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PREFACE 

Calculation and graphic task for full-time bachelors of 
the specialty 192 – Construction and Civil Engineering is 
designed to master the basic mathematical concepts and 
methods of solving tasks during the students’ independent 
work to study the course “Higher Mathematics”. The presented 
in these guidelines tasks are professional orientation tasks and 
they clearly illustrate the practical application of the methods 
of linear algebra, analytical geometry, mathematical analysis 
(differential calculus) in solving applied tasks. 

Educational and methodical complex of the discipline 
“Higher Mathematics” for students of the specialty 192 – 
Construction and Civil Engineering, which includes some 
lecture notes with the necessary theoretical material, reference 
books and tasks for practical classes and independent work for 
students, allows students to prepare for calculation l and 
graphical task carefully 

The calculation and graphic task must be drawn up on 
standard sheets of paper А4 (size 210 х 297 mm). Students 
should write their work only on the one side of the sheet. An 
example of the design of the title page is presented in the 
appendices. After your work is done, it must be bound and 
handed over to the teacher. 

The term of performance of this work is defined by the 
teacher.  
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1 STATEMENT OF THE ISSUE FOR CALCULATION 
AND GRAPHIC TASK 

Task 1. Construction of the object 퐶(푥 , 푦 ) has 
started.The object is located away from the highway. For 
delivery of materials, equipment, workers it is necessary to 
build an auxiliary track under the following conditions: 

In the points 퐴(푥 , 푦 ) and 퐵(푥 , 푦 ) (on the plan of the 
area), that are directly connected by the existing highway, there 
is a warehouse of construction materials and parking of 
construction equipment, respectively. The object of the new 
building 퐶(푥 , 푦 )  in the same system should be connected by 
the shortest way with the highway. Find the point of entry of 
such a road and its length on the highway, draw a figure if the 
location of objects  퐴(푥 , 푦 ), 퐵(푥 , 푦 ), 퐶(푥 , 푦 ) are presented 
at the table 1.1. 

 
Table 1.1 - Location of objects  퐴(푥 , 푦 ), 퐵(푥 , 푦 ), 퐶(푥 , 푦 ) 

Variant 퐴(푥 , 푦 ) 퐵(푥 , 푦 ) 퐶(푥 , 푦 ) 
1 (−20;  14) (24;  4) (−10; −12) 
2 (−12; −6) (−2;  18) (8;  8) 
3 (8;  12) (−8; −2) (−3;  3) 
4 (10; −12) (−17;  6) (9;  7) 
5 (−5; −11) (8;  21) (−7;  3) 
6 (−6;  5) (11;  4) (9;  12) 
7 (−10; −10) (21;  12) (10; −14) 
8 (6; −5) (−9;  10) (3;  13) 
9 (2; −10) (15;  18) (14;   3) 
10 (−5;  17) (6; −12) (4;  11) 
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Task 2. At the preparatory stage of construction in the 
preparation of the estimate the task is to approve the norms of 
consumption of construction materials for the manufacture of 
construction mixtures. For the production of 1 ton of 
construction mixtures of types 퐴 and 퐴2  (Table 1.2), we need 
the components 퐵  and 퐵2, for the manufacture of which, in 
turn, requires some building materials 퐶 , 퐶  (their amount is 
given in Table 1.3). Determine the amount of productive 
materials 퐶 , 퐶  for a production of 1 ton of products 퐴  and 
퐴 . 

 
Table 1.2 – Components of construction mixtures production 

Products Components 
Building 
materials 퐶  퐶  

퐴  푎 푏 퐵  푚 푛 
퐴  푐 푑 퐵  푓 푞 

 
Table 1.3 –Number of components for the production of 

construction mixtures 

Variant 푎 푏 푐 푑 푚 푛 푓 푞 
1 3 2 1 4 1 3 2 1 
2 3 4 2 5 4 2 2 4 
3 5 4 4 6 10 2 4 6 
4 4 1 5 0 3 5 1 5 
5 7 3 3 5 6 2 2 4 
6 3 0 2 2 4 12 3 2 
7 2 5 3 1 3 8 12 1 
8 9 5 10 2 2 26 1 3 
9 1 2 1 6 2 1 0 4 

10 4 9 13 7 0 12 5 6 
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Task 3. Calculate the wages that are accrued to 
employees at each stage of construction, if we know 
(Table 1.4): 

а) the cost of working time in hours at each workplace 
(matrix 푃); 

б) production standards (matrix 푄 ); 
в) hourly payment (in USD.) at each workplace (matrix 

퐶). 
 

Table 1.4 – Labor costs, production rates and hourly payment 

Variant 푃 푄 퐶 

1 
4 3 2
9 2 8
4 6 1

1 7
5 3
8 5

 
210 145 317
540 230 150
325 425 810

 

⎝

⎜
⎛

11,6
15,3
13,5
12,8
17,3⎠

⎟
⎞

 

2 
3 8 4
1 7 5
6 2 7

6 2
8 3
4 1

 
150 295 356
427 750 245
265 250 310

 

⎝

⎜
⎛

13,7
15,3
12,9
18,3
14,5⎠

⎟
⎞

 

3 
6 4 5
5 8 1
6 2 5

9 2
3 6
1 7

 
760 240 380
155 348 564
295 493 250

 

⎝

⎜
⎛

16,2
18,5
14,7
15,9
14,3⎠

⎟
⎞

 

4 
5 7 2
3 6 1
4 9 2

3 8
5 7
6 9

 
150 230 645
284 165 454
357 159 310

 

⎝

⎜
⎛

15,8
16,2
18,1
19,2
11,6⎠

⎟
⎞
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Continuation of the table 1.4 

Variant 푃 푄 퐶 

5 
4 5 2
6 3 1
5 7 9

7 4
8 5
3 6

 
654 255 317
250 654 854
340 645 480

 

⎝

⎜
⎛

13,5
16,4
17,2
15,7
16,3⎠

⎟
⎞

 

6 
7 4 2
4 8 7
5 9 3

3 1
2 7
2 1

 
365 255 250
645 520 345
650 495 352

 

⎝

⎜
⎛

15,2
11,6
14,3
13,5
12,1⎠

⎟
⎞

 

7 
9 3 2
4 8 1
6 2 5

7 5
4 3
7 2

 
210 431 258
395 542 670
450 290 510

 

⎝

⎜
⎛

11,2
16,8
15,6
14,2
15,9⎠

⎟
⎞

 

8 
5 7 1
8 1 4
2 5 7

8 3
3 6
6 9

 
520 370 455
254 350 120
370 210 350

 

⎝

⎜
⎛

18,3
17,2
11,5
16,4
15,5⎠

⎟
⎞

 

9 
2 3 2
6 1 7
1 5 2

5 8
9 2
3 6

 
255 360 465
369 250 421
241 540 610

 

⎝

⎜
⎛

10,2
14,6
12,5
13,4
16,2⎠

⎟
⎞

 

10 
5 1 2
1 6 3
7 5 8

6 4
2 9
7 4

 
620 258 375
680 545 247
325 548 486

 

⎝

⎜
⎛

14,3
11,1
12,6
13,5
17,8⎠

⎟
⎞

 

 

Task 4. To make a construction mixtures directly on the 
place, it is necessary to prepare metal cylindrical tanks of the 
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given volume 푉. What should be their size so that the least 
material is used for the production? Determine the size of the 
tank by the amount of material used (into m2) without taking 
into account the cost of cutting, provided that it is necessary to 
make tanks of volume 푉 (Table 1.5). 

Table 1.5 – Cylindrical tank volume, 푉 
 

Variant 푉 Variant 푉 
1 650 6 765 
2 545 7 370 
 3 250 8 490 
4 380 9 570 
5 945 10 585 

 
Task 5. Part of the open containers on the construction 

place has the shape of a rectangular parallelepiped. Determine 
what should be the width and length  and volume 푉 
(Table 1.6) of the container for the manufacture of which will 
be spent the least amount of material. Calculate the consumed 
material amount (into m2). 

Table 1.6 – Geometric measurements of the container 

Variant ℎ 푉 Variant ℎ 푉 
1 5 2 6 4 6 
2 2 1 7 5 7 
3 4 3 8 2 8 
4 1 2 9 1 5 
5 3 3 10 10 7 
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Task 6. Assembly crane is a one of the simplest 
mechanisms for lifting cargoes, it is made from wood or metal 
(Figure 1.1). Its stability is achieved by tensioning the steel 
cable. Vector diagram of the assembly crane is presented at the 
figure 1.2. 

 
 Figure 1.1 – Assembly crane          Figure1.2 – Vector diagram 
     of the assembly crane 

 
Figure 1.3 – Assembly crane at the given coordinates system 
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Write the condition of the closed system of forces 
acting on the mast in the unloaded state, in a scalar form. Select 
the coordinate system as it is shown at the figure 1.3 Find the 
lengths of the segments 푂퐴 and 퐴퐵, if |푂퐵|, 훼, 훽are given at the 
table 1.7. 

Table 1.7 – Geometric measurements of the assembly crane 

Variant |푂퐵| 훼 훽 

1 4 60° 20° 
2 3 70° 10° 
3 5 45° 15° 
4 6 50° 10° 
5 2 70° 20° 
6 7 65° 10° 
7 4 60° 15° 
8 5 70° 20° 
9 3 55° 15° 

10 6 80° 10° 
  

Task 7. Lattice (or rafter) truss is a metal or wooden 
building structure, which consists of individual rods connected 
by welding, bolts, nails, and is used to cover factory buildings. 
The rods АЕ and ЕВ are called stingrays, vertical rods are 
called racks, and inclined (sloping) are called braces 
(Figure 1.4). Racks and struts make up the rafters of the truss. 
In order to avoid harmful stresses that are possible due to 
temperature fluctuations, one of the supports of the truss 
remains loosely fixed (on rollers). 
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Figure. 1.4 – Scheme of a lattice truss 

 

It is known that the right support of the lattice truss is 
rigidly fixed, and the left support is on the rollers (Figure 1.5). 
Determine the value of the wind pressure on the left slope of 
the truss, if the angle of inclination of the slope훽, if the angle 
between the force vector 푃⃗, which characterizes the wind 
pressure on the left slope of the truss, and the horizon line 훼, 
and the magnitude of the vector 푃⃗, aregiven at the table 1.8. 

Table 1.8 – Geometric dimensions of a lattice truss 

Variant 훼 훽 푃⃗  

1 15° 40° 60 
2 10° 30° 50 
3 12° 35° 40 
4 9° 30° 55 
5 13° 45° 65 
6 15° 40° 50 
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Continuation of the table 1.8 

Variant 훼 훽 푃⃗  

7 20° 30° 60 
8 17° 45° 45 
9 11° 50° 35 

10 18° 40° 65 
 

Task 8. To move the load from the point 푀 to the 
point 푁  we use the constant force 퐹⃗. Determine the work of the 
cargo replacing and the angle between the vectors 퐹 ⃗and 푀푁⃗, if 
the coordinates of points푀and푁,and the force vector 퐹 ⃗are 
given at the table 1.9. 

 

Table 1.9 – Coordinates of the points 푀 and 푁, and force vector 퐹⃗ 

Variant 퐹⃗ 푀 푁 

1 (6;  15;  19) (−6;  5; −9) (3;  8; −1) 
2 (3;  10; −5) (7; −3; −8) (5; −6; −4) 
3 (5; −10;  12) (4;  7; −3) (6; −5; −2) 
4 (−11;  6; −5) (−2; −4; −3) (−5;  8;  4) 
5 (7; −1; −8) (6; −8;  5) (−7; −2; −1) 
6 (−6; −7;  5) (−3;  7;  5) (2; −8; −2) 
7 (8;  12;  7) (5; −6; −2) (−2;  7;  5) 
8 (9; −5;  10) (8; −4;  9) (5; −6; −5) 
9 (2;  11; −3) (−7; −5; −2) (−4;  3;  1) 

10 (−5;  12;  10) (−1; −7;  5) (−2;  2; −3) 
 

Task 9. During the designing of a channel for laying 
pipes, it is necessary to take into account the angle of a natural 
slope of the soil. 
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The angle of the natural soil slope is the largest acute 
angle between the slope and the horizon, at which the soil 
particles will be in a stable position (Figure 1.5).  

Distance 퐿from the foundation to the middle of the 
ditch in which the pipe is laid is determined by the formula 

퐿 = ℎ ∙ ctg 훼 + 0,5푏 + 0,4,                   (1.1) 

where  is a depth of laying the bottom of the pipe from the 
base of the foundation, m; 푏is aditch width, m; 훼  is an angel of 
the natural soil slope. 

Draw the relation graph of the distance퐿from the ditch 
width 푏(1 ≤ 푏 ≤ 10), if the depth of laying the pipe  and an 
angle of the natural soil slope 훼 are given at the table 1.10. 

 

Figure 1.5 – Scheme of a marking of the ditch for lying of pipes 
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Table 1.10 – Original data of the ditch marking for laying pipes 

Variant ℎ soil type 훼 

1 2,0 clay saturated with water 20 
2 1,5 clay moisture 45 
3 1,8 gravel round 30 
4 2,1 chernozem is dry 40 
5 1,7 clay saturated with water 20 
6 1,4 clay moisture 45 
7 2,3 gravel round 30 
8 1,9 chernozem is dry 40 
9 1,6 clay saturated with water 20 

10 2,2 clay moisture 45 
 

Task 10. A suspension bridge is crossing the ditch. The 
ropes of the suspension bridge approximately take the form of 
a parabola (Figure 1.6). Compose the equation of this parabola 
if the deflection of the rope and the length of the span are given 
at the table 1.11. 

 

Figure 1.6 – Scheme of the suspension bridge 

rope deflection 

span length 
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Table 1.11 – Geometric measurements of the suspension bridge 

№ 
variant 

The rope 
deflection 

The 
span 

length 

№ 
variant 

The rope 
deflection 

The 
span 

length 
1 4 22 6 5 24 
2 3 20 7 4 26 
3 5 26 8 3 16 
4 2 18 9 5 30 
5 4 28 10 2 20 

 

Task 11. It is necessary to calculate the angle between the 
attic roof slopes (Figure 1.7), if we know completely or 
partially the coordinates of the points (Figure 1.8) in Cartesian 
frame (Table 1.12). 

Attic roof is a sloping roof, which is characterized by a 
structure consisting of two parts: upper, sloping; and the 
bottom – steep. The attic formed thanks to such design is called 
an attic. 

 
Figure 1.7 – BuildingFigure                     1.8-Schematic 

                 with an attic roof                             image of an attic roof 
 



17 
 

Table 1.12 – Coordinates the points where the slopes of the mansard 
cover should lie 

V
ar

ia
nt

 

A B C D E F K 

1 (100; 0; 0) (70; 0; 100) (70; 300; 100 (100; 300; 0) (20; 0; 150) (20; 300; 150) (−30; 0; 100) 

2 (130; 0; −50) (100; 0; 70) (100; 300; 70 (130; 300; −50 (0; 0; 120) (0; 300; 120) (−100; 0; 70) 

3 (20; 50; 100) (20; 0; 170) (100; 0; 170) (100; 50; 100) (20; −30; 200 (100; −30; 200 (20; −60; 170

4 (20; 130; 20) (40; 90; 50) (140; 140; 50 (120; 180; 20) (60; 50; 70) (160; 100; 70) (80; 10; 50) 

5 (100; 0; 0) (100; 0; 0) (100; 0; 0) (100; 0; 0) (100; 0; 0) (100; 0; 0) (100; 0; 0) 

6 (100; 20; 0) (70; 20; 100) (70; 300; 100 (100; 300; 0) (0; 20; 120) (0; 300; 120) (−70; 20; 100

7 (20; 150; 50) (20; 130; 80) (100; 130; 80 (100; 150; 50) (20; 70; 100) (100; 70; 100) (20; 10; 80) 

8 (100; 0; 0) (100; 0; 0) (100; 0; 0) (100; 0; 0) (100; 0; 0) (100; 0; 0) (100; 0; 0) 

9 (100; 0; 0) (100; 0; 0) (100; 0; 0) (100; 0; 0) (100; 0; 0) (100; 0; 0) (100; 0; 0) 

10 (20; 130; 0) (20; 90; 30) (100; 90; 30) (100; 130; 0) (20; 50; 40) (100; 50; 40) (20; 10; 30) 

 

Task 12. Calculate the approximate increase in the 
volume of a cylindrical column with the height 퐻 and a 
radius 푅, on which the plaster layer ∆푅  was applied 
(Table 1.13). 

Table 1.13 – Geometric shape of a cylindrical colony 

Variant 퐻, м 푅, см ∆푅, см 
1 3 30 0,5 
2 5 35 0,6 
3 4 25 0,4 
4 2 20 0,3 
5 6 30 0,5 
6 3 25 0,4 
7 4 20 0,6 
8 5 30 0,5 
9 6 25 0,3 

10 3 20 0,6 
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Task 13. Energy savings in a production should not lead 
to a decline in the quality of work and a deteriorating of 
working conditions. The design of lighting systems on a 
construction place is reduced to the following task.  

At what distance h from the horizontal plane is it 
necessary to put the light bulb so that at a given point 퐴on the 
plane the illumination was the largest (푂퐴 = 푎) (Figure 1.9)? 
Calculate the height of the column  (with accuracy 훼 = 0,01) 
with a lighting device, if a distance 푎 (in meters) is given at the 
table 1.14. 

Table 1.14 – Distance 푎 from the column with a lighting device 

Variant 푎, m Variant 푎, m 
1 5 6 9 
2 2 7 11 
3 4 8 8 
4 3 9 6 
5 7 10 10 

 

 

 

 

 

 

Figure 1.9 – Location of the lighting device relative to the 
horizontal surface 

A 

h 

a O 

B 
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Task 14. Suspension bridge ropes (Figure 1.6) take the 
form of a chain line. 

Chain line is a curve on the plane, which is given in the 
Cartesian coordinate system by the equation 

푦 = ,                                     (1.2) 
where 푎 is some positive number. 

Compose an equation and draw the curvature of the 
bridge, if the span length is given at the table 1.15. 

Table 1.15 – Span length 2푎of the suspension bridge 

Variant 2푎, м Variant 2푎, м 
1 20 6 18 
2 16 7 24 
3 14 8 10 
4 22 9 26 
5 12 10 30 

   
Task 15. The construction of the research center is 

provided with a continuous cash flow with a rate 퐼(푡) =
−푎 푡 + 푎 푡 + 푎  (UAH million / year), where 푡 is a time, 
during푁yearswith an annual interest rate푝, (%). Determine the 
discounted value of this flow according to dates at the 
table 1.16. 

Table 1.16 – Data for calculating the discounted value of cash flow 

Variant 푎  푎  푎  푁 푝 
1 -2 10 5 20 4 
2 1 20 3 15 5 
3 -3 5 7 20 2 
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Continuation of the table 1.16 

Variant 푎  푎  푎  푁 푝 
4 -4 8 -4 25 10 
5 2 25 8 15 8 
6 3 30 9 10 20 
7 -2 7 -5 20 5 
8 2 30 35 25 4 
9 -4 20 3 20 8 
10 1 15 4 15 10 

  

16. Exhibition pavilion, the cross section of which has 
the shape of a parabolic segment (Figures 1.10, 1.11). 
Calculate the construction volume and floor area of the 
structure, if the geometric dimensions of the pavilion are given 
at the table 1.17. 

 
Figure 1.10 – Exhibition pavilion 

Building volume is the volume of the room, which is 
limited by the building structure. 
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The building volume for the exhibition pavilion 
(Figure 1.10) is equal to the cross-sectional area multiplied by 
the height of this segment. 

 
Figure 1.11 – Schematic representation of the exhibition pavilion 

Table 1.17 – Geometric measurements of the exhibition pavilion 

Variant 푎 푏 ℎ 
1 5 20 6 
2 6 15 5 
3 8 12 7 
4 5 21 4 
5 4 17 3 
6 7 14 5 
7 8 19 9 
8 6 23 7 
9 5 18 6 

10 4 22 5 
 



22 
 

2 EXAMPLE OF TYPICAL VARIANT TASK SOLUTION 

Task 1. Let the 
coordinates of the points 
퐴(1, 1), 퐵(6,6) and 퐶(2,5)  
be known (Figure 2.1). Let 
the highway be a straight 
line that passes through 
points A and B. Using the 
equation of a line passing 
through two points 

 

=                                 (2.1) 

we get the highway equation  
푥 − 1
6 − 1

=
푦 − 1
6 − 1

. 

After some identical transformations we get it:  푦 = 푥. 

According to the condition of the task, we should 
connect an object located at a point 퐶 in the same coordinate 
system by the shortest path to the highway. However, we know 
that the shortest distance is perpendicular to the line 퐴퐵. 
According to the condition of perpendicularity we have: 

푘 = −
1

푘
= −1. 

Make the equation of a line with a given angular 
coefficient passing through a given point 

푦 − 푦 = 푘(푥 − 푥 ).                             (2.2) 

 

 
 

퐷 

 

 

Figure 2.1 – Scheme 
of a highways 

푥 

퐵 

А 

С 
у 
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We get the equation of a line 퐶퐷:  

푦 − 5 = −(푥 − 2),    푦 = −푥 + 7. 

Find the point of intersection of the 
lines 퐴퐵 and 퐶퐷,solve the system of lines equations: 

푦 = −푥 + 7;
푦 = 푥;          

푥 =
7
2

;

푦 =
7
2

.
. 

Finally, we have the coordinates of the desired point 
퐷 ; . 

Answer :퐷 ; . 

 

Products Components Building 
materials 퐶  퐶  

퐴  푎 푏 퐵  푚 푛 
퐴  푐 푑 퐵  푓 푞 

 

Task 2. We will make the equation for finding 
components 퐵 , 퐵 to define quantity of necessary materials, 
proceeding from the table 1.2. Since the building materials 
퐶 ,퐶  are part of each mixture 퐵 , 퐵  and 퐶 , 퐶 , consisting of 
elements, 푚 and 푓; 푛 and  푞; respectively, we obtain the 
following equations: 

푚퐶 + 푛퐶 = 퐵 ; 

푓퐶 + 푞퐶 = 퐵 ; 
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we have it in a matrix form: 
푚 푛
푓 푞

퐶
 퐶 = 퐵

퐵 .                      (2.3) 

Speculating similarly, we make the matrix equation for 
the finding building mixes 퐴 ,퐴 : 

푎 푏
푐 푑

퐵
퐵 = 푎퐵 + 푏퐵

푐퐵 + 푑퐵 = 퐴
퐴 .          (2.4) 

From the equation (2.3) express unknowns 퐶 , 퐶 : 

퐶
 퐶 =

푚 푛
푓 푞

퐵
퐵 , 

and from the equation (2.4) express unknowns 퐵 і 퐵 : 

퐵
퐵 = 푎 푏

푐 푑
퐴
퐴 . 

Thus, 

퐶
 퐶 =

푚 푛
푓 푞

푎 푏
푐 푑

퐴
퐴 , 

where 

푚 푛
푓 푞 =

1
푚 푛
푓 푞

∙
푞 −푛

−푓 푚 ; 

푎 푏
푐 푑 =

1
푎 푏
푐 푑

∙ 푑 −푏
−푐 푎 . 

So, 
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퐶
 퐶 =

1
푚 푛
푓 푞

∙
푞 −푛

−푓 푚 ∙
1

푎 푏
푐 푑

∙ 푑 −푏
−푐 푎

퐴
퐴 = 

=
1

푚푞 − 푓푛
∙

1
푎푑 − 푏푐

푞푑 + 푛푐 −푞푏 − 푛푎
−푓푑 − 푚푐 푓푏 + 푚푎

퐴
퐴 = 

=
1

(푚푞 − 푓푛) ∙ (푎푑 − 푏푐)
∙

(푞푑 + 푛푐)퐴 + (−푞푏 − 푛푎)퐴
(−푓푑 − 푚푐)퐴 + (푓푏 + 푚푎)퐴 . 

Therefore, 

퐶
 퐶 = ( )∙( )

∙
(푞푑 + 푛푐)퐴 + (−푞푏 − 푛푎)퐴

(−푓푑 − 푚푐)퐴 + (푓푏 + 푚푎)퐴 (2.5) 

Substitute at the formula (2.5) the values of variables 푎, 
푏, 푐, 푑, 푚, 푓, 푛, 푞 from the table 1.3 according to the variant 
number, and substitute units instead of 퐴 , 퐴 . Suppose that 
according to the condition of the task we have  푎 = 2, 푏 = 3, 
푐 = 2, 푑 = 1, 푚 = 1, 푓 = 1, 푛 = 1, 푞 = 0, then: 

퐶
 퐶 =

1
(−1) ∙ (2 − 6)

(0 + 2) + (0 − 2)
(−1 − 2) + (3 + 2) =

0
1

2
. 

So, the production of one ton of products 퐴 and 퐴  
requires building materials 퐶 = 0, 퐶 = 1

2. 

Answer:퐶 = 0, 퐶 = 1
2. 

Task 3. To determine the amount of salary accrued to 
employees at each stage of construction, according to the table 
1.4: the cost of working time in hours at each workplace 
(matrix푃); production standards (matrix 푄); payment (in USA) 
at each workplace (matrix 퐶). 
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According to production standards and labor costs at 
each workplace is the volume of output as a product of 
matrices:  푆 = 푄 ∙ 푃; according to the tariff of hourly payment 
at each workplace is determined by the amount of payments to 
employees by the formula 

푋 = 푆 ∙ 퐶 = 푄 ∙ 푃 ∙ 퐶.                        (2.6) 

Let us know the cost of working time in hours at each 
workplace (matrix 푃); production standards (matrix 푄); hourly 
payment at each workplace (matrix 퐶): 

푃 =
2 1
5 3

11 0

4 5 0
2 0 1
1 4 3

; 푄 =
1 2 0
2 4 5
3 0 1

;   퐶 =

⎝

⎜
⎛

1,5
1,4

1,25
1,25
1,3 ⎠

⎟
⎞

. 

Calculate the product of matrices: 

푆 = 푄 ∙ 푃 =
1 2 0
2 4 5
3 0 1

∙
2 1
5 3

11 0

4 5 0
2 0 1
1 4 3

= 

=
2 + 10 + 0 1 + 6 + 0

4 + 20 + 55 2 + 12 + 0
6 + 0 + 11 3 + 0 + 0

4 + 4 + 0 5 + 0 + 0 0 + 2 + 0
8 + 8 + 5 10 + 0 + 20 0 + 4 + 15

12 + 0 + 1 15 + 0 + 4 0 + 0 + 3
= 

=
12 7
79 14
17 3

8 5 2
21 30 19
13 19 3

; 

푋 = 푆 ∙ 퐶 =
12 7
79 14
17 3

8 5 2
21 30 19
13 19 3

∙

⎝

⎜
⎛

1,5
1,4

1,25
1,25
1,3 ⎠

⎟
⎞

= 
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=
18 + 6,8 + 10 + 6,25 + 2,6

118,5 + 19,6 + 26,25 + 37,5 + 24,7
25,5 + 4,2 + 16,25 + 23,75 + 3,9

=
43,65

226,55
73,60

. 

Answer  :푋 =
43,65

226,55
73,60

. 

Task 4. In order to find the optimal proportions of the 
tank (Figure 2.1), it is necessary to solve the task of the 
extreme. The volume of the cylinder is determined by the 
formula 

푉 = 휋푟 ℎ,                                 (2.7) 

then, 

ℎ = .                                      (2.8) 

 
Figure 2.1 – Cylindrical tank 

Construction requires the least amount of material, so 
the surface area should be minimal at the specified volume. 
The total surface area of the cylinder is calculated by the 
following formula 

푆 . . = 2휋푟(푟 + ℎ) = 2휋푟 + 2휋푟ℎ.                  (2.9) 



28 
 

But in the specified statement of the task the metal 
cylinder has only one basis (bottom), then rewrite (2.8), taking 
into account the expression found for  , and we have: 

푆 . . = 휋푟 + 2휋푟ℎ = 휋푟 + 2휋푟
푉

휋푟
= 휋푟 +

2푉
푟

,    (푟 ≠ 0). 

That is, the total surface area is a function of the radius 
of the base of the cylinder: 푆 . . = 푆(푟). Find the derivative of 
this function 푆푛.푛.. 

푆 . . = 2휋푟 −
2푉
푟

. 

Determine in which value of푟the function derivative 
will be equal to zero: 푆 . . = 0. 

2휋푟 − = 0; = 0, 휋푟 − 푉 = 0, 휋푟 = 푉, 

푟 =
푉
휋

 . 

It is necessary to find the second order function 
derivative, so, we get it: 푆 . . = 2휋 + . 

Accordingly to condition 푆푛.푛.
′′ 푉

휋

3
> 0, we make 

conclusion, that the function 푆푛.푛. reaches its least value at the 

point  t= . 

ℎ =
푉

휋푟
=

푉

휋
=

푉
휋

. 
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Therefore, the lowest material costs can be achieved 
when 

ℎ = , 푟 = .                              (2.10) 

Calculate the height and radius of the cylinder, 
provided that the desired volume 푉 = 150 l with accuracy 훼 =
0,01 (suppose that 휋 = 3,14): 

ℎ =
,

≈ 3,63 (m); 푟 =
,

≈ 3,63 (m). 

Answer:ℎ = 푟 = 3,63 (м). 

Task 5. According to the condition of the task, the 
container has the shape of a rectangular parallelepiped without 
an upper face (Figure 2.2). Introduce the denotation: 푥 is a 
width, 푦 is a length, 푧 is a height. According to the introduced 
symbols, the volume of the container and the surface area are 
calculated by to the following formulas 

푉 = 푥푦푧,                                     (2.11) 

푆 = 푥푦 + 2푥푧 + 2푦푧.                            (2.12) 

Suppose that according to the condition of the task it is  

 
Figure 2.2 – Container in the form of a rectangular parallelepiped 
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necessary to make a container of a volume m3 and a height 
2 m. 

After substitution at the equation (2.11) a volume value 
of a parallelepiped, we get: 6 = 푥푦푧; express the variable 푧  
from a volume expression using 푥 and 푦, and substitute it at the 
equation (2.12): 

푧 = ;           푆 = 푥푦 + 2푥푧 + 2푦푧 = 푥푦 + + . 

Thus, the function of the surface of a parallelepiped is a 
function of two variables, so to find the minimum cost of 
material, it is necessary to solve the problem of the extreme of 
the function of two variables: 

1) find the partial derivative of the first order 

= 푦 − ;            = 푥 − ; 

2) find the stationary points from the condition 

⎩
⎨

⎧
휕푆
휕푥

= 0;

휕푆
휕푦

= 0; ⎩
⎨

⎧푦 −
12
푥

= 0;

푥 −
12
푦

= 0;
⎩
⎪
⎨

⎪
⎧ 푦 =

12
푥

;

푥 −
12

= 0;
 

12푥 − 푥 = 0;       푥(12 − 푥 ) = 0;     푥 = 0;  푥 = √12
푦 = 0;   푦 = √12

 

According to the task we have푥 > 0, 푦 > 0, therefore, we 
are satisfied the value  푥 = √123 ,  푦 = √12. 
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Let's check whether the function 푆(푥, 푦) reaches a 
minimum at the point √123 ;  √123 . To do this, we find the 
partial derivatives of the second order: 

= 푦 − = ;
√ ; √

= = 2; 

= 푥 − = ;
√ ; √

= = 2; 

= 푦 − = 1;
√ ; √

= 1. 

Calculate the square shape at the point √12; √12 : 

∆= 2 ∙ 2 − 1 = 3 > 0. 

According to the condition ∆> 0, 휕2푆
휕푥2 < 0 we can make 

the conclusion, that a function 푆 reaches its minimum value at 
the found point. 

Find the height of the container 

푧 = =
√ ∙ √

= √12. 

Answer:푥 = √12;  푦 = √12;   푧 = √12. 

Task 6. Look at the figure 1.2 and the figure 1.3, there 
are the segment 퐴퐵 is a crane mast, and the segment 푂퐴  is a 
cable. Accordingly to the task, we can write down the vectors 

퐴퐵⃗ = 푟⃗, 푂퐴⃗ = 푟⃗ , 퐶퐴⃗ = 푟⃗ , 푂퐵⃗ = 푎⃗ , 퐵퐶⃗ = 푏⃗. 
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The acute angle formed by a segment 푂퐴 with abscissa 
axis is denoted as 훼, the acute angle formed by a 
segment 퐴퐵 with ordinate axis is denoted as 훽. 

According to Newton's third law, the forces of 
interaction of two material points are equal in magnitude and 
have opposite directions, and act along the line connecting 
these points. By this law in any mechanical system in the 
absence of external forces, the geometric sum of all internal 
forces is zero. 

The vector scheme of the crane is a combination of two 
schemes with two contours 푂퐵퐴푂 and 퐵퐶퐴퐵. Therefore, the 
closed condition for a complete system can be hung as the sum 
of the closed conditions for each of the parts separately. In 
vector form, these conditions take the form: 

(푎⃗ − 푟⃗ − 푟⃗ ) + 푏⃗ + 푟⃗ + 푟⃗ = 0.               (2.13) 

Using the addition rule of vectors, we get 

푏⃗ + 푟⃗ + 푟⃗ = 0. 

Hence the condition of a closured system takes the form 

푎⃗ − 푟⃗ − 푟⃗ = 0.                               (2.14) 

Find the projection of the condition (2.14) on the abscissa 
axis: 

푝푟표푗 푎⃗ = |푎⃗| cos 0 = |푎⃗|; 

푝푟표푗 푟⃗ = −|푟⃗| cos(90 − 훽) = −|푟⃗| sin 훽; 

푝푟표푗 푟⃗ = |푟⃗ | cos 훼. 
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Therefore, the projection of the condition of the crane 
closure on the abscissa axis takes the form: 

|푎⃗| + |푟⃗| 푠푖푛 훽 − |푟⃗ | 푐표푠 훼 = 0.               (2.15) 

Find similarly the projection of the condition (2.14) on 
the ordinate axis:  

푝푟표푗 푎⃗ = |푎⃗| cos 90 = 0; 

푝푟표푗 푟⃗ = −|푟⃗| cos 훽; 

푝푟표푗 푟⃗ = |푟⃗ | cos(90 − 훼) = |푟⃗ | sin 훼. 

Hence the projection of the condition of the crane 
closure on the ordinate axis takes the form: 

|푟⃗ | sin 훼 − |푟⃗| cos 훽 = 0.                     (2.16) 

Calculate the length of segments 푂퐴, 퐴퐵 taking into 
account that 푂퐵⃗ = 6, 훼 = 400, 훽 = 150. For this, considering 
the conditions (2.15), (2.16), make the equations system: 

|푟⃗| 푠푖푛 15 − |푟⃗ | 푐표푠 40 = −6;
|푟⃗ | 푠푖푛 40 − |푟⃗| 푐표푠 15 = 0.

 

Let's solve the obtained system, having preliminary 
approximately calculated on the calculator the values of 
trigonometric functions with accuracy to 0,001. 

0,259|푟⃗| − 0,766|푟⃗ | = −6;
0,966|푟⃗| − 0,643|푟⃗ | = 0.  

We find the solution of this system, for example, using 
the Cramer's rules: 
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∆= 0,259 −0,766
0,966 −0,643 ≈ −0,167 + 0,740 = 0,573; 

∆ = −6 −0,766
0 −0,643 = 3,858; 

∆ = 0,259 −6
0,966 0 = 5,796. 

Here from, we get 

퐴퐵 = |푟⃗| = ,
,

≈ 6,733m;  푂퐴 = |푟⃗1| = 5,796
0,573

≈ 10,115m. 

Answer: 퐴퐵 ≈ 6,733m; 푂퐴 ≈ 10,115m. 

Task 7. According to the Figure 1.4 enter the 
denotation  푃⃗ is a vector of a wind pressure force on the left 
slope of the truss, 푁⃗ is a force vector directed along the normal 
to the roof, 푆⃗ is a force vector, directed parallel to the roof, 훼 is 
an angel between a vector 푃 ⃗ and a horizon line, points 퐴 and 퐵  
aretruss supports, 훽 is a skew slope angel, that is, the angle 
between the segments 퐴퐸 and 퐸퐵. 

According to the vectors addition rules, we can present 
a vector 푃 ⃗ in a sum form as: 

 푃⃗ = 푁⃗ + 푆⃗. 

Only force 푁⃗ will act on the truss, because the wind will 
slide on the roof under the action of a force 푆⃗. 

Consider a right triangle 퐴퐵퐶 (퐶퐴퐵 = 90 ) 
(Figure 1.4). There is a point 퐸 is a midpoint of the segment 
퐵퐶, 퐸퐴퐵 = 훽. Point 푀 is an arbitrary point belonging to the 
segment 퐴퐵, a point 푁  is at he base of the perpendicular drawn 
from the point 푀  to the line 퐴퐶, a point 퐾  belongs to the 
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segment 퐴퐶, herewith 퐾푀푁 = 훼. Let the length of the 
perpendicular 퐾퐿 be equal to 30 (kN), and 
angels 훼 and 훽 acquire values accordingly: 훼 = 20 , 훽 = 25 . 

Consider right triangles 

퐴퐶푀 (퐴푀퐶 = 90 ), 퐾퐶퐿 (퐶퐿퐾 = 90 ), 퐾푁푀 (퐾푁푀 = 90 ). 

From the triangle 퐴퐶푀, we get 퐶퐴푀 = 90 − 훽, then 
퐴퐶푀 = 훽. 

From the triangle 퐾퐶퐿, we get 퐶퐾퐿 = 90 − 훽. 

From the triangle 퐾푁푀, we get 푁퐾푀 = 90 − 훼. 

It follows from the condition 퐶퐾퐿 + 푁퐾푀 + 퐿퐾푀 =
180   

퐿퐾푀 = 180 − (퐶퐾퐿 + 푁퐾푀) = 

= 180 − (90 − 훽 + 90 − 훼) = 훼 + 훽 = 20 + 25 = 45 . 

Calculate the magnitude of the vector 푁⃗: 

푁⃗ = 푃⃗ ∙ sin퐿퐾푀 = 30 ∙ sin 45 = 30 ∙ √ = 15√2. 

Answer: The value of the wind pressure on the left 
slope of the truss is equal to15√2kN. 

Task 8. Let the initial position of the cargo be 
determined by a point 푀(2; −5; 3), and the final position of the 
cargo is determined by the point 푁(4; 6; −1). Therefore, the 
movement of the cargo under the action of a force 퐹⃗ = 3푖⃗ +
5푗⃗ + 2푘⃗ will be carried out in the direction of the vector  푆⃗ =
푀푁⃗. The work of a moving the cargo under the action of a 
constant force is calculated by the formula 
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퐴 = 퐹⃗ ∙ 푆⃗.                                   (2.17) 

That is, to calculate the work it is necessary to find the 
scalar product of vectors 

퐴 = 퐹 푆 + 퐹 푆 + 퐹 푆 . 

Find the coordinates of the movement vector: 

푀푁⃗ = 푆⃗ = (4 − 2; 6 − (−5); −1 − 3)⃗ = (2; 11; −4)⃗, 

and calculate the force vector value 

퐴 = 3 ∙ 2 + 5 ∙ 11 + 2 ∙ (−4) = 6 + 55 − 8 = 54.  

Answer: 퐴 = 54. 

Task 9. In the general case, a function 퐿 is a function of 
two variables; 푏, ℎ, 훼. But according to the task condition, 
specific values  ℎ , 훼, are given, then a function 퐿 will be a 
function of the one variable 푏. Distance 퐿from the foundation 
to the middle of the ditch in which the pipe is laid, is calculated 
by the formula (1.10): 

퐿 = ℎ ∙ ctg 훼 + 0,5푏 + 0,4,  

when ℎ = 1,5 푚, 훼 = 300 . 

We need to draw the relation graph of the distance 
between the foundation and the middle of the ditch for the soil 
category is round gravel. We find an approximate value ctg 30  
using tables of trigonometric functions or ordinary calculator 
that has this option: 

ctg 30 = 1,73. 
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Substitute the obtained value into the formula (1.10) 
and get the following relation: 

퐿 = 1,5 ∙ 1,73 + 0,5푏 + 0,4. 

This relation is a linear relation. In this case the graph 
of this relation is a straight line. We know that we need only 
two points to draw the straight line graph. Find it. 

Let's draw a graph of the relation 퐿(푏) (Figure 2.3). 

푏 0 1 

퐿 2,995 3,495 

 

Figure 2.3 – Graph of the relation 퐿(푏) 

Anwer: a relation graph of the distance between the 
foundation and the middle of the ditch from the width of the 
ditch for the category of soil is gravel round is presented at the 
figure 2.3. 

b 

L 

О 

3 

-6 
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Task 10. To make the equation of the parabola for the 
suspension bridge ropes, choose the coordinate system as it’s 
shown at the figure 2.4. 

Figure 2.4 – Suspension bridge ropes coordinate system 

 

Then the vertex of the parabola point 푂will coincide 
with the coordinate system origin point. Points퐵 and퐶 bound 
the parabola, and a point 퐴 is the point of intersection of the 
segment 퐵퐶 and the perpendicular, which is drawn from a point 
푂 to this segment. 

Let the rope deflection be equal to 푂퐴 = 6 м,and the 
span length 퐵퐶 = 24 м. Points푂, 퐵 and  퐶   belong to the 
parabola, therefore, in the coordinate system (Figure 2.4) the 
coordinates of the points will be as follows: 푂(0; 0), 퐶(12; 6), 
퐵(−12; 6). 

Let's make the canonical equation of a parabola with a 
vertex 푂(0; 0), the parabola branches are directed upwards, the 
parabola is symmetrical to the axis 푂푦 and passes through the 
points 퐶(12; 6) and 퐵(−12; 6). 
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Use the formula 

푥 = 2푝푦,                        (2.18) 

where 푝 ∈ 푅. 

Find the parameter value 푝. To do this, substitute the 
coordinates of the points 퐵 or 퐶 at the formula (2.18). 

Take the coordinates of a point 퐶(12; 6), then 

12 = 2푝 ∙ 6;    푝 = 12. 

Thus, the parabola canonic equation looks like this 

푥 = 24푦. 

Answer: the ropes of the suspension bridge 
approximately take the form of a parabola, which is given by 
the equation 푥 = 24푦  in the Cartesian coordinates system is 
shown at the figure 2.4. 

Task 11. To find the angle between two slopes of the 
roof, we apply the formula for finding the cosine of the angle 
between two planes, which are given by their general 
equations: 

퐴 푥 + 퐵 푦 + 퐶 푧 + 퐷 = 0 is the general equation of the 
first plane,  

퐴 푥 + 퐵 푦 + 퐶 푧 + 퐷 = 0 is the general equation of the 
second plane,  

푐표푠휑 = | ∙ ∙ ∙ |

∙
 .                    (2.19)

 

According to the task, we are given points: 
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퐴(160; 0; 0), 퐵(100; 0; 160), 퐶(100; 400; 푧 ), 퐷(160; 50; 0), 

퐸(푥 ; 0; 200), 퐹(0; 400; 200), 퐾(−100; 0;  160) 

and also planes퐾퐸퐹 and퐵퐶퐹퐸. Let the angle between the slopes 
퐾퐸퐹 and 퐵퐶퐹퐸 be denoted as 휑, this will be the angle between 
the planes 퐾퐸퐹 and 퐵퐶퐹퐸,  is shown at the figure 1.8. 

Points 퐴, 퐵, 퐸, 퐾 belong to the one plane; points 퐴, 퐵, 퐶, 퐷 
also belong to the one plane; and points 퐵, 퐶, 퐸, 퐹 also belong to 
the one plane.  

Make the equation of the plane퐴퐵퐶퐷. Use the formula: 
푥 − 푥 푦 − 푦 푧 − 푧
푥 − 푥 푦 − 푦 푧 − 푧
푥 − 푥 푦 − 푦 푧 − 푧

= 0(2.20) 

Substitute the coordinates of the points 퐴(160; 0; 0), 
 퐵(100; 0; 160), 퐷(160; 50; 0), and get it: 

푥 − 160 푦 − 0 푧 − 0
100 − 160 0 − 0 60 − 0
160 − 160 50 − 0 0 − 0

= 0, 

푥 − 160 푦 푧
−60 0 160

0 50 0
= 0. 

Calculate the determinant, decomposing the elements of 
the third row: 

−50(160(푥 − 160) + 60푧) = 0, 

8(푥 − 160) + 3푧 = 0, 

8푥 + 3푧 − 1280 = 0. 

We obtained the plane equation 퐴퐵퐶퐷. 
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Find the coordinate  푧  of a point 퐶. Substitute the 
coordinates of a point 퐶 at the equation of a plane  퐴퐵퐶퐷, and 
we get: 

8 ∙ 100 + 3푧 − 1280 = 0, 

3푧 = 480, 

푧 = 160. 

So, 푧 = 160, 퐶(100; 400; 160). 

Compose the equation of the plane 퐵퐶퐹퐸, using the 
formula (2.20) again, substitute at this equation the coordinates 
of points 퐵(100; 0; 160), 퐶(100; 400; 160) and 퐹(0; 400; 200): 

푥 − 100 푦 − 0 푧 − 160
100 − 160 400 − 0 160 − 160

0 − 100 400 − 0 200 − 160
= 0, 

푥 − 100 푦 푧 − 160
0 400 0

−100 400 40
= 0. 

Calculate the determinant, decomposing the elements of 
the second row: 

400(40(푥 − 100) + 100(푧 − 160)) = 0, 

2(푥 − 100) + 5(푧 − 160) = 0, 

2푥 + 5푧 − 1000 = 0. 

We obtained the plane equation 퐵퐶퐹퐸. 

Find the coordinate  푥퐸 of a point 퐸. Substitute the 
coordinates of a point 퐸 at the equation of a plane 퐵퐶퐹퐸, and 
we get: 
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2 ∙ 푥 + 5 ∙ 200 − 1000 = 0,푥 = 0. 

So, 푥 = 0, 퐸(0; 0; 200). 

Compose the equation of the plane 퐾퐸퐹, using the 
formula (2.20) again, substitute at this equation the coordinates 
of points 퐸(0; 0; 200), 퐹(0; 400; 200) and 퐾(−100; 0;  160): 

푥 + 100 푦 − 0 푧 − 160
0 + 100 0 − 0 200 − 160
0 + 100 400 − 0 200 − 160

= 0, 

푥 + 100 푦 푧 − 160
100 0 40
100 400 40

= 0. 

Calculate the determinant, decomposing the elements of 
the second row: 

5 40푦 − 400(푧 − 160) + 2(400(푥 + 100) − 100푦) = 0, 

2(푥 + 100) − 5(푧 − 160) = 0, 

2푥 − 5푧 + 1000 = 0, 

we get the equation of a plane 퐾퐸퐹. 

Calculate the cosine of the angle 휑 between two 
planes 퐾퐸퐹 and 퐵퐶퐹퐸 using the formula (2.19): 

푐표푠휑 =
|2 ∙ 2 + 0 ∙ 0 + (−5) ∙ 5|

2 + 0 + (−5) ∙ √2 + 0 + 5
=

|−21|
29

≈ 0,72 . 

Thus, 휑 ≈ 44°. 

Answer: the angle between the slopes of the attic roof is 
approximately equal 44°. 
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Task 12. To calculate the approximate increase in the 
volume of a cylindrical column with the height 퐻 and a radius 
푅  on which the ball layer plaster ∆푅 was applied, it is 
necessary to determine the relation between the volume of the 
column and its geometric measurements. 

According to the task we have a cylinder, which 
characterizes the shape of the column. 퐻  is a cylinder height, 
푅 is a cylinder radius, 푉 is a cylinder volume. Since the radius 
푅 of the cylinder changes during the application of plaster, and 
its height 퐻 is not changeable (constant), then the volume푉is a 
function that respect of a variable 푅. 

Use the formula to find the volume of the cylinder: 

푉(푅) = 휋푅 퐻                                 (2.21) 

Denote ∆푅  as a change of a cylinder radius 푅, 
and  ∆푉 as achange of a cylinder volume after its radiuschange 
on ∆푅. 

To solve the task, it is necessary that all values are 
measured in the same units. Transform everything in meters. 
Then we get 

H = 3,5 m, R = 20 sm = 0,2 m,∆푅 = 0,5 푠푚 = 0,005 푚. 

If the radius of the cylinder changes to∆푅, then its 
initial volume 푉(푅) is incremented ∆푉. Thus, 

∆푉 ≈ 푉 (푅) ∙ ∆푅                               (2.22) 

Substitute the value ∆푅 = 0,005 (푚) at the formula 
(2.22), and get: 
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∆푉 ≈ 0,005 ∙ 푉 (푅). 

Find the derivative of a function푉(푅): 

푉 (푅) = (휋푅 퐻) = 2휋푅퐻, 

whenH = 3,5 mthen we get: 

푉 (푅) = 7휋푅. 

Calculate now it ∆푉ifR = 0,2 m: 

∆푉 ≈ 0,005 ∙ 푉 (0,2) = 0,005 ∙ 7휋 ∙ 0,2 = 0,007휋 (푚 ). 

Answer: the volume of the cylindrical column, when 
applying the plaster, will increase by ∆V ≈ 0,007π (m ). 

Task 13. Light intensity (c) is a physical quantity that 
characterizes the amount of light energy transmitted in a 
certain direction per unit time. Unit of measurement in the SI 
system: candela (kd). 

Illumination (I) is a light quantity that determines the 
amount of light that falls on a certain surface area of the body. 
Units of measurement in the SI system: lux (lk). 

 

Figure2.5 – Scheme of the light device location 

퐴

ℎ

푎 휑휑푂

퐵
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Let it be 푎 = 2 m, denote the distance between two 
points 퐵 (location point of the light bulb) and 퐴 (points on the 
plane in which the illumination should be the greatest), as푟 =
퐴퐵; the angle of incidence of the beam relative to the 
illumination plane as ∠푂퐴퐵 = 휑 (Figure2.5); illumination of 
the plane as І; the power of the light source as  c. 

The triangle ⊿푂퐴퐵  is a right-angled triangle, ∠퐴푂퐵 =
90°. The luminance at a point 퐴 is given by a formula: 

퐼 = ∙  .                           (2.23) 

According to Pythagoras' theorem we have: 

퐴퐵 = 퐴푂 + 푂퐵 ⟺ 푟 = 푎 + ℎ ⟺ 

푟 = √푎 + ℎ                           (2.24) 

푠푖푛∠퐵퐴푂 = ⟺ 푠푖푛휑 =  .             (2.25) 

Substitute the ratio (2.24) and (2.25) at the formula 
(2.23), and we get: 

퐼 =
푐 ∙ ℎ

(푎 + ℎ )
. 

We get a function І, that respect to variables  and 푐. 
Let the power of light 푐be a fixed variable (constant), the 
illumination 퐼 will be a function of the one variable . To 
determine at what height ℎ do you need to hang a light bulb so 
that the illumination 퐼 of points that are at a distance from the 
column 푎 = 2 푚 was the maximum, you need to find the 
maximum point of the function 퐼(ℎ), where 0 < ℎ < +∞. 
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Find the function derivative 퐼(ℎ): 

퐼 (ℎ) =
푐 ⋅ ℎ

(푎 + ℎ )
= 

=
푐 ⋅ ℎ (푎 + ℎ ) ⁄ − 푐 ∙ ℎ (푎 + ℎ ) ⁄

(푎 + ℎ )
= 

= 푐 ∙
(푎 + ℎ ) ⁄ − ℎ ∙ (푎 + ℎ ) ⁄ ∙ 2ℎ

(푎 + ℎ )
= 

= 푐 ∙
푎 + ℎ − 3ℎ
(푎 + ℎ ) ⁄ = 

= 푐 ∙
푎 − 2ℎ

(푎 + ℎ ) ⁄  . 

Find the critical points of the function 퐼(ℎ): 

퐼 (ℎ) = 0 ⟺ 푐 ∙
푎 − 2ℎ

(푎 + ℎ ) ⁄ = 0 ⟺ 

푎 − 2ℎ = 0; ℎ =
푎
2

 ; 

ℎ = ±
푎

√2
 , 

whereas  0 < ℎ < +∞, then  ℎ = −
√

 does not satisfy the 

condition of the task, thereby ℎ =
√

  is the only one critical 

point of the function  퐼(ℎ). 

We will study the critical point to the extreme. Consider 
the interval 0 < ℎ <

√
.. There are 푐 > 0 and the denominator 

of the derivative is also a positive number, and the 
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numerator 푎2 − 2ℎ2 > 0  is also a positive number at this 
interval. So, the derivative is  퐼 (ℎ) > 0 at the interval 0 < ℎ <

√
 . 

Consider the interval ℎ >
√

. There are 푐 > 0 and the 

denominator of the derivative is also a positive number, and the 
numerator is 푎 − 2ℎ < 0  at this interval. So, the derivative 
also is  퐼 (ℎ) < 0  at the interval  ℎ >

√
. 

Hence the function 퐼(ℎ) at the point ℎ =
√

 reaches a 

maximum if 0 < ℎ < +∞. 

So, the illumination 퐼(ℎ) will be maximal if the lighting 
device is hung at a height ℎ =

√
 (m). 

According to the task  푎 = 2 푚, so ℎ = 2

√2
≈ 1,41 (m). 

Answer: height of a column with the lighting device 
should be  ℎ ≈ 1,41(m). 

Task 14. The curvature of the curve on the plane given 
by the equation 푦 = 푓(푥), could be found by the formula 

푘 =
( )

( )
.                          (2.26) 

Before we start to solve this task, we should select the 
coordinate system and do it as it’s shown at the figure 2.6. 

Let the length of the span be 18 m, and the deflection of 
the rope coincides with high accuracy with the value 

m. 
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Figure 2.6 – Coordinates system 

Denote a point О as the lowest point of the chain line, 
points В and С are points bound the line. Point А is a point of 
intersection of a straight line ВС and perpendicular, drawn 
from the point О. The point О in the selected coordinate system 
point has coordinates (0; 0). And these segments have a length 

푂퐴 =  (m), 

퐵퐴 = 퐴퐶 = 9(m), 

then points В and С  have coordinates: 

퐵 −9; , 퐶 9; . 

If  푥 = 0, 푦 = 푎, then the graph of the chain line will be 
given by the equation 

푦 = − 푎,                          (2.27) 

where 푎 is a positive unknown number. Find it from the 
condition that the line passes through the points О, В and С. 
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Substitute the coordinates of the point С at the equation 
(2.27): 

= − 푎, 

multiplied by 2 both parts of the equality, we obtain: 

3(푒 + 푒 − 2) = 푎(푒 + 푒 − 2), 

so, we get the value of 푎 

푎 = 3. 

Therefore, in the selected coordinate system, the 
equation of the chain line will have the form 

푦 = − 3. 

To find the curvature by formula (2.26), we find the 
first and second derivatives of the given function 푦 = 푓(푥) 

푦 = − 3 = 푒 − 푒 = 푒 − 푒 ; 

푦 = 푒 − 푒 = 푒 + 푒 = 푒 + 푒 . 

Find the curvature of the chain line using the previously 
mentioned formula (2.26): 
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푘 =
푒 + 푒

1 + 푒 − 푒

=
1
6

∙
푒 + 푒

1 +

= 

=
1
6

∙
푒 + 푒

=
1
6

∙
푒 + 푒

=
8
6

∙
푒 + 푒

푒 + 푒
= 

= .                              (2.28) 

To draw a graph of the obtained function, we will use 
the platform MS Excel.  

To do this, divide the interval [−9; 9] into segments 
with a step  0,5. We enter the obtained formula in the field of 
curvature values푘.  

Repeat this procedure for each argument value using a 
key combination (Ctrl+C – Ctrl+V) (look at the Figure 2.7). 
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Figure 2.7 – Calculation of values of curvature of a chain line due to 
the MS Excel platform 

Based on the results of the calculation, we obtain the 
relation of the curvature 푘 to the coordinate  푥 (Figure 2.8) and 
draw the obtained function (Figure 2.9). 
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Figure 2.8 – The calculated values of the chain line curvature 

 

Figure 2.9 – Graphing a function using a platform MS Excel 
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The graph of curvature versus coordinate is presented at 
the figure 2.10. 

Figure 2.9 – Curvature of the chain line 

 

Task 15. Cash flow is any movement of cash between 
participants in cash circulation. 

Discounted cost is the amount (sun) that must be used 
at a given time to obtain the expected amount in the future at a 
market interest rate. 

According to the task 퐼(푡) is a rate of the cash flow, 푝 is 
an interest rate, 푡 is a time. 

Denote  ∏(푡) as a discounted cost of a cash flow. 

0
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0,35
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The discounted cost of a cash flow is found by the 
formula: 

∏(푡) = ∫ 퐼(푡) ∙ 푒 ∙ 푑푡,                    (2.29) 

where [0; 푇]is a considering time interval. 

Let in our case be  푇 = 25(years), 퐼(푡) = −푎 푡 + 푎 푡 +
푎 = −푡 + 25푡 + 10, 푝 = 5%, then: 

(푡) = (−푡 + 25푡 + 10) ∙ 푒 , ∙ 푑푡 = 

use the integration by parts: 

∫ 푢 ∙ 푑푣 = 푢 ∙ 푣| − ∫ 푣 ∙ 푑푢, 

then we have: 

푢 = −푡 + 25푡 + 10;    푑푢 = (−2푡 + 25)푑푡;
푑푣 =  푒 , ∙ 푑푡;       푣 = −20 ∙  푒 , ∙  

= −20(−푡 + 25푡 + 10) ∙ 푒 , ∙
25

0
+ 

+20 (−2푡 + 25)푒 , 푑푡 = 

once again apply the integration by parts: 

푢 = −2푡 + 25 푑푢 = −2푑푡
푑푣 = 푒 , 푑푡 푣 = −20푒 , 푑푡  

= −20(−푡 + 25푡 + 10)푒 , ∙
25

0
− 
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−20 ∙ 20(−2푡 + 25)푒 , ∙
25

0
− 20 ∙ 20 ∙ 2 푒 , 푑푡 = 

= −20(−푡 + 25푡 + 10)푒 , ∙
25

0
− 

−20 ∙ 20(−2푡 + 25)푒 , ∙
25

0
+ 20 ∙ 20 ∙ 2 ∙ 20푒 , ∙

25

0
= 

= 20(푡 − 25푡 − 10 + 40푡 − 500 + 800)푒 , ∙
25

0
= 

= 20(푡 + 15푡 + 290)푒 , ∙
25

0
= 

= 20푒 , (625 + 375 + 290) − 20 ∙ 290 ≈ 1591,7 (푚푙푛. 푈퐴퐻). 

Answer: the discounted cost of a cash flow for the 
construction of a research center is approximately ∏(t) ≈
1591,7 million UAH. 

Task 16. By the condition of the task, the exhibition 
pavilion has the shape of a parabolic cylinder with 
measurements 푎 = 8 m, 푏 = 25 m, ℎ = 10 푚. Denote푉is the 
exhibition pavilion volume, 푆 is its cover area, and 푆1 is an area 
of a cross section. The cross section of the pavilion will be the 
part of the parabola that is bounded by a straight line. Choose 
the coordinate system as shown at the figure 2.10. 
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Figure 2.10 – Schematic representation of the exhibition pavilion 

 

From the figure 2.10 we see that the construction 
volume of the pavilion can be found by the formula 

푉 = 푆 ∙ 푏, 

where  푆  is an area of a figure bounded by the 
parabolas 퐴푂퐵  and  a straight line 푦 = ℎ. 

The area of the figure is calculated by the formula 

푆 = ∫ 푦 (푥) − 푦 (푥) 푑푥.                       (2.30) 

But before that we need to write the equation of the 
parabola that passes through the points 퐴(−8; 10) and 퐵(8; 10). 

Write the equation of a parabola symmetric about the y-
axis with a vertex at the origin and according to the selected 
coordinate system 

푥 = 2푝푦 
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where 푝 is a parabolas parameter. Define it from the condition 
that the line passes through, for example, a point 퐴(−8; 10): 

(−8) = 2 ∙ 푝 ∙ 10;      푝 = = . 

We get finally 

푥 = 2 ∙ ∙ 푦;   or      푦 = 푥 . 

Calculate the area of the figure by the formula (2.30): 

푆 = 10 −
5

32
푥 푑푥 = 10푥 −

5
32

푥
3

8

−8
= 

= 10 ∙ 8 − − 10 ∙ (−8) + ( ) = ≈ 106,3  (푚 ). 

The coverage area of the exhibition pavilion will be 
found by the formula 

푆п = 푙 ∙ 푏,                                   (2.31) 

where 푙  is a length of arc of a parabolas 푦 = 푥  between two 
points 퐴(−8; 10) and 퐵(8; 10), that is calculated by the 
formulas 

푙 = ∫ 1 + 푦 (푥) 푑푥,                  (2.32) 

and 푏 is a length of the pavilion. 

Calculate the length of the arc by the formula (2.32). 
After substitution we obtain an integral that can be calculated 
using trigonometric substitution or integration by parts. We 
chose double integration by parts (an inverse integral): 

푦 = 푥 푦 = 푥; 
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푙 = 1 +
25

256
푥 푑푥 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
푢 = 1 +

25
256

푥

푑푣 = 푑푥

푑푢 =
푥푑푥

1 + 푥
푣 = 푥 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 

= 푥 1 +
25

256
푥

8

−8
−

푥 + 1 − 1

1 + 푥
푑푥 = 

= 8√29 − ∫ 1 + 푥 푑푥 + ∫ ; 

the second term coincides with the initial integral, then let into 

the denotation as 푙 = ∫ 1 + 푥 푑푥, and we get  

2푙 = 8√29 +
16
5

ln
5

16
푥 + 1 +

25
256

푥
8

−8
; 

푙 = 4√29 + 푙푛 √
√

≈ 36,08(푚). 

Thus, the coverage area of the exhibition pavilion is 
equal to 

푆п = 36,08 ∙ 25 = 902  (푚 ). 
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APPENDIX A 
 

Standard values of trigonometric functions 
 

Table A.1 – Values of trigonometric functions 

Angel value  Function 
degr rad sin  cos   tg  ctg  

1 2 3 4 5 6 
o0  0 0 1 0 doesn’t

exist 
o30  

6


 
2


 
2
3

 
3
3

 3  

o45  
4


 
2
2  

2
2

 1  1  

o60  
3


 
2
3

 2


 3  
3
3

 

o90  
2


 1  0  doesn’t 
exist 0  

o180    0  1  0 doesn’t
exist 

o270  
2

3
 1  0  doesn’t 

exist 0  

o360  2  0  1  0  doesn’t
exist 
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APPENDIX B 
 

The relationship between trigonometric functions of the 
same argument  

 
 

1cossin 22  xx ;  1ctgtg  xx ; 

x
xx

cos
sintg  ; x

x 2
2

cos
1tg1  ; 

x
xx

sin
cosctg  ; x

x 2
2

sin
1ctg1  . 
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APPENDIX C 
 

Table C.1 – Table of elementary function derivatives 
 

 Name of Function Derivative 

1  Constant 0C  

2  Powerful function   uuau aa 
 1

 

2а  Variable x  1'x  

2b u    u
u

u 


2
1

 

2c 
u
1

 
u

uu











2
11

 

3  Indicative function   uaaa uu 
 ln  

3а  Exponenta   uee uu 


 

4  Logarithmic 
function 

  u
au

ua 
ln
1log

 

4а  Natural Logarithm   u
u

u 
1ln

 

5  Sine   uuu  cossin  

6  Cosine   uuu  sincos  

7  Tangent   u
u

utg  2cos
1
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Continued Table C.1 

 Name of Function Derivative 

8  Cotangent   u
u

uctg  2sin
1

 

9  Arcsine   u
u

u 



21

1arcsin
 

10  Arccosine   u
u

u 



21

1arccos
 

11  Arctangent   u
u

uarctg 


 21
1

 

12  Arccotangent   u
u

uarcctg 


 21
1
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APPENDIX D 
 

Indefined integrals table 
 

Table D.1 – The standard integrals 

1 Cdu  0  5 Cuduu  cossin  

2 Cuduu 





 1

1
 6 Cuduu  sincos  

2а Cudu   7 Cutg
u

du
 2cos

 

2б Cu
u

du
 2  8 Cuctg

u
du

 2sin
 

2в C
uu

du


1
2

 9 C
a
u

ua

du



 arcsin

22
 

3 Cu
u
du

 ln  10 
Cbuu

bu

du



 2

2
ln

 

4 C
a

adua
u

u  ln
 11 C

a
uarctg

aau
du




1
22

 

4а Cedue uu   12 C
au
au

aau
du






 ln

2
1

22
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Continued TableD.1 

Supplementary integrals 

1 Cutg
u

du
 2

ln
sin

 2 
Cutg

u
du







 

 42
ln

cos
 

3 Cuduutg  cosln  4 Cuduuctg  sinln  

5  Cuchduush   6 Cushduuch   

7 Cuth
uch

du
 2

 8 Cucth
ush

du
 2

 

9  2222

2
1 auuduau 2 2 21 ln

2
a u u a C    

10  2222 1 uau
a

duua 21 arcsin
2

ua C
a


 

11 C
ba

bueabuebdubue
auau

au 



 22
sincossin

 

12 C
ba

buebbueadubue
auau

au 



 22
sincoscos
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APPENDIX E 
 

The example of the design of the calculation and graphics 
tasks title page  
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