 D ;    iD 416  ;   

iiz
2
11

42
48

2,1 



 . 

The complex function  z  of a real variable t  of a real variable t  
з from some nonempty set D  of real numbers according to a certain law 
corresponds to a single value of a complex variable z  from some area 
E  of the complex plane. The complex function )(tzz   of a real 

variable t  is determined by the equality )()( tyitxz  , Dt , where 

)(tx  and )(ty  are the given real functions (respectively real and 
imaginary parts of the variable )(tzz  ).  

The function )(tzz  , ];[ t  in a complex-parametric form 
sets some flat line L . Parametric equations of this line are:  )(txx  , 

)(tyy  , ];[ t .  

The complex variable )(tzz   corresponds to a vector function.  

To find the )('' tzz   of a complex function )()( tyitxz   

of a real variable, it is necessary to differentiate separately the real )(tx  

and imaginary )(ty  parts:  )(')('' tyitxz  . 
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Example 3.6 Determine the form and draw on the complex plane 
the line given by the equation  titz sin3cos3  .  

Solution.  To determine the type of 
line, substitute in its equation yixz   
and reduce it to the corresponding standard 
form. Then let's draw this line. 

;sin3cos3 titiyx   








.sin3
,cos3

ty
tx

 

is a circle with a radius 3r  centered at origin (look at the appendix 
A), given in parametric form (figure 3.7). It can be implicitly given by 
equations 3|| z . Canonical equation of a circle is  

922  yx . 
Example 3.7 Calculate the value of the function )43(cos i .  
Solution.    










22
)43(cos

3434)43()43( iiiiii eeeeeei  

    2)3sin3(cos)3sin3(cos 44 ieie    

    2)(3sin)(3cos 4444 eeiee    

3sin43cos43sin
2

3cos
2

4444
shicheeiee










.   

Example 3.8 Determine the form and plot the lines given by the 
equations on the complex plane: 

а) 12  iz ; b)   tiz  21 . 

x  

y  

Figure 3.7 

0  
3  

3  
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Solution. To determine the type of line, substitute in its equation   
and reduce it to the appropriate standard form. Then let's draw these 
lines. 

а)  12  iiyx ;    1)1()2(  yix ; 

1)1()2( 22  yx ; 1)1()2( 22  yx is a circle with 

radius  1R  and it`s centered at a point )1,2( O ; 

b)    ittiyxtiiyx 221 ;   









ty

tx
2

  is a straight line given in parametric form, its explicit 

equation is xy 2 . 
Draw the lines graphs by yourself. 
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Lecture 4 THEORY OF LIMITS 

Definition 4.1 The number A  is called the limit of the function 
 y f x  when x a , if for all values of x  that differ little enough 

from the number a , the corresponding values of the function  y f x  

differ little enough from the number A : 

 lim
x a

f x A


 . 

If x a  and x a , then we write conventionally 0x a  ; 
similarly, if x a  and x a , then we write 0x a  . The numbers 

0
( 0) lim ( )

x a
f a f x

 
   and 

0
( 0) lim ( )

x a
f a f x

 
   

are called, respectively, the limit of the function ( )f x  from the left and 
the limit of the function ( )f x  from the right at the point a  (if these 
numbers exist). 

For the existence of the limit of a function ( )f x  as x a , it is 
necessary and sufficient to have the following equality: 

( 0) ( 0)f a f a   . 
Example 4.1 Compute the limits on the right and left of the 

function 
1( ) arctanf x
x

  

when 0x . 
Solution: 

 
0

1 1( 0) lim arctan arctan arctan
0 2x

f
x




         
, 

 
0

1 1( 0) lim arctan arctan arctan
0 2x

f
x




          
. 

Obviously, the function ( )f x  in this case has no limit as 0x . 
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If the limits 1lim ( )
x a

f x


 and 2lim ( )
x a

f x


 exist, then the following 

theorems hold: 

1)        1 2 1 2lim lim lim
x a x a x a

f x f x f x f x
  

     , 

2)        1 2 1 2lim lim lim
x a x a x a

f x f x f x f x
  

     , 

3)    1 1lim lim
x a x a

C f x C f x
 

     , 

4) 
 
 

 
 

11

2 2

lim
lim

lim
x a

x a
x a

f xf x
f x f x






  (  2lim 0
x a

f x


 ). 

Example 4.2 Compute 
1

4lim 2

2

2 


 x
xx

x
.Solution: 

 
  













 1lim

4lim

1
4lim 2

2

2

2
2

2

2 x

xx

x
xx

x

x

x
































1limlim

4limlimlim

1limlim

4limlimlim

2

2

2

22

2

2

2

2

2

22

2

2

xx

xxx

xx

xxx

x

xx

x

xx
 

   

 








 







 





























1lim2lim

4lim2lim2lim

1limlim

4limlimlim

2

2

2

22

2

2

2

2

2

22

2

2

xx

xxx

xx

xxx

x

xx

   
  5

6
12

422
2

2





 . 
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Definition 4.2 The function ( )f x  is called infinitesimal as 
x a  if 

lim ( ) 0
x a

f x


 . 

Definition 4.3 The function ( )f x  is called infinitude as x a  if 

lim ( )
x a

f x


  . 

Properties of infinitesimal and infinitude functions: 

1) if ( )f x  is infinitesimal function as x a , then ( )f x  is 
also infinitesimal one; 

2) if 1( )f x  and 2 ( )f x  are infinitesimal functions as x a , then 

1 2( ) ( )f x f x  is also infinitesimal one; 

3) if 1( )f x  and 2 ( )f x  are infinitude functions as x a , then 

1 2( ) ( )f x f x  and 1 2( ) ( )f x f x  are also infinitude ones; 

4) if 1lim ( ) const
x a

f x b


  , 2lim ( )
x a

f x


  , then 

 1 2lim ( ) ( )
x a

f x f x b


     ,    1 2lim ( ) ( )
x a

f x f x b


     , 

  1 ( )
2lim ( ) f x b

x a
f x


    ,   1 ( )

2lim ( ) bf x

x a
f x


    ,   

1

2

( )lim 0
( )x a

f x b
f x

 


; 

5) if 1lim ( ) const
x a

f x b


  , 2lim ( ) 0
x a

f x


 , then 

1

2

( )lim
( ) 0x a

f x b
f x

   . 

We will now consider the cases where, for some assigned value of 
x , the numerator and denominator are both zero or both infinities. The 
fraction is then said to be indeterminate. 
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During the computing of the limit of two integral polynomials 

ratio as x   and getting the indeterminate form 
 
  

, it is necessary, 

firstly, to divide both terms of the ratio by nx , where n  is the highest 
power of these polynomials. A similar procedure is also possible in 
many cases for fractions containing irrational terms. 

Example 4.3 Compute 
2

2

3 5lim
2 3x

x x
x

 


. 

Solution: 
2

2 2 2 2 2 2

22 2

22 2

3 5 3 513 5 3 5lim lim lim 32 32 3 2 3 2
x x x

x x
x x x x x x x

xx
xx x

  

                   
 

2

2

3 51 1 0 0 1
3 2 0 22

      




. 

Example 4.4 Compute 
2 3 5lim

3x

x x
x

 


. 

Solution: 
2

2 2 2 2 2 2

2 2 2

3 5 3 513 5 3 5lim lim lim3 1 33 3x x x

x x
x x x x x x x

xx
x x x x

  

                   
 

2

2

3 51 1 0 0 1
1 3 0 0 0

        


 

. 
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If ( )P x  and ( )Q x  are integral polynomials and ( ) 0P a   or 
( ) 0Q a  , then the limit of the rational fraction 

( )lim
( )x a

P x
Q x

 

is obtained directly. 
But if ( ) ( ) 0P a Q a  , then it is advisable to cancel the 

binomial x a   out of the fraction 
( )
( )

P x
Q x

 once or several times. To do 

it, we can use the formulas of abridged multiplication: 
1)   2 2a b a b a b    , 

2)   3 3 2 2a b a b a ab b    , 

3)    2
1 2ax bx c a x x x x     , where 1 2,x x  are roots of 

the equation 2 0ax bx c    which can be found by using the 
discriminant: 

2 4D b ac  , 1,2 2
b Dx

a
 

 . 

Example 4.5 Evaluate the following limits 

a) 
2

21

2 1lim
1x

x x
x

 


; b) 
27

352lim 3

2

3 


 x
xx

x
. 

Solution: 

a) 
 
 

22

221

2 1 1 12 1 2 1 1 0lim
1 1 1 01 1x

x x
x

                
 

factorize the numerator and denominator and cancel: 
22 1x x  ,   2 1 1 1x x x    , 

 21 4 2 1 1 8 9D         , 
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1
1 9 1 3 2 1
2 2 4 4 2

x    
   


, 

2
1 9 1 3 4 1
2 2 4 4

x     
    


, 

 2 12 1 2 1
2

x x x x      
 

. 

 

  
 

1 1 1

1 12 1 2 2 1 12 1 2 1 3 32 2lim lim lim
1 1 1 1 1 1 1 1 2 2x x x

x x x
x

x x x x  

                       
        

; 

b) 



 0

0
27

352lim 3

2

3 x
xx

x
 

  

  

  
   











 933

2132lim

93327
2
1;3;1

2132352

23

23

21

2

xxx
xx

xxxx

xxD

xxxx

x
 

 
27
7

999
132

93
212lim 23











 xx
x

x
. 

To find the limit of an irrational expression, when one gets the 

indeterminate value 
0
0
 
  

 or    , it is necessary to transfer the 

irrational term from the numerator to the denominator, or vice versa, 
from the denominator to the numerator. 

Example 4.6 Compute 
0

lim
1 3 1x

x
x  

. 

Solution. 

0

0 0lim
01 3 1 1 3 0 1x

x
x

          
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Multiply the numerator and denominator of the fraction under the 
limit sign by the expression conjugate of the denominator, i.e. by 

1 3 1x  : 

 
  

 
 

 
 20 0 02

1 3 1 1 3 1 1 3 1
lim lim lim

1 3 11 3 1 1 3 1 1 3 1x x x

x x x x x x

xx x x  

     
  

      
 

 
0 0

1 3 1 1 3 1 1 0 1 2lim lim
3 3 3 3x x

x x x
x 

     
    . 

We have two fundamental limits that help us to simplify the limits 
calculation and they are frequently used. 

Definition 4.4 The first fundamental limit is: 

0

sinlim 1





 , 

and some useful consequences from it: 

0

tanlim 1





 ,   
0

arcsinlim 1





 ,   
0

arctanlim 1





 , 

0
lim 1

sin



 ,   

0
lim 1

tan



 ,   

0
lim 1

arcsin



 ,   

0
lim 1

arctan



 . 

Definition 4.5 The second fundamental limit is: 

 
1

0

1lim 1 lim 1 2,72
x

x
x x

x e
x 

      
 

. 

If you get the indeterminate value 
0
0
 
  

 of the limit with 

trigonometric expressions, it is necessary to factorize the numerator and 
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denominator by using trigonometric formulas and cancel or apply the 
frequently used limits for trigonometric functions. 

Remark 4.1 Sometimes we need to use your school knowledge 
about the trigonometric functions which we can find at Appendices C, D. 

Example 4.7 Compute 
0

sin 3lim
x

x
x

. 

Solution: 

0 0 0

sin 3 sin 0 0 sin 3 3 sin 3lim lim 3 lim 3 1 3
0 0 3 3x x x

x x x
x x x  

           
. 

Example 4.8 Compute: a) 
0

1 cos4lim
1 cos8x

x
x




, b) 



 


 x

xctg
x 4

)4(lim
4

. 

Solution: 

a) 
0

1 cos 4 1 cos 0 0lim
1 cos8 1 cos 0 0x

x
x

         
, 

firstly, we should use a trigonometric formula 2 1 cos 2sin
2





  (look 

at Appendices B, D), then frequently used limits for trigonometric 
functions: 

2
2

2
2 20 0 02

42sin sin 2 sin2 sin2 2 221 cos2 2sin lim lim lim8 sin 4 sin 4 2 22sin
2

x x x

x
x x x x x

x x x x x  

  
       

 
 


 x

x
x

x
x

x
x

x
x

x
xxxxx 4sin
lim

4sin
4lim11

4sin
4lim

2
2sinlim

2
2sinlim

002

2

000
 

4
1

4
11

4
1

4sin
4lim

44sin
4lim111

00









 x

x
x

x
xx

; 

b) 








 04
;4;4

0
0

4
)4(lim

4 ux
uxxu

x
xctg

x 






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






 u
uctg

u
uctg

uu 4
)2(lim

)4(4
)44(lim

00



  

4
11

4
1lim

4
1

0


 u
utg

u
. 

When taking limits of the form 

  ( )lim ( ) g x

x a
f x A


 , 

one should bear in mind that: 
1) if there are final limits 

lim ( )
x a

f x B


  and lim ( )
x a

g x C


 , 

then CA B ; 
2) if lim ( ) 1

x a
f x B


   and lim ( )

x a
g x


  ,  

then 
0, 1;

, 1;
B

A
B


  
 

3) if lim ( ) 1
x a

f x B


   and lim ( )
x a

g x


  , then we get the 

indefinite value 1    and should use frequently used limits for 

exponential functions. 

Example 4.9 Compute 
42 3lim

1

x

x

x
x

 
  

. 

Solution: 
2 3( )

1
xf x
x





,   ( ) 4g x x , 

2 3 3 32 22 3 2 3 2 0lim ( ) lim lim lim 21 1 11 1 1 01 1
x x x x

x
x x x xf x xx

x x x
   

                      


, 
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lim ( ) lim(4 ) 4
x x

g x x
 

     . 

Thus, we have the second case and 
42 3lim 2

1

x

x

x
x





      
, 

because 2 1 . 

Example 4.10 Compute 
43lim

1

x

x

x
x

 
  

. 

Solution: 
3( )
1

xf x
x





,   ( ) 4g x x , 

3 3 31 13 3 1 0lim ( ) lim lim lim 11 1 11 1 1 01 1
x x x x

x
x x x xf x xx

x x x
   

                      


, 

lim ( ) lim(4 ) 4
x x

g x x
 

     . 

Thus, we have the third case:  
43lim 1

1

x

x

x
x





        
 

and to find the limit we should use frequently used limits for exponential 
functions: 

4 4 4 43 3 ( 1) 3 1 4lim 1 1 lim 1 lim 1 lim 1
1 1 1 1

x x x x

x x x x

x x x x x
x x x x   

                                          
 

444 1 1 14 16 161 4 4 lim
1 14 4lim 1 lim 1

1 1
x

xx x xx xx
x

x x
e e e

x x


         

 

 
                   

 
 

16
16 16lim lim1 1 1611 1 161 0

x x

x
x

x
x x xe e e e e

   
     . 
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Table 4.1 – Equivalent infinitely small values 
 

xx
x 0
~sin


 xxarctg
x 0
~


 axa
x

x ln~1
0

  

xxtg
x 0
~


 2~cos1 2

0
xx

x
  xx

x 0
~)1(ln


  

xx
x 0
~arcsin


 xe
x

x

0
~1


  xx
x



0
~1)1(


  

 
Example 4.11 Evaluate the following limits:  

1) 
 

xarctg
x

x

2

0

61lnlim 


;             2)  
7 11
3arcsinlim

2

0 x
xx

x 



. 

Solution:  1)     ;6~61ln
0
061lnlim 22

2

0
xx

xarctg
x

x





 

06lim~
2

0





 x
xxxarctg

x
;  

2)  ;3~3arcsin
0
0

11
3arcsinlim

7

2

0
xx

x
xx

x






 

7
~11 7 xx  = 21

71
)3(lim

7
)3(lim

7
3lim

00

2

0















x
x

xx
x

xx
xxx

. 
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Lecture 5 The DERIVATIVE OF FUNCTION. TECHNIQUES of 
DIFFERENTIATION 

 
Let consider function )(xf  identified on the interval );( bа  and 

);(0 bах  . We choose an 
arbitrary point x  belonging to 
the graph of the function )(xf , 
then the increment of the 
argument will be called 
expression as 0xxх  . Since 

the point 0х  is fixed, then the 
increment of the function will 
have the form 

)()( 00 хfххfу   and depend on х . We will compose the 
ratio the increment y  of the function to the increment of the argument 

х , when the х  approaches to zero and we also will find the limit of 

its ratio as 
x
y

x 


 0
lim . This is such an important limit, and it arises in so 

many places that we give it a name. We call it a derivative. Here is the 
official definition of the derivative. On the other words, the derivative is 
a slope of a curve at point, it is formula. 

Definition 5.1 The derivative of a function )(xf  with respect x  
is the function )(xf   and defined as  

    )(limlim 00
00

xf
x

xfxxf
x
y

xx









 

Definition 5.2 The derivative of a function )(xf  is denoted )(xf   

and we often read as “ f  prime of x ”. 
The geometric meaning of the derivative consists of the fact that 

the derived function for each value is equal to the angular coefficient of 

у 

0 х 

         f(x) 

f(x0) 

M 
 

 

 M0 

    x x0 
α  

Figure 5.1  
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the tangent line (Figure 5.1) to the graph of this function at the 
corresponding point 0M , as tgxf  )( ; where   – is the angle that 
forms the tangent line to the graph with the positive direction of the 
abscissa; this angle is an argument of function is x . The equation of the 
tangent line to the graph of the function )(xfy   has the following 
form:   

))(( 000 xxxyyy  , 

where 0х  is abscissa of a point of tangency 0M , 0y  the corresponding 
ordinate of a point 0M , )( 0xy  – is derivative of the function )(xfy   
computed at the point 0M , (and also kxy  )( 0  , where k – angular 
coefficient of tangent); xy,  arbitrary variables. 

For example, find the equation of tangent line to a curve of the 

function 2ху   at the point  4/1;2/1M . 

Solution: To find derivative of the function 2ху   it will be:  
ху 2' . Thus:   

1)2/1(2)(' 0  хуtg ;  451 arctg  – the angle of 

the slope of tangent line;  )2/1(14/1  ху ;  4/1 ху  – the 
equation of tangent line.    

Physical or mechanical content consists of the fact that the non-
uniform motion of a material point is expressed by a function )(tfs  . 
This function changes in time t ; the derivative )(ts  is the rate of 
function’s changes at a certain time 0t  (say: instantaneous velocity), that 
is )()( 00 tvtf  , where )( 0tv  is a velocity of changes )(tfs   at a 
certain time 0tt  . Thus, the velocity of occurrence of physical, 
chemical, and other processes is expressed by derivative. 

We know that )(xf   carries important information about the 
original function )(xf . In one example we saw that )(xf   tells us which 
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a steep (slope) of the graph of the function )(xf  is; in another we saw 
that )(xf   tells us the velocity of an object if )(xf  tells us the position 
of the object at time x . As we said earlier, this same mathematical idea 
is useful whenever )(xf  represents some changing quantity and we 
want to know something about how it changes, or roughly, the “velocity” 
at which it changes. Most functions encountered in practice are built up 
from a small collection of “primitive” functions in a few simple ways, 
for example, by adding or multiplying functions together to get new, 
more complicated functions. To make good use of the information 
provided by )(xf   we need to be able to compute it for a variety of such 
functions. 

To recall the form of the limit, we sometimes say instead that 

   
dx
dy

x
xfxxf

x
y

xx










00
00

limlim . 

In other words, 
dx
dy  is another notation for the derivative, and it 

reminds us that it is related to an actual slope between two points. This 
notation is called Leibniz notation, after Gottfried Leibniz, who 
developed the fundamentals of calculus independently, at about the same 
time that Isaac Newton did. Again, since we often use f  and )(xf  to 

mean the original function, we sometimes use  
dx
dy  and 

dx
df  to refer to 

the derivative. If the function )(xf is written out in full we often write 
the last of these something like  







  45)( 2xxf  or 



  45 2x

dx
d  

with the function written to the side, instead of trying to fit it into the 
numerator. 

Let’s compute a couple of derivatives using the definition. 
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Example 5.1 Find the derivative of function xy sin  and 

calculate it at the point 







3
y . 

Solution: xxf sin)(  ,  
)sin()( xxxxf  ;  )()( xfxxfy  


2

cos
2

sin2sin)sin( xxxxxxxxx

2
2cos

2
sin2 xxx  . 

Let us compose the ratio of the increment of the function to the 

increment of the argument 
x

xxx

x
y







 2

2cos
2

sin2
 and calculate the 

limit:  

00000
cos2

cos
limsinlim2

2cos
2

sin2
limlim x

x

xx

x
x

x

xxx

x
y

xxxx










 

















.  

So,   xx cossin  . Now we will calculate the value of 

derivative at point 
3


x  and obtain that it is 
2
1

3
cos 

 . 

Example 5.2 Determine )0(f   for the function xxf )( . 
Solution. Since this problem is asking for the derivative at a 

specific point we’ll go ahead and use that in our work.  It will make our 
life easier and that’s always a good thing. So, plug into the definition and 
simplify. 

   
x
x

x
x

x
xfxxf

x
y

xxxx 














 00
00

00
lim

00
limlimlim . 

We saw a situation like this back when we were looking at limits 
at infinity. As in that section we can’t just cancel the x ’s.  We will 
have to look at the two one sided limits and recall that 
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







0,
0,

xifx
xifxx , in a right-hand limit we 

have 1limlim
00








 x
x

x
x

xx
, in a left-hand limit we have 

1limlim
00








 x
x

x
x

xx
. The two one-sided limits are different and so 

x
x

x 


 0
lim  doesn’t exist. However, this is the limit that gives us the 

derivative that we’re after. If the limit doesn’t exist, then the derivative 
doesn’t exist either. 

Remark 5.1 In the last example we have seen a function for which 
the derivative doesn’t exist at a point. This is a fact of life that we’ve got 
to be aware of.  Derivatives will not always exist. Note as well that this 
doesn’t say anything about whether the derivative exists anywhere else. 
In fact, the derivative of the absolute value function exists at every point 
except the one we just looked at 0x . 

The preceding discussion leads to the following definition. 
Definition 5.3 A function )(xf  is called differentiable at ax   

if )(af   exists and if )(xf  is called differentiable on an interval if the 
derivative exists for each point in that interval. 

The next theorem shows us a very nice relationship between 
functions that are continuous and those that are differentiable. 

Theorem 5.1 If the function )(xf  is differentiable at ax   then 
)(xf  is continuous at ax   

Note that this theorem does not work in reverse.  
Consider xxf )(  and take look at )0(0lim)(lim

00
fxxf

xx



. 

So, xxf )(  is continuous at ax   but this function is not 
differentiable at ax  . In really, the function must be continuous. 
However, continuity is a necessary but no sufficient condition for 
differentiability. 
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We should note that computing most derivatives directly from the 
definition is a fairly complicated process filled with opportunities to 
make mistakes. So, we need to start mastering formulas and/or properties 
that will help us to take the derivative of many of the common functions 
and we won’t need to resort to the definition of the derivative too often. 

This does not mean however that it isn’t important to know the 
definition of the derivative! It is an important definition that we should 
always know and keep in the back of our minds.  It is just something that 
we’re not going to be working with all that much. 

There are a few important rules for computing derivatives of 
certain combinations of functions. Derivatives of sums are equal to the 
sum of derivatives so that 

  vuvu   

In addition, if C  is a constant, 

    uCuC , constC   

The product rule for differentiation states 

  uvvuvu   

Where u  denotes the derivative of u  with respect to x . This 
derivative rule can be applied iteratively to yield derivative rules for 
products of three or more functions, for example, 

  uvgguvgvugvu   

The quotient rule for derivatives states that 

2v
uvvu

v
u 









 , 0v . 

Simple derivatives of some elementary functions will be presented 
at the table 5.1 below  
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Table 5.1 – Elementary function derivatives 

 Function  Derivative 

1  Constant   0C   

2  Powerful function   uuau aa 
 1

  

2а  x  1'x   

2b  u    u
u

u 


2
1

 

2c  
u
1

 
u

uu











2
11

  

3  Indicative function   uaaa uu 


ln   

3а  Exponent   uee uu 


  

4  Logarithmic function   u
au

ua 
ln
1log

  

4а  Natural Logarithm    u
u

u 
1ln

  

5  Sine    uuu  cossin   

6  Cosine    uuu  sincos   

7  Tangent   u
u

utg  2cos
1

  

8  Cotangent   u
u

uctg  2sin
1
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Continued Table 5.1 

 Function  Derivative 

9  Arcsine    u
u

u 



21

1arcsin
  

10  Arccosine    u
u

u 



21

1arccos
 

11  Arctangent    u
u

uarctg 


 21
1

  

12  Arccotangent   u
u

uarcctg 


 21
1

 

(Look at the Appendix E). 
The chain rule says that the derivative of composition of 

functions ))(( xgf  equals multiplication the derivative of outside 
function and the derivative inside function  

   xgxgfxgf  ))(())((  or      )())(())(( xg
dx
dxgf

dx
dxgf

dx
d   

Example 5.3 Differentiated functions  

а) )3ln(5 22 xу xctg  ;  b) xху 4arccos5 . 

Solution. а) )3ln(5 22 xу xctg  ,  

     














 




)3ln(2

)3ln(25ln5)3ln(5
2

2
222

x

xxctgxу xctgxctg  

222
2

3
2

)3ln(2

1
2sin

25ln5
x
x

xx
xctg













 
 ; 

б) xху 4arccos5 ,  
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  












 xхxxу 4arccos4arccos 55

1

2
55

4

161

44arccos
5
1

x
хxx






. 

Go on and study topic about the non-common function derivative. 
Questions which we have to consider, as 
1. How we must differentiate the exponential-power function, or a 

function in degree function. 
2. How we must differentiate the parametric function 
3. What is the implicit function and how we must differentiate it. 
First, you should understand the exponential-power function (we 

often call her as a function in degree function), what is it? It is a function 
which has the form as   )()( xxfy  , where )(xf  and )(x  - functions. 
If we need to find her derivative we can use two different techniques, for 
example, 

1) the first technique could be named as logarithmic 
differentiation, because it is performed by two steps. At beginning, we 
logarithm the function, and then differentiate it.  

Remark 5.2:  logarithmic function, remember the following 
formulas 

vuvu lnln)ln(  ; vu
v
u lnln)ln(  ; 

uku k ln)ln(  , constk  . 
Remark 5.3 The same technique we could use if your function 

presented as ...)()()( 321  xfxfxfy ; 
2) the second technique involves the formula using  

     )()( )(
)(
)()()(ln)()( xx xf

xf
xfxxfxxfy   






 



 . 

Example 5.4 Find the derivative of the functions  

а) хtgху  , b) )4(log
)14(

5

53 3





x

exy
x
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Solution. We will use the first technique  

а) хtgху  ,  хtgху lnln  ,  tgхху lnln  , 

     tgхху lnln ,  
xtgx

х
х

tgх
y
y

2cos2
ln





, 

  y
xtgx

х
х

tgхy 











 2cos2

ln , 
  хtgх

xtgx
х

х
tgхy 












 2cos2

ln
; 

b) )4(log
)14(

5

53 3





x

exy
x

, 
)4(log

)14(lnln
5

53 3





x

exy
x

, 

)4(loglnln)14ln(ln 5
53 3

 xexy x , 

)4(logln5)14ln(3ln 5
3  xxxy , 

5ln)4(
1

)4(log
115

14
12

5

2











xx
x

xy
y

, 

)4(log
)14(

5ln)4(
1

)4(log
115

14
12

5

53

5

2
3





















x

ex
xx

x
x

y
x

. 

We quite often can meet in engineering the function called as 
parametric. It is the function as the form )(tх  , )(tу  , where  t  is 
a parameter. If these function )(t  and )(t  are differentiable at the 
some interval and also the function )(t  has inverse function and 
wherein it is not equal zero ( 0)(  tt ) then the derivative of this 
function equal ratio of the derivation of functions  

ttх хуttу  /)(/)(  
Example 5.5 Find the derivative of the function  

( sin )
(1 cos )

x a t t
y a t
 

  
. 



68 

Solution. We can find the derivative of each function separately as 

tx  and ty : (1 cos ); sint tx a t y a t    . After this we can substitute 
them in the formula, and we obtain answer:  

sin sin
(1 cos ) 1 cos 2x
a t t ty ctg

a t t
   

 
. 

The process of differentiation of the implicit function is no less 
interesting than previous themes. The function will be called the implicit 
function if it has a such form 0),( yxF  or ),(),( yxyxF  . Then if 
we need to get its derivative you should differentiate both sides of the 
function and it should be taken into account that the function y  is a 
complex (composed) function. 

Example 5.6 Find the derivative of the function  

yxyxtg 2)2(   

Solution. yxyxtg 2)2(  , 0)2( 2  yxyxtg ,  

     


 0)2( 2 yxyxtg , 

  0
)2(cos

)2( 22
2 





 yxyx
yx

yx
, 

02
)2(cos

2 2
2 


 yxxy

yx
y

, 

02
)2(cos)2(cos

2 2
22 







yxxy

yx
y

yx
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xy
yx

yx
yx

y 2
)2(cos

2
)2(cos 2

2
2 







, 

xy
yx

x
yx

y 2
)2(cos

2
)2(cos

1
2

2
2 














 , 

)2(cos
)2(cos22

)2(cos
)2(cos1

2

2

2

22

yx
yxxy

yx
yxxy














 ,  

)2(cos
)2(cos22

)2(cos
)2(cos1

2

2

2

22

yx
yxxy

yx
yxxy














 , 

)2(cos1
)2(cos22

22

2

yxx
yxxyy




 . 

The second-order derivative or the second derivative of a function 
( )y f x  is the derivative of the derivative ( )f x . The second 

derivative is denoted by y , xxy , 
2

2

d y
dx

, ( )f x . 

The derivative of the second derivative of a function ( )y f x  is 
called the third-order derivative, ( )y y   . The n-th-order derivative 
of the function ( )y f x  is defined as the derivative of its ( 1)n th 
derivative: 

( ) ( 1)( )n ny y   . 

The n-th-order derivative is also denoted by ( )n
xy , 

n

n

d y
dx

, ( ) ( )nf x . 

When finding higher order derivatives of an implicit function use 
the same rules as for the finding the first order derivative of an implicit 
function. 

If the function is parametrically defined, then the derivatives of the 
second order and above are found by the formulas: 
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 x t
xx

t

y
y

x


 


, 

 xx t
xxx

t

y
y

x


 


, … , 

 ( 1)
( )

n
xn t

x
t

y
y

x

 



. 

Example 5.7 Find the third-order derivative of the function: 

  21 9 6
6

y x x   . 

Solution: 

          2 2 21 19 6 9 6 9 6
6 6

y x x x x x x
                     

   

        2 2 2 21 1 12 6 9 1 2 12 9 3 12 9
6 6 6

x x x x x x x x               ,

     21 1 13 12 9 6 12 6 2 2
6 6 6

y x x x x x
              

 
,   

 2 1y x     . 
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Lecture 6 APPLICATION OF THE DIFFEFERENTIAL 
CALCULUS 

L’Hospital’s rule. If ( )f x  and ( )g x  are both infinitesimals or 

both infinites as x a , that is, if the quotient 
( )
( )

f x
g x

, at x a , is one 

of the indeterminate forms 
0
0
 
  

 or 
 
  

, then 

 
 

 
 0 0

lim lim
x x x x

f x f x
g x g x 





 

provided that the limit of the ratio of derivatives exists. 
The rule is also applicable when a   . 

If the quotient 
 
 

f x
g x



 again yields an indeterminate form, at the 

point x a , of one of the two above-mentioned types and  f x  and 

 g x  satisfy all the requirements that have been stated for ( )f x  and 

( )g x , we can then pass to the ratio of second derivatives, etc. 

Example 6.1 Compute 2 20

1 1lim
sinx x x

  
 

. 

Solution: 

 2 2 2 20

1 1 1 1 1 1lim
sin sin 0 0 0 0x x x

         
 

 

Reducing to a common denominator, we get 

2 2 2 2

2 2 2 20

sin 0 sin 0 0lim
sin 0 sin 0 0x

x x
x x

         
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Before applying the L’Hospital’s rule, we will use one of special 

limits for trigonometric functions, i.e., 
0

lim 1
sin



 : 

 2 2 2 2 2 2 2 2

2 2 2 2 2 2 40 0 0 0

sin sin sinlim lim lim 1 lim
sin sinx x x x

x x x x x x x x
x x x x x x x   

   
     

 
 

The L’Hospital’s rule gives 

 
 













 30304

22

0 4
2sin2lim

4
cossin22limsinlim

x
xx

x
xxx

x

xx
xxx

 

 
 

















 20303 12

2cos22lim
4

2sin2lim
0
0

04
0sin02

x
x

x

xx
xx

 

3
1sinlimsinlim

3
1

3
sinsinlim

6
sin2lim

6
2cos1lim

000

2

020












 x

x
x

x
xx

xx
xx
x

x
x

xxxxx
. 

To evaluate an indeterminate form like  0  , one should 

transform the appropriate product ( ) ( )f x g x , into the quotient 
 

 
1

f x

g x

 

or 
 

 
1

g x

f x

 to get one of the indeterminate forms 
0
0
 
  

 or 
 
  

, and then 

to apply the L’Hospital’s rule. 
Example 6.2 Compute 2

0
lim ln
x

x x


 . 

Solution:  

 2 2

0 0

2 2

ln ln 0lim ln 0 ln 0 0 lim 1 1
0

x x

xx x

x
 

           
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 

 

3 2 2

30 0 0 02

1
ln 0lim lim lim lim 0

2 2 2 2x x x x

x x xx
x xx
   


     

   
. 

Example 6.3 Compute  
1

lim x x
x

e x


 . 

Solution: 

   
1 1

0lim x x
x

e x e 


       . 

Taking logarithms and applying the L’Hospital’s rule, we get 

     












 x

xexe
x

xe
x

x

x

x
xx

x

lnlimln1limlnlim
00

1

0
 

  

























 



 e
e

xe
exe

e

x
xe

x

x

x

x

x

x

x

x

11lim
1

1

limlnlim  

 
 

 
 

1lim
1

lim
1

lim1lim 





















 x

x

xx

x

xx

x

xx

x

x e
e

e

e
e

e

xe

e
. 

Therefore,  
1

lim x x
x

e x e


  . 

Now we should consider the topic about the behavior of the 
function and how to determine it with the function derivative concept, 
namely, search answer about the function decreasing and increasing. 

Increasing or decreasing? 
Let )(xfy   be continuous on an interval X  and differentiable 

on the interior of  X  
1) If 0)(  xf  for all Xx , then function is increasing on X  
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2) If 0)(  xf  for all Xx , then function is decreasing on X  
Example 6.4 The function 

31243 234  xxxy  has the first derivative 
as 

)1)(2(12)2(12
241212

2

23





xxxxxx
xxxy

.
 

If we trace the sign of the derivative, we 
will see that it changes (pictures on the left). 
Thus, )(xf  is increasing on intervals 

),2()0,1(    and decreasing on )2,0()1,(  . 
Definition 6.1 Points in which the 

derivative equals zero or not exists we will call 
critical points (critical number). 

To know how to find the extremum of a 
function (the highest or lowest point on the 
interval where the function is defined) we should calculate the first 
derivative of the function and make a study of sign. The extremum of a 
function is reached when this derivative is equal to zero and changes of 
sign. 

Definition 6.2 A minimum of a function m  exists for all x  if 
mxf )(  is greater than or equal to a minimum. 

Definition 6.3 A maximum of a function M  exists for all x  if 
Mxf )(  is less than or equal to a maximum. 

An extremum of a function is always defined over interval (that 
may be domain of definition of a function). For example, the function 

2)( xxf   defined over R  (that   ;x ), it has minimum in 0x  
because 0)( xf  over R  (for all 0x ). 

Suppose the function in question is continuous and differentiable 
in the interval. Then, there are a few shortcuts to determining extrema. 
All local extrema are points at which the derivative is zero (though it is 
possible for the derivative to be zero and for the point not to be a local 
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extrema). While they can still be endpoints (depending upon the interval 
in question), the absolute extrema may be determined with a few 
shortcuts too. These are the derivative tests. 

Theorem 6.1 (The First Derivative Test) 
Suppose )(xfy  is a real-valued function and it has an interval on 

which it is defined and differentiable. Then, if 0x  is a critical point of  
)(xfy   in, 

1. If 0)(  xf  on an open interval extending left from 0x and  

0)(  xf  on an open interval extending right from 0x  then a function 

has a relative maximum at 0x . 
2. If 0)(  xf  on an open interval extending left from 0x  and  

0)(  xf  on an open interval extending right from 0x  then a function has 

a relative minimum at  0x  . 

3. If )(xf   has  the same sign on both open interval extending left 
from 0x  and an open interval extending right from 0x  then a function 
does not have a relative extremum at  0x . 

In simpler terms, a point is a maximum of a function if the 
function increases before and decreases after it. Conversely, a point is a 
minimum if the function decreases before and increases after it. 

There may not exist an absolute maximum or minimum if the 
region is unbounded in either the positive or negative direction or if the 
function is not continuous. If the function is not continuous (but is 
bounded), there will still exist a supremum or infinum, but there may not 
necessarily exist absolute extrema. If the function is continuous and 
bounded and the interval is closed, then there must exist an absolute 
maximum and an absolute minimum. If a function is not continuous, 
then it may have absolute extrema at any points of discontinuity. 
Generally, absolute extrema will only be useful for functions with at 
most a finite number of points of discontinuity. The absolute extrema 
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can be found by considering these points together with the following 
method for continuous portions of the function. 

All local maximums and minimums on a function’s graph — 
called local extrema — occur at critical points of the function (where the 
derivative is zero or undefined). (Don’t forget, though, that not all 
critical points are necessarily local extrema.) 

The first step in finding a function’s local extrema is to find its 
critical numbers (the x-values of the critical points). You then use the 
First Derivative Test. This test is based on the Nobel-prize-caliber ideas 
that as you go over the top of a hill, firstly, you go up and then you go 
down, and that when you drive into and out of a valley, you go down and 
then up. This calculus stuff is pretty amazing, eh? 

Example 6.5 The figure 6.1 shows the graph of  
 35 203 xxy   
Find the critical numbers of this 

function, here’s what you do. 
1. Find the first derivative of 

function using the power rule. 

  2435 6015203 xxxxy 


  
2. Set the derivative equal to zero 

and solve for x . 
06015 24  xx ,   0415 22 xx , 

   02215 2  xxx , 0x  or   
                                             2x  or 2x . 

These three x -values are the critical numbers of )(xfy  . 
Additional critical numbers could exist if the first derivative were 
undefined at some x -values, but because the derivative  

24 6015 xxy   
is defined for all input values, the above solution set, 2;2;0  , is the 
complete list of critical numbers. Because the derivative (and the slope) 

Figure 6.1 



77 

of )(xfy   equals zero at these three critical numbers, the curve has 
horizontal tangents at these numbers. 

Now that you’ve got the list of critical numbers, you need to 
determine whether peaks or valleys or neither occur at those x -values. 
You can do this with the First Derivative Test. Here’s how: 

1. Take a number line and put down the critical numbers you have 
found: 0, –2, and 2. 

 

You divide this number line into four regions: to the left of –2, 
from –2 to 0, from 0 to 2, and to the right of 2. 

2. Pick a value from each region, plug it into the first derivative, 
and note whether your result is positive or negative. 

For this example, you can use the numbers –3, –1, 1, and 3 to test 
the regions. 

    06759608115360315)3( 24 y , 

    0456015160115)1( 24 y , 

    06759608115360315)3( 24 y , 

    0456015160115)1( 24 y  
These four results are, respectively, positive, negative, negative, 

and positive. 
3. Take your number line, mark each region with the appropriate 

positive or negative sign, and indicate where the function is increasing 
and decreasing. 

It’s increasing where the derivative is positive and decreasing 
where the derivative is negative. The result is a so-called sign graph for 
the function. 
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This figure simply tells you what you already know if you’ve 
looked at the graph of function that the function goes up until –2, down 
from –2 to 0, further down from 0 to 2, and up again from 2 on. 

Now, here’s the rocket science. The function switches from 
increasing to decreasing at –2; in other words, you go up to –2 and then 
down. So, at –2, you have a hill or a local maximum. Conversely, 
because the function switches from decreasing to increasing at 2, you 
have a valley there or a local minimum. And because the sign of the first 
derivative doesn’t switch at zero, there’s neither a min nor a max at that 
x -value. 

4. Obtain the function values (in other words, the heights) of these 
two local extrema by plugging the x -values into the original function. 

    6422023)2( 35 y ,     6422023)2( 35 y  
Thus, the local max is located at (–2, 64), and the local min is at 

(2, –64). You’re done. 
Theorem 6.2  (The Second Derivative Test) 
Suppose )(xfy   is a real-valued function and Xx  is an 

interval on which )(xfy   is defined and twice-differentiable. Then, if 

0x  is a critical point: 

1. If 0)( 0  xf , then  )(xfy   has a local minimum at 

the 0x . 

2. If 0)( 0  xf , then  )(xfy   has a local maximum at 

the 0x . 
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Remark 6.1 In simpler terms, a point is a maximum of a function if 
the function is concave down, and a point is a minimum of a function if 
the function is concave up. 

The derivative tests may be applied to local extrema as well, given 
a sufficiently small interval. In fact, the second derivative test itself is 
sufficient to determine whether a potential local extremum (for a 
differentiable function) is a maximum, a minimum, or neither. 

Example 6.6 Find the extrema of a function 
3 2( ) ( 1) ( 1)f x x x     

Solution: Our function is defined for ),(:)( xxD ; 
),(:)( yyE . 

2) Calculate the first derivative: 

       .112113)( 322  xxxxxf  

3) And find the critical point due to solve the equations as 
( ) 0f x  :  

   0151)1( 2  xxx , 0)1( 2 x , 01x , 015 x , 

so, we obtained 1 2 31, 1, 1 5x x x       are  critical points. 

Exanimate the sign of ( )f x  (the second derivative) at the all-out 
critical points, however, first of all we will calculate the second 
derivative:  

2( ) 2( 1)( 1)(5 1) ( 1) (5 1 5( 1))f x x x x x x x            

2 2( 1)(10 12 2 10 4 6)x x x x x         

2( 1)(20 8 4)x x x   ; 

after that we substitute each values of critical points at the 
expression of the second derivative and we will get the following results 
as 016)1( f  , so at this point we will have a local maximum; 

025114)51( f , so at this point we will have a local minimum, 
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(1) 0f   , unfortunately, we can’t say definitely, we need to perfume 
other acts to examine this point. Take  appoint 0x   , which located on 
the left hand of this point від 1x  , and define the sign of the first 
derivative, it is: 01)0( f ; then we take a point 2x   , on the right 
hand of  1x  , and define the sign of the first derivative, it is: 

033)2( f . Insomuch as the first derivative don’t change the sign 
nearby of the point 1x  , so we don’t have the extremum at this point. 
Compute the values of extrema: 

min 1 5x    min ( 1 5) 3456 3125y y    , 

max 1x    max ( 1) 0y y   . 

Example 6.7 Find the extrema of the function 

21
xy
x




. 

Solution. The domain of function definition is: 
21 0x  , x R . 

Find the derivative of the given function: 

   
 

 
     

2 2 2 2 2 2

2 2 2 22 2 2 2 2

1 1 1 1 2 1 2 1
1 1 1 1 1

x x x x x x xx x x xy
x x x x x

                       
. 

Solve the equation 0y  : 

 
2

22

1 0
1

x

x





, 21 0x  ,   2 1x  ,   1x   . 

Put all critical point taking into account the point where our 
function does not exist (or undetermined) on the axis and investigate the 
sign at the obtained intervals. 
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To determine what the sign of y  is in the interval ( ; 1)  , it is 
sufficient to determine the sign of y  at some point of the interval. For 
example, taking 2x   , we get  

2
2 2 2( 2)

1 ( 2) 1 4 5
y       

  
, 

hence, 0y   in the interval ( ; 1)   and the function in this interval 
decreases. 

Therefore, the function increases in the interval  1,1x  , 

decreases in the interval    , 1 1,x    , 1x    is the 

minimum point of the function, 1x   is the maximum one. 

 min 2
1( 1) 0,5

1 1
y 

   
 

,   max 2
1(1) 0,5

1 1
y  


, 

( 1; 0,5)A   , (1;0,5)B  are the extremal points. 
Find maximum and minimum values of a function over a closer 

interval. 
Let a function )(xf  be a function on  ba,  and c  is a inner point 

in the interval  ba, . Then: 

1) if for any point x  in  ba, , )()( cfxf   (respectively,  

)()( cfxf  ) then )(cf  is the absolute (or global) minimum value 
(respectively, absolute (or global) maximum value) of )(xf  on  ba, ; 

1  1 y  
x  

y        

min  max  
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2) if bca  , and for any point x  in an open interval 
containing c , )()( cfxf   (respectively, )()( cfxf  ) then )(cf  is 
the local minimum value )(xf  (respectively, local maximum value) on 

 ba, : 

3) if )(xf  is continuous on  ba,  and differentiable in  ba, , a 

point c  in  ba,  is a critical point of a function )(xf  if either )(cf   
does not exist, or 0)(  cf ; 

4) important:  if )(xf  is continuous on  ba,  and differentiable 

in  ba,  and if for some c  in  ba, , )(cf  is the local minimum or 
maximum, then c  must be a critical point. Any absolute minimum or 
maximum must take place at critical point inside the interval or at the 
boundaries point a  and b . 

Example 6.8 Find the largest and smallest values of a function 
3 29 1y x x    on a segment  2, 2 . 

Solution. Since  

 3 2 29 1 3 18y x x x x      , 

it follows that the critical points of the function are 
23 18 0x x  , 

 3 6 0x x   , 

 0 2;2x    ,    6 2;2x     . 

Comparing the values of the function at 0x   and at the 
endpoints of the given interval 

  3 20 0 9 0 1 1y       , 

     3 22 2 9 2 1 8 36 1 27y             , 
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  3 22 2 9 2 1 8 36 1 43y         , 

we conclude that the function attains its smallest value 1m    at the 
point 0x   and the greatest value 43M   at the point 2x  : 

 
[ 2;2]
max 2 43y y


  ,    
[ 2;2]
min 0 1y y


   . 

Example 6.9 Find the maximum value and the minimum value 

attained by  
)1(

1
xx

xf



 
in the interval  3,2 . 

Solution. Note that the domain of  xf  does not contain 0x  

and 1x , and these points are not in the interval  3,2 . Find critical 
points. Compute 

  22 )1(
21

xx
xxf




 ,   0 xf , 0
)1(

21
22 





xx
x

, 12 x , 
2
1

x . 

Therefore, the only possible critical point is 
2
1

x . As this point is not 

in the interval  3,2 , it is not a critical point.  Compute  xf  only at the 
boundaries of the closed interval 

 
6
1

)31(3
13 


f ,  
2
1

)21(2
12 


f . 

Compare the data resulted in Step 2 to make conclusions:  xf  

attains its absolute maximum value  
6
13 f  at 3x  and f(x) attains 

its absolute minimum value  
2
12 f  at 2x . 
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Lecture 7 THE INDEFINITE INTEGRAL. METHODS OF 
INTEGRATION.  

Anti-differentiation or integration is the reverse process to 
differentiation. For example, if 2)( xxf  , we know that this is the 

derivative of 
3

)(
3xxF  . Could there be any other possible answers? If 

we shift the cube parabola 
3

)(
3xxF   by sliding it up or down vertically, 

all the points on the curve will still have the same tangent slopes, i.e. 
derivatives.  

Definition 7.1 Where possible, check your answer by 
differentiating, remembering that the derivative of a constant, C , is zero. 
In mathematical notation, this anti-derivative is written as  

CxFdxxf  )()( , where )()( xfxF  . 

In words, if the derivative of )(xF  is )(xf , then we say that an 
indefinite integral of )(xf  with respect to x  is )(xF . The integration 

symbol “  ” is an extended S  for “summation”. the “ dx ” part 
indicates that the integration is with respect to x . For instance, the 
integral  dtx2  cannot be found, unless x  can be rewritten as some 

function of t  as  dtt 2 . 
Remark 7.1 However, you are NOT encouraged to memorize 

integration formulae, but rather to become VERY familiar with the list 
of derivatives and to practice recognizing a function as the derivative of 
another function. If you try memorizing both differentiation and 
integration formulae, you will one day mix them up and use the wrong 
one. And there is absolutely no need to memorize the integration 
formulae if you know the differentiation ones. It is much better to recall 
the way in which an integral is defined as an anti-derivative. Every time 
you perform integration you should pause for a moment and check it by 
differentiating the answer to see if you get back the function you began 
with. This is a very important habit to develop. There is no need to write 
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down the checking process every time, often you will do it in your head, 
but if you get into this habit, you will avoid a lot of mistakes 

 
Table 7.1 – The standard integrals 

Basic integrals 

1 Cdu  0   5 Cuduu  cossin  

2 Cuduu 





 1

1
 6 Cuduu  sincos  

2а Cudu   7 Cutg
u

du
 2cos

 

2б Cu
u

du
 2  8 Cuctg

u
du

 2sin
 

2в C
uu

du


1
2

 9 C
a
u

ua

du



 arcsin

22
 

3 Cu
u
du

 ln   10 Cbuu
bu

du



 2

2
ln  

4 C
a

adua
u

u  ln
 11 C

a
uarctg

aau
du




1
22

 

4а Cedue uu   12 C
au
au

aau
du






 ln

2
1

22
 

 
Some rules for calculating integrals. Properties. 

Rule 1.   dxxfCdxxfC )()(  

Rule 2.  
    dxxfdxxfdxxfdxxfxfxf )()()()()()( 321321  

Rule 3.   )()( xfdxxf 


  

Rule 4. dxxfdxxfd )()(   
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Rule 5.   CxFxdF )()(  

The most interesting rules for using will be rules 1 and 2. 
Presented it. 

Example 7.1 To find the indentified integrals:  

а)  









 dx

x
xx

5 3
43 2 , b) 

 297 x
dx . 

Solution: а) using rules 1,2 and according to the standard integral 
(basic integral formula №2), we will get: 











   dxxdxxdx

x
dxxdxxdx

x
xx 413

5 3
43

5 3
43 22  

CxxxCxxxdxx 








 2
10

5
4

4153
2

1414
2

524541531414
53 ; 

b) using formula 9 for basic integrals, we have performed some 
transformations before, we will get: 

Cx

x

dx

x

dx

x

dx








 









 




 7
3arcsin

3
1

9
73

1

9
7997 22

2
. 

Consider some useful methods for the non-table integrals. 

Integration by substitution 

Integration by Substitution (also called "u-Substitution" or "The 
Reverse Chain Rule") is a method to find an integral, but only when it 
can be set up in a special way. The first and most vital step is to be able 
to write our integral in this form: 

CxFCtFdttf
dtxdt

xt
dxxxf 




  ))(()()(
)(
),(

)())(( 



  

or 
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   
              CxHxtCtHdtttf

dttdx
tx

dxxf 



  11;





. 

Example 7.2 To find the indentified integral:  dx
x

e xtg

2cos2

2

. 

Solution.  









 
dx

x
dt

dx
x

dt

xtgt

dx
x

edx
x

e xtg
xtg

2cos
1

2

,2:
2cos

2
,2

2cos
1

2cos

2

22
2

2

2
 

CeCedtedxe xtgttt   2

2
1

2
1

2
1

2
. 

Remark 7.2 We must come back to the )(x . 

Integration by parts 
Consider the integral of product of function as   dxxgxf )()( . 

To do this integral we will need to use integration by parts so let’s derive 
the integration by parts formula. We’ll start with the product rule. 

Definition 7.2 Let ( )u u x  and ( )v v x  are two continuous 
functions, they have continuous derivatives. As we know, the differential 
of products of those functions is 

  udvvduvud  . 

Now, integrate both sides of this. 

  udvvduuvd )( , 

or 

  duvuvdvu . 

The last formula is formula integration by parts. 
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Remark 7.3 To use this formula, we will need to identify u and dv, 
compute du and v and then use the formula. Note as well that computing 
v is very easy.  All we need to do is integrate d:  dvv . 

Example 7.3 Evaluate the following integrals:   dxx x32  

Solution. Notice as well that in doing integration by parts anything 
that we choose for u  will be differentiated.  So, it seems that choosing  

xu   will be a good choice since upon differentiating the x  will drop 
out. Now that we’ve chosen u  we know that dv  will be everything else 
that remains.  So, here are the choices for u  and dv  as well as du  and 
v . 










 



 2ln
2

3
1

2ln
2

3
12

,
,2

,

2
3

3
3

3

3
x

x
x

x

x xvduuv

dxv

dxdu
dxdv

xu

dxx  

Cxdx
xx

x 


  2ln3
2

2ln3
1

2ln3
22

2ln3
1 33

3 . 

However, those methods are not universal, so sometimes we 
should use appropriated techniques to some functions classes’ integrals. 
Consider any of them that are most common. 

Integration of rational fractions 
We will base on two theorems: 
Theorem 7.1 (Fundamental Theorem of Algebra over the Real 

Numbers). A real polynomial of degree 1n  can be factored as a 
constant times a product of linear factors 1xx   and irreducible 

quadratic factors cbxax 2 . 
Note that ))(( 21

2 xxxxacbxax  , where  ix 1 , 

 ix 1  are complex conjugates. 



89 

Theorem 7.2 Every rational function 
)(
)(

xQ
xP

n

m  when degree of 

)(xPm  less than degree of  )(xQn , mn  , can be decomposed into 
partial fraction. 

According to that: the rational function 
)(
)(

xQ
xP

n

m , where )(xPm  на 

)(xQn  are both polynomials, can be integrated in four steps: 

4. Reduce the fraction if it is improper (i.e. degree of )(xPm is 

greater than degree of )(xQn ; 

5. Factor )(xQn  into linear and/or quadratic (irreducible) factors; 
6. Decompose the fraction into a sum of partial fractions; 
7. Calculate integrals of each partial fraction. 
Consider these steps in more details. 
Step 1 Reducing an Improper Fraction 
If the fraction is improper (i.e. degree of )(xPm  is greater than 

degree of )(xQn ), divide the numerator )(xPm  by the denominator 

)(xQn  to obtain 
)(
)()(

)(
)(

xQ
xRxG

xQ
xP

n

k
nm

n

m   , where 
)(
)(

xQ
xR

n

k  is a proper 

fraction. 
Step 2 Factoring )(xQn  into Linear and/or Quadratic Factors 

Write the denominator )(xQn  as  

...)(...)()( 2  tk
n qpxxaxxQ , 

where quadratic functions are irreducible, i.e. do not have real 
roots. 

Step 3 Decomposing the Rational Fraction into a Sum of Partial 
Fractions. 

Write the function as follows: 
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       

      ......

...
)(
)(

2
11

12
11

2

1
2

2
1

1







































qpxx
BxA

qpxx
BxA

qpxx
BxA

ax
A

ax
A

ax
A

ax
A

xQ
xP

t
tt

t
tt

k
k

k
k

k
k

 

The total number of undetermined coefficients kA , tA , tB ,… 

must be equal to the degree of the denominator )(xQn . Then equate the 
coefficients of equal powers of x  by multiplying both sides of the latter 
expression by )(xQn  and write the system of linear equations in kA , 

tA , tB ,… The resulting system must always have a unique solution. 
Step 4 Integrating partial fractions. 
Use the following formulas to evaluate integrals of partial 

fractions with linear and quadratic denominators: 

1)  


CaxA
ax

Adx ||ln ;   

2) C
k
axAdxaxA

ax
Adx k

k
k 








 1

)()(
)(

1
,  2k ; 

3)  
 dx

qpxx
BAx

2
; 

4)  
 dx

qpxx
BAx

2 . 

Consider some cases of integration of rational function.  
CASE 1. Distinct linear factors. 

Example 7.4 Evaluate the following integral:  

 


 dx
xxx

xxI
)1)(65(

7134
2

2
. 

Solution.  












132)1)(3)(2(

7134 2

x
dxC

x
dxB

x
dxAdx

xxx
xxI . 
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There  
)3)(2()1)(2()1)(3(7134 2  xxCxxBxxAxx . 

Find the coefficients (do it by yourself)), obtain: 1A ; 
1B ; 2C .  










  1
2

32 x
dx

x
dx

x
dxI Cxxx  |1|ln2|3|ln|2|ln .    

CASE 2. Repeated linear factors 

Example 7.5 Compute .
)1()2(

854
2

2

 
 dx

xx
xx  

Solution. We have two repeated factors, so our partial fractions 

will have the form as 

    



















 dx
x
C

x
B

x
Adx

xx
xx

122)1()2(
854

22

2

 

we reduce them to the common denominator and obtain 

      
  





 dx

xx
xCxxBxA

2

2

21
2121  

We will use the method of dominate roots to find the 
undetermined coefficients. Since the number 2  of multiple roots, then 
the third value of the variable x  will be chosen arbitrarily  

      
  


















9
10,

9
202,922,1

,
3
14,143,2

,
9

17,179,1

,1,2,1,021
,8542121

2

22

BBCBAx

AAx

CCx

xxxxx
xxxCxxBxA
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      Cxx
x

dx
xxx





















  1ln

9
172ln

9
10

23
14

1
917

2
910

2
314

2 . 

Example 7.6 Evaluate the following integral 

dx
xxxxx

xxxx
 


61053

131862
2345

234
. 

Solution.    131862 234  xxxxxP ,  

61053)( 2345  xxxxxxQ . 
Polynomial )(xQ  can be factorized as follows: 

)2()3()1()( 22  xxxxQ , then the required expansion has the form:  

21)1(3)(
)(

22 












x

EDx
x
C

x
B

x
A

xQ
xP ,  

where numbers DCBA ,,,  і E  we should find. We reduce the right-
hand side to the common denominator, that is )(xQ , according to the 
condition of equality of fractions, we will get identity for polynomials:  

)()1)(3)((
)2)(1)(3()2)(3()2()1(

2

2222

xPxxEDx
xxxCxxBxxA




. 

Find unknown coefficients EDCBA ,,,,  by the method of 
undetermined coefficients EDCBA ,,,, . We open parentheses and give 
similar, equate the coefficients at the same powers of x  in the left and 
right sides of our identity. We obtain a system of five equations with five 
unknowns and solve its Gauss method: 

0

1

2

3

4

x

x

x

x

x

























;133662

,1853424

,6533

,122

,2

ECBA 

EDCBA

EDCBA

EDCBA

DCA

   

.3
;1

;2
;1

;1








E
D
C
B
A
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We get that ∙
2
3

1
2

)1(
1

3
1

)(
)(

22 












x
x

xxxxQ
xP

. 

After this we can integrate separately all obtained rational 
fractions: 














  dx
x
xdx

x
dx

x
dx

x 2
3

1
2

)1(
1

3
1

22  




 2ln
2
11ln2

1
13ln 2xx

x
x  

Cxarctg 
22

3
. 

Integration of trigonometric functions 
At this point we will have learned more about integrating powers 

of sine and cosine. If we have the integral in form as 

  xdxx nm cossin  

we should pay attention to the powers of sines  m  and cosines  n , 
because we will have different ways to solve depending on it. 
In this integral if the power on the sines  m  is odd we can strip out one 

sine, convert the rest to cosines using identity 1sincos 22 x  and then 
use the substitution xu cos . Likewise, if the power on the is odd we 
can strip out one cosine and convert the rest to sines and use the 
substitution xu sin .  

Of course, if both powers are odd then we can use either method. 
However, in these cases it’s usually easier to convert the term with the 
smaller exponent. The one case we haven’t looked at is what happens if 
both exponents are even? In this case the technique we used in the first 
couple of examples simply won’t work and in fact there really isn’t any 
one set method for doing these integrals.  

Each integral is different, and, in some cases, there will be more 
than one way to do the integral. With that being said most, if not all, of 
integrals involving products of sines and cosines in which both powers 
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are even can be done using one or more of the following formulas to 
rewrite the integrand. 

  xx 2cos2cos1
2
1

 ,    xx 2sin2cos1
2
1  , xxx 2sin

2
1sincos  . 

Example 7.7 Find integrals:  
a)  xdxx 23 cossin ; b)  xdx2cos4 . 

Solution. a)   xdxxxxdxx sincossincossin 2223  





 222 1cos1sin,sin

,sin,cos
uxxxdxdu

xdxduxu
 

    duuuCxxCuuduuduu 22
3535

42 1
3

cos
5

cos
35

 

CxxCuuduuduu   3
cos

5
cos

35

3535
42 ; 

b)       dxxxxdxxxdx 4cos1
2
14cos1

2
12cos2cos2cos 224  

  

 





dxdxxx

xxxdxxdx

4
14cos4cos21

4
1

16
4sin

4
4cos

4
14cos

4
1

2

2

 

  Cxxxxdxx   64
8sin

816
4sin

4
8cos1

8
1

. 

In general, when we have products of sines and cosines in which 
both exponents are even we will need to use a series of half angle and/or 
double angle formulas to reduce the integral into a form that we can 
integrate.  Also, the larger the exponents the more we’ll need to use these 
formulas and hence the messier the problem. 

If powers of sine and cosine are negative ( 0, nm ) and their sun 
is a even number, we should use the substitution as tgxu   ctgxu  , 
which allows us to reduce the integrand assignments to the integral of 
the power function 
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In the case, where one of the powers of sines or cosines is zero and 

the other negative, then a universal trigonometric substitution 2
xtgu   

is used. The universal trigonometric substitution could be used also if we 

have the integral in form as   dxbxa
dx

sincos
 or if we have integral 

of the rational function of sines and cosines as )cos,(sin xxR , and the 
powers of sines and cosines are odd. According to the trigonometric 
formulas of the half angle, we obtain the following expressions for 

xsin  and xcos : 

21
2sin

u
ux


 ;  2

2

1
1cos

u
ux




 . 

Example 7.8 Find integral:   x
dx
cos53

. 

Solution. 





























  2

2

2
2

2

2

2

28
2

1
153)1(

2

1
1cos

,
1
2,

2
cos53 u

du

u
uu

du

u
ux

u
dudxxtgu

x
dx  

Cxtg

xtg
C

u
u

u
du

u
du

u
du



















 

2
2

2
2

ln
4
1

2
2ln

4
1

4428
2

222 . 
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у 

0 

y=f(x) 

b a  
Figure 8.1  

S 

А  

В  С 

D 

Lecture 8 DEFINED INTEGRAL AND ITS APPLICATIONS 

Integration can be used to find areas, volumes, central points and 
many useful things. But it is often used to find the area under the graph 
of a function like this: 


b

a
dxxfS )(  

A definite integral is an 

integral  dxxf
b

a
  with upper 

and lower limits. If x  is 
restricted to lie on the real line, 
the definite integral is known 
as a Riemann integral (which is 

the usual definition encountered in elementary textbooks). However, a 
general definite integral is taken in the complex plane, resulting in the 
contour integral  

 dxxf
b

a
 . 

So, we have this important thing to remember (Fundamental 
Theorem of Calculus): 

Theorem 8.1 The fundamental theorem of calculus establishes the 
relationship between indefinite and definite integrals and introduces a 
technique for evaluating definite integrals without using Riemann sums, 
which is very important because evaluating the limit of Riemann sum 
can be extremely time‐consuming and difficult. The statement of the 
theorem is: If )(xf  is continuous on the interval  ba; , and )(xF  is any 

antiderivative of )(xf  on  ba; , then  

  ),()()( aFbFxFdxxf b

a

b

a
 ).()( xfxF   

In other words, the value of the definite integral of a function on 
 ba;  is the difference of any antiderivative of the function evaluated at 
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the upper limit of integration minus the same antiderivative evaluated at 
the lower limit of integration. Because the constants of integration are 
the same for both parts of this difference, they are ignored in the 
evaluation of the definite integral because they subtract and yield zero. 
Keeping this in mind, choose the constant of integration to be zero for all 
definite integral evaluations after  

Properties: 
1. Adding Functions (or subtraction) 

   
b

a

b

a

b

a
dxxgdxxfdxxgxf )()()()(  

2. Reversing the interval 

 
a

b

b

a
dxxfdxxf )()(

 
3. Interval of zero length 

0)( 
a

a
dxxf  

4. Adding intervals 

  
c

a

b

c

b

a
dxxfdxxfdxxf )()()( ,  bac ; . 

 
5. A constant factor can be taken as a sign of a definite integral:  

dxxfcdxxfc
b

a

b

a
  )()( , constc  .. 

6. A derivative of indefinite integral is a function  

  )( xfdxxf
b

a












 . 

Example 8.1 Calculate the defined integrals:  

а) dxx 
2

1

345 ; b) dx
x

x 










2

0

3

3
7

. 
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Solution:  

a)  
5ln75

2455
5ln3

1
5ln

5
3
15 2

2

1

342

1

34  



x

xdx ; 

b) 











  

2

0

342

0

2

0

31
2

0

3

4
3

3
7

3
7 x

x
dxdxxdx

x
x  

.
3
5ln4

2
233ln75ln70

4
233ln7

3342

0






 x

 
Remark 8.1 Keep in mind that the definite integral is a unique real 

number and does not represent an infinite number of functions that result 
from the indefinite integral of a function. 

Theorem 8.2 (The Mean Value Theorem for Definite Integrals): If 
)(xf  is continuous on the closed interval  ba; , then at least one 

number c  exists in the open interval  ba;  such that 

  ))(( abcfdxxf
b

a
  

The value of )(cf  is called the average or mean value of the 

function f(x) on the interval  ba;  and 

  


b

a
dxxf

ab
xf )(1 . 

The numerous techniques that can be used to evaluate indefinite 
integrals can also be used to evaluate definite integrals. The methods of 
substitution and change of variables, integration by parts, trigonometric 
integrals, and trigonometric substitution are illustrated in the following 
examples. 

Example 8.2 Calculate defined integral:  

1

0
6

2

1 x
dxx . 

Solution: So, we have function with its derivative, we should use 
the substitution method, as 



99 

  











 

0
,1

,3
,

11

2

3

1

0
23

21

0
6

2

b

a

t
t

dxxdt
xt

x
dxx

x
dxx

12
0

3
11

3
1

3
1

13
1 1

0

1

0
2




 arctgarctg
t

dt arctgt . 

Example 8.3 Calculate defined integral:  
3

0

29 dxx . 

Solution. So, we have the irrational expression with non-linear 
radical, we will use the trigonometric substitution 














23
3arcsin

,0
3
0arcsin

,cos99
,cos3

,
3

arcsin,sin3

9
223

0

2


b

a

t

t

tx
tdtdx

xttx

dxx  

  
2

0

2

0

2
2

0

2 2cos1
2
9cos9cos3cos9



dtttdttdtt  


 

2
92cos

2
9

2
9 2sin

4
9

2
9 2

0

2

0

2

0

2

0
   ttdttdt . 

Example 8.4 Calculate defined integral:  
1

0
)1ln( dxx . 

Solution: We should use integration by part applying this formula 
to it 

 
b

a

b

a

b

a
vduudv uv  
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











xv
x
dxdu

dxdv
xu

dxx
,

1

,
),1ln(

)1ln(
1

0
 

 







1

0

1

0

1

0
2ln

1
112ln

1)1ln( dx
x

x
x
xdxxx  

12ln22ln
1

1
1
11

0

1

0

1

0

1

0
)1ln( 







   xxdx
x

dx
x
x

. 

Applications of integration 
Area. We have seen how integration can be used to find an area 

between a curve and the x -axis. With very little change we can find 
some areas between curves; indeed, the area between a curve and the x -
axis may be interpreted as the area between the curve and a second 
"curve'' with equation 0y . In the simplest of cases, the idea is quite 
easy to understand. 


b

a
dxxfS )(                                       (8.1) 

Example 8.5 Find the area below 34)( 2
2  xxxf  and above 

5107)( 23
1  xxxxf  

over the interval 21  x .  
Solution. In figure 8.2  we 

show the two curves together, with 
the desired area shaded, then 

)(2 xf  alone with the area 

under )(2 xf  shaded, and then 

)(1 xf  alone with the area under  

x 

)(2 xfy 

0 
b 

Figure 8.2 

a 

S )(1 xfy   

y 



101 

)(1 xf  shaded. It is clear from the figure that the area we want is the area 

under )(2 xf  minus the area under )(1 xf , which is to say 

  
b

a
dxxfxfS )()( 12 .                               (8.2) 

Note that  1a ,  2b . 
It doesn't matter whether we compute the two integrals on the left 

and then subtract or compute the single integral on the right. In this case, 
the latter is perhaps a bit easier: 

  
2

1

232 )5107(34 dxxxxxxS  

   
2

1

23 2146 dxxxx  

 







 22

1
27

1
22

4
2

234
234

2

1

2
2

14
3

6
4

xxxx  

)unit(
12
4921712

4
1 223

4









 . 

Arc lenght. Therefore, a definite integral is used to calculate the 
length of an arc of a curve. 

Thus, if the function is presented as )(xfy  ,  bax ; , so the 
arc of the curve will be calculated by formula: 

dxyl
b

a
  21 ;                                       (8.3) 

if the function is presented as )(ty  , )(tx     ;t , so 
the arc of the curve will be calculated by formula: 

dtyxl  




22 ;                                     (8.4) 
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if the function is presented as )(  ,  21; , so the arc 
of the curve will be calculated by formula: 





dl  

2

1

22 .                                      (8.5) 

Example 8.6 Find the arc length of a single arch of cycloid 
(Figure 8.3), if it is given in parametric equations:  

)cos1(2 ty  , )sin(2 ttx  . 

 
Figure 8.3 

Solution: so given function is presented in parametric equations; 
we will use formula (8.4). First, we will find the derivatives ty  and tx : 

tyt sin2 , )cos1(2 txt  , 2sin16cos88 222 ttyx  . 

A moving point describes one arch of a cycloid when the 
parameter changes from zero to 2 . Find the length of this arch: 

  2
cos

2

0

2

0

2

0

222 82sin42sin16
t

dttdttdtyxl






 

160cos8
2

2cos8 
  (length units). 
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Volume. The volume of the body obtained by rotating the figure 
around the abscissa (figure 8.4) can be 
calculated by  


b

a
x dxxfV )(2

 
In the case when a figure is 

retained round the ordinate axis then 
the volume should calculate by one of 
formulas below 


d

c
y dyyfV )(2

 
or

 
 
b

a
y dxxfxV .)(2  

Example 8.7 Calculate the volume of the body obtained by 
rotating a figure bounded by lines 

24 xy  , xy 3 , 0x . 
Solution. Construct a figure bounded by 

lines 24 xy  , xy 3 , 0x  (figure 8.5). 
As we can see, the volume of the desired body 
should be found as the difference between the 
larger (volume of the outer body) and smaller 
(volume of the inner body) volumes. 

But first we find the points of 
intersection of the graphs of the given 
functions. To do this, we solve a system of 
equations 








;3
,4 2

xy
xy  








;3
,0432

xy
xx  








.4,1
,12,3

21

21

xx
yy

 

The second point with coordinates  12;4   does not satisfy the 
condition of the problem, because the body is bounded by the y-axis. So, 

a   xi-1               zi                xi                                       b 

Figure 8.4 

у 

х 

x 

y 

0 

Figure 8.5 

у=4-х2 

у=3х 



104 

0a , 1b  are our limits of the integration. We will find it gradually 

outV  and inV , using the formula to the volume calculation:  

    







  

1

0

531

0

42
1

0

22

53
2162164 xxxdxxxdxxVout   

15
203

  (units3);   
1

0

1

0
32 339  xdxxVin ( units3). 

So, the desired volume is 
15

1583
15

203 
xV (units3). 

Therefore, the following formula is finally used to calculate the 
surface area of rotation: 

  dxxfxfS
b

a
п

2)(1)(2   . 

Example 8.8 Calculate the surface area of a spherical belt formed 
by rotation around the axis of an arc of a circle with center at the origin 
and radius 5 . 

Solution.  As is known, the equation of a circle with center at the 
origin and radius 5  looks like this: 2522  yx , then 22 25 xy  , a 
function that is given implicitly and its derivative is equal to: xyy  , 

225 x
x

y
xy







 . Calculate the area of the spherical belt by the 

formula above:  

)(50252
25

1252
2

2

2 abdxdx
x

xxS
b

a

b

a
п 












   . 

If we consider the expression  ab   the height H  of this belt, 

then we get, that is HSп 50 , in the case, when 102  rH , the 

surface area of the sphere is equal to 500пS . 
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QUESTIONS TO CONSOLIDATE LECTURES 
 

Lecture 1 – 2 
1. What is a determinant? 
2. What is a minor? 3. What is a cofactor of a determinant 

element? 
4. By what rule the value of the determinant of the n -th order is 

calculated? 
5. Formulate the rules of the “cross” and “triangles” for 

calculating respectively the determinants of the second and third order 
6. What are the basic properties of the determinant? Which of 

them can we use to calculate it. 
8. Will be the value of the determinant changed if the elements of 

some column are multiplied by 5? If so, how much?  
9. Which of the properties can we use to simplify calculation the 

determinant of any order? Explain your answer. 
10. What is a matrix? Which of matrix is called non-degenerate? 
11. How are doing the operations of adding (subtracting) matrices 

and multiplying the matrix by the number?  
12. What is the difference between multiplication of the matrix by 

the scalar and the multiplication of the determinant by the number? 
13. How is operation of multiplication of the matrixes carried out? 

What are the properties of this operation? 
14. Which of matrix has determinant?  What is an inverse matrix 

and how is it calculated?  
15. Does any matrix have an inverse matrix? Why? 
16. How can you check the accuracy of the found inverse matrix? 
17. What is the system of linear algebraic equations which has all 

free terms are zeros? Does such system have a solution? How many? 
18. How can we find a solution of a square SLR with an inverse 

matrix? 
19. How to solve the square system of linear equations by 

Cramer’s rule? 
20. How is an arbitrary SLAE solved by the Gaussian elimination 

method? 
21. Is it possible to determine the consistency of the system using 

the Gaussian elimination method? Explain your answer. 
22. How can we know by performing the Gaussian elimination 

method that the system does not have a solution? 
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Additional Questions to Self-study Topics 
1. What is a general equation of a straight line on a plane? 
2. What do know special cases of the general equation of a straight 

line? How to write the equation of a straight line? 
3. How to find the slope of a line? What is happened with line if 

its slope is zero? 
4. How to find the coordinates of the lines intersection point? 
5. What is a normal vector? 
6. Tell all special case of a plane general equation. 
7. What kind of plane equations do you know? 
8. What are relationships between two planes in space have? 
9. What is the condition of perpendicularity of two planes? 
10. What are the differences between a normal vector and a 

direction vector? 
11. What is a circle? What is its standard equation of a circle? 
12. What is an ellipse? What are the foci of the ellipse and where 

are they located? 
13. What does the eccentricity of the ellipse characterize? 
14. What properties of the ellipse could we learn from its canonical 

equation? 
15. What is a hyperbola? What features do have a hyperbola? 
16. What are hyperbola asymptotes? 
17. What is a parabola? Give some examples of special case of its 

graphs. 
18. What are polar coordinates? What are the relationships between 

polar and Cartesian coordinates? 

Lecture 3 
1. What is the complex number? 
2. How can be resented the complex number at the Cartesian 

frame? 
3. What is a conjugate complex number? What is the relationship 

between a complex and its conjugate number? 
4. What can you say about equal complex numbers? 
5. What are differences between trigonometric and exponential 

complex number forms? 
6. What can we do operations with the complex numbers?  
7. How can we do these operations? Do they have depended on 

complex numbers forms? 
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8. What is Euler's basic formula? 
9. What is the first and second Muavre's formulas? 
10. How can be presented graphically the found complex numbers 

powers? 
11. What is the base algebra theorem? 
12. What is a complex variable function? What is the area of its 

definition? Where does it exist? 
13. Explain how to draw the complex variable function? and how 

to calculate its value? 

Lecture 4 
1. Explain how do you understand this “limit of the function 

( )f x  from the left and the limit of the function ( )f x  from the right at 
the point a ”? Is it enough to assert that a function have the limit at the 
point a ? 

2. What is an infinitesimal function? 
3. Call some properties of infinitesimal and infinitude functions. 
4. Which of fundamental limits do know? 
5. What kinds of indeterminate forms do you know? Tell us the 

features of disclosing some of them. 
6. Call the types of uncertainties you know and explain how they 

should be evaluated.  
7. What are the consequences of the standard limits do you know? 

What are infinitesimal small equivalent quantities? How can we use it to 
evaluate the limits?  

Additional Questions to Self-study Topics 
1. What is the function continuity? What properties do continuous 

functions have? Call some elementary continuous functions. 
2. What could we tell about the limit of a function at the point at 

which it has a breaking? 
3. What is the function of any variables? How can be it presented 

graphically? 
4. What is the difference between the definition domain of a 

function of one variable and the definition domain of a function of two 
(or three) variables? 

5. What is the level line? How can a level line be drawn on a 
surface? 

6. What are partial derivatives? Tell us about the peculiarity of 
finding them.  
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7. What rules are used for this?  
8. What is the geometric meaning of partial derivatives? 
9. What is a function gradient? What is its physical meaning? 

Lecture 5 – 6 
1. What is an increment of a variable? 
2. What is a derivative of a function?  
3. How to find the derivative of a compose function? 
4. In which case should we use the Chain Rule? 
5. How to find the derivative of an implicit function? 
6. What is a logarithmic differentiation? When could we use it? 
7. Explain, how to find the derivative of an implicitly given 

function. 
8. How could be found the derivative of a parametric function? 
9. What is the second-order differential? How can we find it? 
10. Explain the L’Hospital’s rule. 
11. Can we use the L’Hospital’s rule at all examples or not? 
12. How can we use this rule if you need to compute the limit 

having one of these indeterminate forms 1   , 0   , 00   ? 
13. Can you combine the using of the L’Hospital’s rule with other 

ways or previously learned technology? 
19. What are conditions of increasing and decreasing the function? 
20. What are properties of a critical point? 
21. How can be found critical points? 
22. What is a necessary condition for the existence of an 

extremum? 
23. What are the exteremal points? 
24. How can we find the largest (smallest) value of a function 

 f x  on a segment  ,a b ? 

Additional Questions to Self-study Topics 
1. What is a point of inflexion? How to find it? 
2. What does it mean when we say that the curve is concave 

upwards? 
3. What is a sufficient condition for the concavity upwards 

(downwards) of a function graph? 
4. How can we determine that this cure is concave upwards? 
5. What is an asymptote? What kind of them do you know? 
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6. What should we do to find an asymptote to the graph of a 
function? 

7. What is a general scheme of a function analysis?  
8. Should we calculate the arbitrary points to draw a graph of a 

function? 

Lecture 7 – 8 
1. What is the antiderivative of a function? 
2. What is the indefinite integral? Call its properties. 
3. What integration methods do you know? Explain in what cases 

each of them can be applied. 
4. Tell us about other integration techniques and what classes of 

integrals they are used for. 
5. What is a definite integral? Call its properties. 
6. How will the definite integral change if the upper and lower 

boundaries of integration are reversed?  
7. Could we calculate the approximate value of the defined 

integral? In which way? 
8. What is the value of the definite integral if the boundaries of 

integration are the same (the contour will be closed)? 
9. What is the geometric meaning of the definite integral? 
10. What other geometric applications of the definite integral do 

you know? 

Additional Questions to Self-study Topics 
1. What is an improper integral? 
2. What types of improper integrals do you know? Tell us about 

the features of calculating each of them. 
3. Explain the geometric meaning of the improper integral. 
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APPENDICES 
 

APPENDIX A 
 
Table A.1 – The second order curve 

 

na
m

e Equation 
Form Figure 

1 2 3 

C
ir

cl
e 

222 Ryx   

(0;0)O  – circle center; 
MO  – radius 

 

 

2( )x a   
2 2( )y b R    

( ; )C a b  – circle center; 
MC  – radius 

 
 

 

 

x  

y  M  
R  

O  
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y  
M  R  

O  
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Continued table A.1 

1 2 3 

E
lli

ps
e 12

2

2

2


b
y

a
x

 

1( ;0)A a , 2( ; 0)A a , 1(0; )B b , 2(0; )B b  – 

ellipse vertices; 
1( ; 0)F c , 2( ;0)F c  – ellipse focuses 

 

H
yp

er
bo

la
 

12

2

2

2


b
y

a
x

 

1( ;0)A a , 2( ; 0)A a  – real vertices, 1(0; )B b , 

2(0; )B b  – imagine vertices; 

1( ; 0)F c , 2( ;0)F c  – hyperbola focuses 

 

F1 F2 A1 A2 
B1 

B2 
r1 r2 

M 

x 

y 

O 

y  

M  

1A  2A  

2B  

1F  2F  

1r  
2r  

O  

1B  

x  
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Continued table A.1 

1 2 3 

Pa
ra

bo
la

 

pxy 22   
 

:
2d
pl x   , 

;0
2
pF   

 
. 

2 2y px    
:

2d
pl x  , 

;0
2
pF   

 
 

pyx 22   
 

:
2d
pl y   , 

0;
2
pF   

 
 

y 

x 

F 

O 
ld 

y 

x F O 

ld 

y 

x F 
O 

ld 
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Continued table A.1 
1 2 3 

 2 2x py   

 
:

2d
pl y  , 

0;
2
pF   

 
 

 
 
 

y 

x 
F 

O 

ld 
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APPENDIX В 
 

Frequently used trigonometric formulas 

 
2 2sin cos 1   , 

sintan
cos





 ,   coscot

sin





 ,  

2
2

11 tan
cos




  ,   2
2

11 cot
sin




  , 

sin 2 2 sin cos   ,   2 2cos 2 cos sin    , 

2 1 cos 2sin
2

 
 ,   2 1 cos 2cos

2
 

 , 

sin sin 2 sin cos
2 2

      
  ,   

sin sin 2 cos sin
2 2

      
  , 

cos cos 2 cos cos
2 2

      
  ,   

cos cos 2 sin sin
2 2

      
   . 
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APPENDIX С 

 
Table С.1 – The values of trigonometric functions 

Value of angle 
  

Functions 

degrees radians sin  cos  tan  cot  
o0  0 0 1 0 does not 

exist (  ) 
o30  

6
  

2
  3

2
 3

3
 3  

o45  
4
  2

2
 2

2
 

1  1  

o60  
3
  3

2
 2

  3  3
3

 

o90  
2
  1  0  does not exist 

(  ) 
0  

o180    0  1  0 does not 
exist (  ) 

o270  3
2
  1  0  does not exist 

(  ) 
0  

o360  2  0  1  0  does not 
exist (  ) 
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APPENDIX D 
 

PRE-CALCULUS UNIT CIRCLE 

In pre-calculus, the unit circle is sort of like unit streets, it’s the 
very small circle on a graph that encompasses the 0,0 coordinates. It has 
a radius of 1, hence the unit. The figure here shows all the measurements 
of the unit circle: 
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APPENDIX E 

 
Table E.1 – Supplementary integrals 

1 Cutg
u

du
 2

ln
sin

 2 Cutg
u

du







 

 42
ln

cos
 

3 Cuduutg  cosln
 

4 Cuduuctg  sinln  

5  Cuchduush   6 Cushduuch   

7 Cuth
uch

du
 2

 8 Cucth
ush

du
 2

 

9 
 2222

2
1 auuduau

2 2 21 ln
2

a u u a C    

10 
 2222 1 uau

a
duua

21 arcsin
2

ua C
a


 

11 C
ba

bueabuebdubue
auau

au 



 22
sincossin

 

12 C
ba

buebbueadubue
auau

au 



 22
sincoscos
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