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PREFACE  
The purpose of the discipline is to provide a proper 

fundamental mathematical training of students and to form in them 
knowledge and ability to apply it for the analysis of a various 
phenomena according to a diversity spheres of a professional 
activity. Thus, the task of the discipline is to assist students learn the 
basics of mathematical apparatus needed to solve theoretical and 
practical problems, to develop skills and abilities of mathematical 
research of applied tasks, to develop their analytical and critical 
thinking, to teach students to understand the  scientific sources of 
professional applications of mathematics.  

This syllabus of lectures is designed according to the program 
of normative educational discipline “Higher mathematics” and the 
working curriculum of preparation of full-time and part-time 
students of the “bachelor” education level of the specialty 192 – 
Construction and civil engineering. 

All theoretical material in this lecture notes is structured and 
coordinated with the classroom lectures conducted during the study 
of Module 1 topics. 

However, this synopsis is not final, because the volume of the 
studied theoretical material may be changed due to some changes in 
the curriculum. Therefore, students should follow the classroom 
lectures carefully and use a wider range of scientific and literary 
sources, which are presented at the end of the lecture notes, in their 
preparation for all class. 

The lecture notes contain theoretical material as a basic 
knowledge of the topics of Module 1 that students need to acquire, 
and self-checking questions.  

The lecture notes have a significant number of examples of 
solving typical tasks, as well as applied tasks, that help student to 
switch their attention to the practical using of the knowledge to 
solve professional-oriented tasks.   

Some additional information and interest materials are located 
in the appendices, at the end of the lecture notes. 

So many references to sources in which students can find more 
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detailed information about certain mathematical positions or 
theorems proofs that are not presented in this lecture notes are also 
given here as an aid to a more in-depth study and search for 
reference information.  

The presented lecture notes will help students to possess the 
methods of solving practical tasks; it will promote the acquisition of 
mathematical competencies and intensify students’ independent 
work.  

Students must realize that only active work with lecture notes 
can help them to be successful in the study of higher mathematics, 
achieve professional excellence.  
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CONTENTS OF MODULE 1 
 

Module 1  Linear algebra. Vector and Tensor algebra.  
Analytic geometry.  Differential calculus of one variable 

functions  
 

Content module 1.1 Linear algebra. Vector and Tensor 
algebra 

Topic 1.1.1 Matrices. Determinants. Systems of linear 
equations. 

Determinants and their properties. Calculation of determinants 
of any orders. 

Matrices and operations with them. Inverse matrix. 
Systems of linear algebraic equations. Homogeneous and non-

homogeneous systems of linear algebraic equations. Kronecker-
Capelli theorem. Solving systems by Cramer's formulas, matrix 
method, Gaussian method. 

Topic 1.1.2 Vectors. Tensors. 
Scalar and vector values. The concept of vector. Conditions of 

a vectors equality . Linear operations with vectors. Decomposition 
of the vector on the basis of coordinate orts. Linear operations with 
vectors given by their coordinates. 

Scalar, vector and mixed products of vectors. Vector 
magnitude, angle between vectors, guide cosines. Conditions of 
collinearity, orthogonality and coplanarity of vectors. Geometric 
applications of products of vectors. Coordinates of the vector on 
this basis. 

Basic concepts of tensor calculus. Recording of tensor 
expressions. Convolution. Tensor invariant. Metric tensor. 

 
Content module 1.2  Analytic geometry. 
Topic 1.2.1 Elements of analytical geometry on the plane 

and in a space. 
Straight line on the plane. Cartesian rectangular coordinate 

system on the plane. The distance between two points. Dividing a 
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segment in a given ratio. The main types of equations of the line on 
the plane. The angle between the lines. Conditions of parallelty and 
perpendicularity of lines. Distance from point to line. 

Basic types of equations of a plane and a line in a space. 
Angles between lines and planes. Conditions of parallelity and 
perpendicularity. The distance from the point to the plane. 

Topic 1.2.2 Second order curves and surfaces. 
Second order curves. Equation of a circle with a given center 

and radius. Canonical equations of a circle, an ellipse, a hyperbola 
and a parabola. Investigation of their forms.  

Surfaces of the second order. Cylindrical surfaces. Conical 
surfaces. Second order cone. Surface rotation. Sphere. Ellipsoid. 
Hyperboloids. Paraboloids. 

Polar coordinate system. Parametric form of lines. 
 
Content module 1.3 Differential calculus of one variable 

functions. 
Topic 1.3.1 Limits. Derivative. Differential. 
Limits theory. Variables and constant values. infinitesimal and 

infinitude variables and their properties. Variable limit. Properties 
of limits. The first and second standard limits. Comparison of 
infinitesimals. The equivalents are infinitesimal. Indeterminate 
forms and their disclosure. 

Function. Continuity. The concept of function. Ways to set the 
function. Basic elementary functions and their graphs.  

The concept of derivative as the velocity of a function change. 
Geometric sense of the derivative. Tangent and normal to the graph 
of the function. The physical sense of the derivative. Derivative 
properties. Basic rules of differentiation. Table of derivatives.  

The original composite function. Derivatives of implicit and 
inverse functions. Rule of logarithmic differentiation. Derivative of 
parametrically defined function. Derivatives of higher orders. The 
physical sense of the second derivative. 

Function differential. Properties of differential. The 
relationship between the differential and the derivative. Derivatives 
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and differentials of higher orders. 
 
Topic 1.3.2 The application of a derivative. 
L'Hospital's rule for evaluating indeterminate forms. 
Conditions for increasing and decreasing the function. 

Extremes of the function. The smallest and largest value of the 
function on the segment 

Conditions of convexity and concavity of the graph of the 
function and the presence of inflection. Asymptotes of the graph of 
the function. 

The general scheme of a function research and construction of 
its graph. 
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Lecture 1 
Determinants.  

Cramer’s Rule for solving the systems of linear algebraic 
equations 

 
Determinant is a scalar value that can be computed from the 

elements of a square table. The element of determinant is a number 
denoted as ija , where indices i  and j  indicate the location of this 
element in the table of numbers:  

i  is a number of a row,  
j  is a number of a column.  

The determinant is denoted n  ( det ), where index n  
indicates the order of the determinant which is the number of its 
rows (columns).  

For example, 
1 3

7 0


 is the determinant of second order, 

because there are two rows and two columns, so it can be marked 

as: 2

1 3
7 0


  .  

If we say that the number 3  is the element of a determinant 
2 , which is located at the first row and the second column, we can 

denote it as: 12 3a  .  

3

3 2 6
5 1 0
2 7 3


 

 
 is the determinant of the third order. 

The main diagonal of the determinant is the diagonal, which 
consists of elements 11 22 33, , ,..., nna a a a . Another diagonal is called a 
secondary diagonal. 

The second-order determinant is calculated by the “cross” 
rule: 
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11 12
2 11 22 12 21

21 22

a a
a a a a

a a
    . 

The third-order determinant is calculated by “asterisk rule” 
(“rule of triangles”, Sarrus’ rule or Sarrus’ scheme): 

 133221312312332211

333231

232221

131211

3 aaaaaaaaa
aaa
aaa
aaa

112332332112312213 aaaaaaaaa  .. 

Schematically these rules can be represented as it is shown on 
the Figures 1.1, 1.2. 

  

                  Figure 1.1                                     Figure 1.2 

 
Example 1.1 Find the determinants of the matrices A  and B : 

3 4
1 2

A  
   

, 
1 1 3
2 3 4
3 2 2

B
 

   
   

. 

Solution: 

 3 4
det 3 2 4 1 6 4 10

1 2
A         


, 

" "  " "  " " " "  
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1 1 3
det 2 3 4 6 12 12 27 4 8 53

3 2 2
B


         

 
. 

The minor i jM  of the entry i ja  in the i th row and j th is the 
determinant of the submatrix formed by deleting the i th row and j
th column. The cofactor i jA  is obtained by multiplying the minor 

and  1 i j : 

 1 i j
i j i jA M  . 

Example 1.2 Find 12M  and 12A : 

2 0 1
3 1 2
5 2 3





. 

Solution: 

12

3 2
9 10 1

5 3
M


    


,   

   1 2
12 121 1 1 1A M        . 

The determinant of the n th order is equal to the sum of n  
products of the elements of the i th row or j th column on their 
cofactors (cofactor expansion along the i th row or j th column): 

1 1

n n

n i j i j i j i j
j i

a A a A
 

    . 

Example 1.3 Using a cofactor expansion along the first row 
compute the determinant  
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1 8 3
3 6 1
2 6 2

. 

Solution: 

     1 1 1 2 1 3
1 8 3

6 1 3 1 3 6
3 6 1 1 1 8 1 3 1

6 2 2 2 2 6
2 6 2

                

   12 6 8 6 2 3 18 12 6 8 4 3 6 6 32 18 8                  . 

Note. Elements of the determinant may be not only numbers, 
but other objects as well. 

Example 1.4 Solve the equation 0
111
11

22






x

x
. 

Solution. We will use the rule of triangles: 

2 2

2 2
1 1 2 2 2 2 3 2
1 1 1

x
x x x x x x


         


,   0232  xx ,  

2 4 9 4 2 1D b ac      ,  

1,2
3 1

2 2
b Dx

a
  

  ,  

21 x , 12 x . 
 

Now let’s go on to the topic how the concept of determinant is 
used to solve systems of linear algebraic equations, in particular we 
will consider Cramer’s rule for solving the systems of linear 



13 
 

algebraic equations. Let us consider a system of n  linear equations 
with n  unknowns: 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

... ;

... ;
...........................................

... .

n n

n n

n n nn n n

a x a x a x b
a x a x a x b

a x a x a x b

   
    


    

  (1.1) 

For such systems we can use Cramer’s Rule:  

if 

11 12 1

21 22 2

1 2

...

...
det 0

... ... ... ...
...

n

n

n n nn

a a a
a a a

A

a a a

    , then the system (1.1) has the 

unique solution j
jx





 ( 1,j n ), where the determinant j  is 

formed from   by replacing column j  with the vector B  of 
constants. 

Cramer’s Rule lets us by-eye solve systems that are small and 
simple. For example, we can solve systems with two equations and 
two unknowns, or three equations and three unknowns, where the 
numbers are small integers. Such cases appear often enough that 
many people find this formula handy. But using it to solving large 
or complex systems is not practical, either by hand or by a 
computer. 

If 0  , then two cases are possible: 

1) the system is incompatible, i.e. it has no solution if at least 
one of 0j  ; 

2) the system is indeterminate, i.e. it has an infinite number of 
solutions if all 0j  . 

Example 1.5 Solve the system of equations by the Cramer’s 
Rule: 
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2 3 8;
3 6;
2 2 6.

x y z
x y z
x y z

  
   
   

 

Solution. As we have three unknowns, we should calculate 
four determinants. Start to calculate the main determinant of the 
given system consisted of the coefficients of all equations  

1 2 3
3 1 1 2 9 4 6 12 1 4 0
2 1 2

           ,   

1

8 2 3
6 1 1 16 18 12 18 24 8 4
6 1 2

          , 

2

1 8 3
3 6 1 12 54 16 36 48 6 8
2 6 2

          ,   

3

1 2 8
3 1 6 6 24 24 16 6 36 4
2 1 6

          . 

Thus, the solution to the system has the following form: 

4 1
4

x 
 


,   8 2
4

y 
 


,   4 1
4

z 
 


. 

Let us check the obtained solution: 
1 2 2 3 1 1 4 3 8;

3 1 2 1 3 2 1 6;
2 1 2 2 1 2 2 2 6.

       
       
        

 

Answer: 1x  , 2y  , 1z  .  
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Lecture 2 
Matrices 

 
A matrix is a system of elements (in the particular case of 

numbers) arranged in a certain order and forming a table. If in this 
table there are m  rows and n  columns, and its elements (entries) 
are denoted by ija , where 1,i m  is the row number, and 1,j n  is 
the column number, at the intersection of which this element is 
located, then the matrix is written in the following form:  

11 12 1

21 22 2

1 2

...

...
... ... ... ...

...

n

n
m n

m m mn

a a a
a a a

A

a a a



 
 
 
 
 
 

 

or abbreviated  m n i jA a  .  
The matrix, all elements of which are equal to zero, is called a 

zero matrix and is denoted byO . 
The matrix, in which the elements of the main diagonal are 

equal to one, and all the rest ones are zero, is called the identity 
matrix and is denoted by E . 

The matrix, which consists of only one row, is called a row 
vector. The matrix, which consists of only one column is called a 
column vector. 

The matrix TA  obtained from the matrix A  by replacing each 
row with a column of the same number is called the transposed 
matrix. 

Example 2.1 Find the transposed matrix TA  for 

1 3 1
2 4 3

A
 

  
 

. 

Solution. Do it 
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1 2
3 4
1 3

TA
 
   
  

. 

Two matrices A  and B  are called equal if:  
1) they have the same size;  
2) all the corresponding elements of the matrices are equal to 

each other, i.e. ij ija b  ( 1,i m , 1,j n ). 
If m n , then the matrix is called the square matrix of the n

th order. In a square matrix, the elements 11a , 22a ,..., n na  for which 
i j  form the main diagonal of the matrix. 

A square matrix is called lower triangular matrix if all the 
entries above the main diagonal are zero. Similarly, a square matrix 
is called upper triangular matrix if all the entries below the main 
diagonal are zero. 

Consider the operation with matrices.  
The sum of two rectangular matrices A  and B  of equal sizes 

( m n ) is the matrix C  of the same size, whose elements i jc  are 
equal to the sum of the corresponding elements of the matrices A  
and B , i.e. i j i j i jc a b   ( 1,i m , 1,j n ). 

Example 2.2 Find the sum of the matrices 

1 3 1
2 4 3

A
 

  
 

, 
2 4 0
3 3 1

B  
   

. 

Solution: 

 
1 2 3 4 1 01 3 1 2 4 0 3 7 1
2 3 4 3 3 12 4 3 3 3 1 5 1 4

A B
          

                   
. 

The subtraction of two rectangular matrices A  and B  of 
equal sizes ( m n ) is the matrix D  of the same size, whose 
elements ijd  are equal to the subtraction of the corresponding 
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elements of the matrices A  and B , i.e. i j i j i jd a b   ( 1,i m ,

1,j n ). 

Example 2.3 Find the subtraction A B  and B A  of the 
matrices 

1 3 1
2 4 3

A
 

  
 

, 
2 4 0
3 3 1

B  
   

. 

Solution: 

 
1 2 3 4 1 01 3 1 2 4 0 1 1 1
2 3 4 3 3 12 4 3 3 3 1 1 7 2

A B
            

                    
, 

 2 4 0 1 3 1 1 1 12 1 4 3 0 1
3 3 1 2 4 3 1 7 23 2 3 4 1 3

B A
           

                     
. 

The multiplication of the matrix A  by the number m   is the 
matrix B , which is obtained by multiplying the number m  by each 
element of the matrix A , i.e. ij ijb m a   ( 1,i m , 1,j n ). 

Example 2.4 Multiply the matrix 
1 3 1
2 4 3

A
 

  
 

 by 2. 

Solution: 

 1 3 1 2 6 22 1 2 3 2 1
2 2

2 4 3 4 8 62 2 2 4 2 3
A

         
             

. 

The product of the matrix m pA   with the matrix p nB   is the 
matrix m nC  , such that the element ijc  of the matrix C , standing in 
the i th row and j th column, is equal to the sum of the products of 
the i th row of the matrix A  by the corresponding elements of the 
j th column of the matrix B , that is 
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1 1 2 2 ...i j i j i j i m m jc a b a b a b     ( 1,i m , 1,j n ). 

The product of matrices exists if and only if when the number 
of columns of the first matrix is equal to the number of rows of the 
second matrix. Note that matrix multiplication is not commutative: 
BA  is usually not equal to AB . 

Example 2.5 Find the products AB  and BA  of the matrices 

1 3 1
2 4 3

A
 

  
 

, 
2 3
3 0
4 2

B
 

   
 
 

. 

Solution: 

 
 

2 3
1 2 3 3 1 4 1 3 3 0 1 21 3 1

3 0
2 2 4 3 3 4 2 3 4 0 3 22 4 3

4 2
AB

 
                                    

 

 

2 9 4 3 0 2 7 5
4 12 12 6 0 6 28 0
        

           
, 

 
 
 

2 3 2 1 3 2 2 3 3 4 2 1 3 3
1 3 1

3 0 3 1 0 2 3 3 0 4 3 1 0 3
2 4 3

4 2 4 1 2 2 4 3 2 4 4 1 2 3
BA

            
                                      

 

2 6 6 12 2 9 4 6 11
3 0 9 0 3 0 3 9 3
4 4 12 8 4 6 8 20 2

         
            
         

. 

An important concept is the inverse matrix. 
A square matrix A  is invertible if and only if its determinant 

is not equal to zero. A matrix 1A  is called inverse to the invertible 
square matrix A  if the condition 1 1AA A A E    is fulfilled. 
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Algorithm of the inverse matrix finding: 
1. Calculate the determinant of the matrix A . 
2. Find the transposed matrix TA . 
3. Find the cofactors for each element of the matrix TA  and 

write down the inverse matrix 

11 12 1

1 21 22 2

1 2

...

...1
det ... ... ... ...

...

T T T
n

T T T
n

T T T
n n nn

A A A
A A A

A
A

A A A



 
 
   
  
 

. 

4. Check the condition 1 1AA A A E   . 

Example 2.6. Find the inverse matrix 1A  for matrix  
3 0 1
1 3 1
2 3 4

A
 
   
 
 

. 

Solution. 
1. Let us calculate the determinant of the matrix A : 

3 0 1
det 1 3 1 36 3 0 6 0 9 24 0

2 3 4
A          . 

2. Let us find the transposed matrix: 
3 1 2
0 3 3
1 1 4

TA
 
   
 
 

. 

3. Let us find the cofactors for each element of the matrix TA : 

2
11

3 3
( 1) 12 3 9

1 4
A      ,    3

12

0 3
( 1) 0 3 3

1 4
A       , 

4
13

0 3
( 1) 0 3 3

1 1
A       ,    3

21

1 2
( 1) 4 2 2

1 4
A        , 
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4
22

3 2
( 1) 12 2 10

1 4
A      ,    5

23

3 1
( 1) 3 1 2

1 1
A        ,  

4
31

1 2
( 1) 3 6 3

3 3
A       ,    5

32

3 2
( 1) 9 0 9

0 3
A        , 

6
33

3 1
( 1) 9 0 9

0 3
A      . 

Thus, the inverse matrix has the following form:  

1

9 3 3
1 2 10 2
24

3 9 9
A

 
    
   

. 

4. Let us check the condition 1 1AA A A E   : 

1

9 3 3 3 0 1
1 2 10 2 1 3 1
24

3 9 9 2 3 4
A A

   
          
       

 

9 3 3 1 3 2 9 0 3 3 3 3 9 1 3 1 3 4
1 2 3 10 1 2 2 2 0 10 3 2 3 2 1 10 1 2 4
24

3 3 9 1 9 2 3 0 9 3 9 3 3 1 9 1 9 4

               
                     
                   

 

27 3 6 0 9 9 9 3 12 24 0 0 1 0 0
1 16 10 4 0 30 6 2 10 8 0 24 0 0 1 0
24 24

9 9 18 0 27 27 3 9 36 0 0 24 0 0 1
E

          
                     
                 

. 

Answer: 1

9 3 3
1 2 10 2
24

3 9 9
A

 
    
   

. 
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Lecture 3 
Inverse matrix method and Gaussian Elimination method  

for solving the linear algebraic equations systems 
 

A system of linear algebraic equations (SLAE) consisting of 
m  equations with n  unknowns is a system of the form: 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

... ;

... ;
...........................................

... ,

n n

n n

m m mn n m

a x a x a x b
a x a x a x b

a x a x a x b

   
    


    

                        (3.1) 

where jx  are the unknowns, ija  are the coefficients of the system, 

ib  are the constant terms ( 1,i m , 1,j n ). 
Such systems (3.1) are conveniently written in a matrix form: 

A X B  , 

where 

11 12 1

21 22 2

1 2

...

...
... ... ... ...

...

n

n

m m mn

a a a
a a a

A

a a a

 
 
 
 
 
 

 is the coefficient matrix, 

1

2

...

n

x
x

X

x

 
 
 
 
 
 

 is the solution vector,  

1

2

...

m

b
b

B

b

 
 
 
 
 
 

 is the vector of 

constants. 
The augmented matrix of the system of equations is the 

matrix whose first n  columns are the columns of matrix A  and 
whose last ( 1n ) column is the column vector B : 
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 
11 12 1 1

21 22 2 2

1 2

...

...
... ... ... ... ...

...

n

n

m m mn m

a a a b
a a a b

A A B

a a a b

 
 
    
  
 

. 

The solution to a system is a set of n  numbers that, when 
substituted instead of the unknowns in the equations, turn all the 
equations of the system into identities. 

A system of equations is called compatible if it has at least 
one solution, and incompatible if it has no solutions. 

A consistent system is called independent if it has exactly one 
solution, and dependent if it has more than one solution. 

A system is said to be homogeneous if all its constant terms 
are zero 0ib   ( 1,i m ), and non-homogeneous if at least one of 
the constant terms is non-zero. 

A homogeneous system of equations is always consistent, 
since there is always a trivial solution: 1 2 ... 0nx x x    . If the 
determinant of a homogeneous system is nonzero ( 0  ), then the 
system has a unique zero solution. If 0  , then a homogeneous 
system has an infinite number of solutions. 

Let us consider a system of n  linear equations with n  
unknowns, written in matrix form: 

A X B  .         (3.2) 

If the matrix A  is invertible ( det 0A  ), then it has an inverse 
matrix 1A . Multiplying from the left both sides of the equation 
(3.2) by 1A , we get the solution of this system: 

1 1A A X A B     ,   1E X A B   , 
1X A B  . 

Example 3.1 Solve a system of equations using the inverse 
matrix method: 
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2;
5 4 4 1;
2 2 2.

x y z
x y z
x y z

  
   
   

 

Solution. Write down the matrices:  

1 1 1
5 4 4
2 1 2

A
 
    
 
 

, 
x

X y
z

 
   
 
 

, 
2
1
2

B
 
   
 
 

. 

Firstly, we should find the inverse matrix: 

1 1 1
det 5 4 4 8 5 8 8 10 4 9 0

2 1 2
A              ,   

1 5 2
1 4 1
1 4 2

TA
 
   
  

, 

2
11

4 1
( 1) 8 4 4

4 2
A


      


,    3

12

1 1
( 1) 2 1 1

1 2
A        , 

4
13

1 4
( 1) 4 4 0

1 4
A


     


,   

 3
21

5 2
( 1) 10 8 18

4 2
A       


, 

4
22

1 2
( 1) 2 2 0

1 2
A      ,    5

23

1 5
( 1) 4 5 9

1 4
A       


,  

4
31

5 2
( 1) 5 8 13

4 1
A     


,    5

32

1 2
( 1) 1 2 1

1 1
A       , 
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6
33

1 5
( 1) 4 5 9

1 4
A       


,   1

4 1 0
1 18 0 9
9

13 1 9
A

  
    
  

, 









































212
445

111

9113
9018
014

9
11AA  























18413941318513
18018901818018
044044054

9
1  

9 0 0 1 0 0
1 0 9 0 0 1 0
9

0 0 9 0 0 1

   
         
      

. 

Secondly, we should find the solution to our system by the 
formula: 

1

4 1 0 2 4 2 11 0 2 9 1
1 1 118 0 9 1 18 2 0 1 9 2 18 2
9 9 9

13 1 9 2 13 2 11 9 2 9 1
X A B

                 
                                
                        

. 

Let us check the obtained solution: 

 
 

1 2 1 2;
5 1 4 2 4 1 5 8 4 1;
2 1 2 2 1 2 2 2 2.

  
          
         

 

Answer: 1x  , 2y  , 1z   . 

The next method we will consider will be Gaussian 
Elimination method. 
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Consider a system of m  equations with n  unknowns: 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

... ;

... ;
...........................................

... .

n n

n n

m m mn n m

a x a x a x b
a x a x a x b

a x a x a x b

   
    


    

 

Let us define certain operations on matrices called elementary 
row and column operations.  

1. Interchanging (swapping) the i th and j th rows (columns), 
where i j . 

2. Multiplying the i th row by a non-zero quantity. 
3. Adding a multiple of the j th row to the i th one, where 

i j . Note, that you should leave the first row the same after this 
operation, but replace the second row by the new values. 

These operations allow us to obtain equivalent systems to the 
initial one, but with a form that simplifies obtaining the solution.  

Algorithm of applying the Gaussian Elimination method. 

1. Construct the augmented matrix for the system. 
2. Use elementary row and column operations to transform 

the augmented matrix into a triangular one. 
3. Write down the new linear system for which the triangular 

matrix is the associated augmented matrix. 
4. Solve the new system starting from the last equation. You 

may need to assign some parametric values to some unknowns. 
Then apply the method of back substitution to solve the new 
system. 

Example 3.2 Solve the following system via Gaussian 
elimination: 
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1 2 3

1 2 3

1 2 3

2 1;
2 2 4;
4 4 2.

x x x
x x x
x x x

   
    
    

 

Solution. Write down the augmented matrix of the system:  

1 1 2 1
2 1 2 4
4 1 4 2

  
   
  

. 

Multiply the first row by ( 2)  and add to the second one, 

then by ( 4)  and add to the third row: 
1 1 2 1
0 3 2 2
0 3 4 2

  
    
   

. 

Further, multiply the second row by ( 1)  and add to the third 
one:  

1 1 2 1
0 3 2 2
0 0 2 4

  
    
  

. 

Write down the new linear system: 
1 2 3

2 3

3

2 1;
  3 2 2;

2 4.

x x x
x x

x

   
    
  

 

From the third equation we find: 3 2x   .  
Further, we substitute the 3x  into the second equation and get: 

 23 2 2 2x      ,   23 4 2x    ,   23 6x   ,   2 2x  . 

Finally, we substitute the 3x  and 2x  into the first equation: 

 1 2 2 2 1x       ,   1 2 4 1x     ,   1 1x  . 
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Let us check the obtained solution: 

 
 
 

1 2 2 2 1 2 4 1;

2 1 2 2 2 2 2 4 4;

4 1 2 4 2 4 2 8 2.

        


         
          

 

Answer: 1 1x  , 2 2x  , 3 2x   . 

Example 3.3 Solve the homogeneous system of equations: 

3 0;
4 2 0;

5 10 0.

x y z
x y z

x y z

  
   
   

 

Solution. Write down the augmented matrix of the system:  

1 1 3
4 2 1
1 5 10

 
  
  

. 

Multiply the first row by ( 4)  and add to the second one, 
then by ( 1)  and add to the third row:  

1 1 3
0 6 13
0 6 13

 
  
  

. 

Multiply the second row by ( 1)  and add to the third one:  

1 1 3
0 6 13
0 0 0

 
  
 
 

. 

Write down the new linear system:  
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3 0;
6 13 0.

x y z
y z

  
  

 

Set z t , t R , then we have:  

3 0;
6 13 0.

x y t
y t

  
  

 

From the second equation we find:  

6 13y t ,   13
6y t . 

Further, we substitute y  into the first equation and get: 

13 3 06x t t   ,   13 13 18 536 6 6x t t t t     . 

Set 6t k , k R , then the solution to the system will take 
the form: 

5 ;
13 ;
6 .

x k
y k
z k

 
 
 

 

Let us check the obtained solution: 

 
5 13 3 6 5 13 18 0;

4 5 2 13 6 20 26 6 0;
5 5 13 10 6 5 65 60 0.

k k k k k k
k k k k k k

k k k k k k

        
          
          

 

Answer: 5x k  , 13y k , 6z k , k R . 
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Lecture 4 
Vectors algebra 

 
Many physical quantities, such as mass, time, temperature are 

fully specified by one value (magnitude) which is a real number. 
Such quantities are called scalars. But other quantities such as 
speed, force, electric field intensity require more than one value to 
describe them. They are vectors. 

A directed line segment is a vector, denoted as AB


 or as a  , 
and read as “vector AB


” or “vector a ”. 

The point A  from where the vector AB


 starts is called its 
initial point, and the point B  where it ends is called its terminal 
point. The distance between initial and terminal points of a vector is 
called the magnitude (or length) of the vector, denoted as AB


 or 

a . 
A vector whose initial and terminal points coincide, is called a 

zero vector (or null vector), and denoted as 0


. Zero vector can not 
be assigned a definite direction as it has zero magnitude. 

A vector whose magnitude is unity is called a unit vector. 
Two or more vectors are said to be collinear ba //  if they 

are parallel to the same line, irrespective of their magnitudes and 
directions. 

Two vectors are said to be equal, if they have the same 
magnitude and direction regardless of the positions of their initial 
points, and written as a b

 
. 

A vector whose magnitude is the same as that of a given 
vector (say, AB


), but direction is opposite to that of it, is called 

negative of the given vector. For example, vector BA


 is negative of 
the vector AB


, and written as BA AB 

 
. 

Vectors that locate on parallel planes or in the same plane are 
called coplanar. 

Let’s consider the linear vector operations. 
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The sum a b
 

 of two vectors a


 and b


 is a vector, which is 
determined by the triangle rule (Figure 4.1) or by the parallelogram 
rule (Figure 4.2). 

 

 
 
According to the triangle law of vector addition two vectors 

a


 and b


 are positioned so that the initial point of one coincides 
with the terminal point of the other. Then, the vector a b

 
 is third 

side AC  of the triangle ABC  (Figure 4.1). 
According to the parallelogram law of vector addition a b

 
 

is the diagonal of the parallelogram formed by vectors a


 and b


 
(Figure 4.2). 

The difference a b
 

 of two vectors a


 and b


 is a vector, 
which in sum with the vector b


 gives a vector a


: 

 a b a b   
   

. 

The product of the vector a


 by the scalar  , denoted as a  , 
is called a vector a  , collinear to the vector a


. It has the direction 

same (or opposite) to that of vector a


 according as the value of   
is positive (or negative). Also, the magnitude of vector a   is   

a  

b


 

a b
  

a  b


 

a b
  

Figure 4.1 Figure 4.2 
A  

B  

C  



31 
 

times the magnitude of the vector a


, i.e., 

a a  
  . 

The vector a   is called the negative (or additive inverse) of 
vector a


 and we always have 

  0a a  
  . 

The considered operations are called linear, since have the 
appropriate properties (similar to the properties of operations on 
real numbers): 

a b b a  
   

,      a b c a b c a b c       
        , 

a a 
  ,      a a  

  ,    a b a b    
   , 

 a a a     
   ,   0a a 

  ,   1a a
  . 

Let us take the points (1,0,0)A , (0,0,1)B  and (0,0,1)C  on 
the x -axis, y -axis and z -axis, respectively. Then, clearly 

1OA 


, 1OB 


, 1OC 


. 

The vectors OA


, OB


 and OC


, each having magnitude 1, are 
called unit vectors along the axes Ox , Oy  and Oz , respectively, 
and denoted by i


, j


 and k


, respectively. 
The position vector of any point ( , , )M x y z  with reference to 

the origin is given by its component form: 

kzjyixOM  , 

where x , y  and z  are called as the scalar components of OM , 
and xi


, yj


 and zk


 are called the vector components of OM  

along the respective axes. Sometimes x , y  and z  are also termed 
as rectangular components. 
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The magnitude (or length) of any vector  , ,a x y z
  is given 

by 
2 2 2a x y z  

 . 

If  1 1 1; ;A x y z  and  2 2 2; ;B x y z  are any two points, then the 

vector joining A  and B  is the vector AB


. The components of AB


 
can be determined as 

     2 1 2 1 2 1AB x x i y y j z z k     
  

 

and its magnitude is given by 

     2 2 2
2 1 2 1 2 1AB x x y y z z     


. 

If a  and b


 are any two vectors given in the component form 

x y za a i a j a k  
  , x y zb b i b j b k  

  
, then 

1) the sum (subtraction) of the vectors a  and b


 is given by 

     x x y y z za b a b i a b j a b k      
   ; 

2) the multiplication of a vector a  by any scalar   is given 
by 

x y za a i a j a k    
  ; 

3) the vectors a  and b


 are equal if and only if 

x xa b , y ya b , z za b . 

Example 4.1 Four points  5,1A ,  6, 2B  ,  6, 8C   , 

 4, 4D    are given on the coordinate plane. It is known that 

2 3c AB CD  
  

, 12
2

d AB CD 
  

. Write vectors c


 and d


 in 

coordinate form and find the magnitudes of these vectors. 
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Solution. Let us write down the vectors c


 and d


 in the 
coordinate form: 

   6 5, 2 1 1, 3AB      


,         4 6 , 4 8 2,4CD        


, 

      2 2 1, 3 2 1, 2 3 2,6AB            


,   

     3 3 2,4 3 2,3 4 6,12CD      


, 

      2 2 1, 3 2 1,2 3 2, 6AB         


,   

   1 1 1 12,4 2, 4 1, 2
2 2 2 2

CD        
 


, 

       2 3 2,6 6,12 2 6,6 12 4,18c AB CD          
  

, 

       12 2, 6 1, 2 2 1, 6 2 1, 8
2

d AB CD          
  

. 

Find the magnitudes of vectors c


 and d


: 
2 24 18 16 324 340 2 85c      


, 

 221 8 1 64 65d      


. 

Remarks. 
1. One may observe that whatever be the value of  , the 

vector a  is always collinear to the vector a


. In fact, two vectors 
a  and b


 are collinear if and only if there exists a nonzero scalar   

such that b a
  . If the vectors a  and b


 are given in the 

component form, then the two vectors are collinear if and only if 

yx z

x y z

aa a
b b b

    . 

2. The angles formed by a vector a  with coordinate axes Ox , 



34 
 

Oy  and Oz  are determined from the formulas: 

2 2 2
cos x x

x y z

a a
a a a a

  
 

 ,   
2 2 2

cos y y

x y z

a a
a a a a

  
 

 ,   

2 2 2
cos z z

x y z

a a
a a a a

  
 

 . 

The cosines defined by these formulas are called the direction 
cosines of the vector. The sum of the squares of all the direction 
cosines of a vector is equal to one: 

2 2 2cos cos cos 1    . 

3. The projection of a 
vector a  onto a nonzero vector 
b


, 0b 


, is a number, which is 
denoted as bpr a   and calculated 
by the formula 

cosbpr a a 
  , 

where   is the angle between  
 

vectors a


 and b


, 0      (Figure 4.3). 
Example 4.2 Set whether vectors 2 6 4b i j k  

  
 and 

3 2c i j k  
   are collinear? 

Solution. Thus, the proportion of the given vectors is equal to 
the same nonzero scalar 

2 6 4 2
1 3 2


  


, 

therefore, vectors b


 and c  are collinear. 

Example 4.3 Find the direction cosines of the vector a AB
 

, 

a  

b


 bпр a   

Figure 4.3 

  
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if  2,1,0A  ,  1, 2, 1B . 

Solution. Find the components and length of the vector AB


: 

      1 2 2 1 1 0 3a i j k i j k             
     , 

 22 23 1 1 9 1 1 11a        
 . 

Find the direction cosines of the vector AB


: 
3cos
11

xa
a

   ,   1cos
11

ya
a

   ,   1cos
11

za
a

    . 

 
The scalar product of two nonzero vectors a  and b


, denoted 

by a b
 

, is defined as 
cosa b a b    

   
, 

where   is the angle between a  and b


. 

Properties of the scalar product: 
1) the scalar product is commutative, i.e. 

a b b a  
   

; 
2) let a  and b


 be any two vectors, and   be any scalar. Then 

   a b a b a b       
     

; 

3) distributivity of a scalar product over addition.  
Let a , b


 and c  be any three vectors, then  

 a b c a b a c     
      ; 

4)                        2 2
cos0a a a a a a     

     
. 

Directly from the definition we get that the angle between two 
nonzero vectors a  and b


 is given by 
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cos a b
a b


 


 

  . 

Projection of a vector a  on other vector b


 is given by  

b

a bpr a
b




 


 . 

Two nonzero vectors a  and b


 are orthogonal (or 
perpendicular) to each other if and only if their scalar product is 
equal to zero: 

0a b a b   
   

. 

For mutually perpendicular unit vectors i


, j


, k


, we have 

     22 2
1i j k  

 
,   0i j i k j k     

    
. 

If two vectors a  and b


 are given in component form as 

x y za a i a j a k  
  , x y zb b i b j b k  

  
, then their scalar product is 

given as 

  x y z x y za b a i a j a k b i b j b k      
      

 

   2 2

x x x y x z y x y y y z z xa b i a b i j a b i k a b j i a b j a b j k a b k i            
          

 

 2

z y z z x x y y z za b k j a b k a b a b a b     
 

. 

Example 4.4 Find the cosine of the angle BAC  and the 
projection of side AB  onto the side AC , if  4; 2;0A   , 

 1; 2;4B   ,  3; 2;1C   are the vertices of the triangle. 
Solution. Find the cosine of the angle BAC  as the cosine of 

the angle between two vectors AB


 and AC


: 
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cos( , ) AB ACAB AC
AB AC






 
 

   , 

      1 4 ; 2 2 ;4 0 3;0;4AB         


,  

      3 4 ; 2 2 ;1 0 7;0;1AC        


, 

2 2 23 0 4 25 5AB     


,   

2 2 27 0 1 50 5 2AC     


, 

3 7 0 0 4 1 21 4 25AB AC         
 

,  

 25 25 1 2cos( , )
25 5 2 25 2 2

AB AC    


 
  . 

Find the projection of side AB  to side AC  by the formula: 

25 5 5 2
25 2 2AC

AB ACpr AB
AC


   

 


 . 

Example 4.5 Prove that the vectors  
2

b

abbap   and b  are 

orthogonal. 
Solution. As we know, vectors are orthogonal if their scalar 

product is equal to zero. Check this, multiply the vectors  

      02

2

22 







 abab

b

abbab
b

abbbab
b

abbabpb . 

Since 0pb  then b  and p  are orthogonal vectors ( pb  ). 
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The vector product of two 
nonzero vectors a  and b


, is 

denoted by a b
 

 and defined as 

sina b a b n    
     , 

where   is the angle between a  
and b


 ( 0    ), n  is a unit 

vector that is perpendicular to 
both a  and b


, such that a , b


 

and n  form a right handed system  

(Figure 4.4), i.e., the right handed system rotated from a  to b


 
moves in the direction of n . 

 Properties of the vector product: 
1) the vector product is not commutative: 

a b b a   
   

; 
2) let a  and b


 be any two vectors, and   be any scalar. Then 

   a b a b a b       
     

; 

3) let a , b


 and c  be any three vectors, then  

 a b c a b a c     
      , 

it is a distributivity property of a scalar product over addition; 
4) let a  and b


 be two nonzero vectors. Then 0a b 

 
 if and 

only if a  and b


 are parallel (or collinear) to each other, i.e., 

baba  . 

In particular, 0a a 
 

. 
For mutually perpendicular unit vectors i


, j


, k


, we have 

0i i j j k k     
    

, 

a  

b


 

n  

  

Figure 4.4 



39 
 

i j k 
 

,  j k i 
 

, k i j 
  

, 

j i k  
 

,  k j i  
  

, i k j  
 

. 

Let a  and b


 be two vectors given in component form as 

x y za a i a j a k  
  , x y zb b i b j b k  

  
. Then their cross product 

may be given by 

x y z

x y z

i j k
a b a a a

b b b
 

 

 
. 

If a  and b


 represent the adjacent sides of a parallelogram 
then its area is given by S a b  

 
. 

If a  and b


 represent the adjacent sides of a triangle then its 
area is given as 

1
2

S a b  
 

. 

Example 4.6 Find the area of a triangle having the points 
 2;2;1A ,  3;0;3B ,  13;4;11C  as its vertices. 

Solution: 

   3 2;0 2;3 1 1; 2;2AB      


,  

   13 2;4 2;11 1 11;2;10AC     


, 

2 2 1 2 1 2
1 2 2

2 10 11 10 11 2
11 2 10

i j k
AB AC i j k

 
      

  

    
 

     20 4 10 22 2 22 24 12 24i j k i j k          
     

, 
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2 2 2( 24) 12 24 1296 36AB AC      
 

. 

Thus, the required area is 1 36 18
2ABCS    . 

The scalar triple product is the scalar product of a vector 
product and a third vector, i.e.  a b c 

   . It can be represented as 

the determinant 

x y z

x y z

x y z

a a a
abc b b b

c c c


   . 

The scalar triple product gives the volume of the 
parallelepiped whose sides are represented by the vectors a , b


 and 

c : 

V a b c
   . 

The volume of a triangular pyramid built on vectors a , b


 and 
c  is equal to 

pyramid
1
6

V ab c
   . 

Example 4.7 Find the volume of the pyramid having the 
points  1, 4,0A  ,  5,0, 2B  ,  3,7, 10C  ,  1, 2,1D   as its 
vertices. 

Solution: find the coordinates of  the vectors a , b


 and c  on 
which the pyramid is built: 

    5 1,0 4 , 2 0 4,4, 2a AB        
 ,    

    3 1,7 4 , 10 0 2,11, 10b AC        


, 

    1 1, 2 4 ,1 0 0,2,1c AD       
 . 
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Find the scalar triple product: 

4 4 2
2 11 10 44 8 0 0 8 80 108
0 2 1

ab c


        
  

. 

Thus, the required volume is 1 108 18
6

V    . 

The parallelepiped would have zero volume. In this case all 
three vectors lie in the same plane (they are coplanar). Thus, three 
vectors are coplanar, if and only if scalar triple product of them is 
equal to zero: 

0a b c 
   . 

If three vectors a , b


 and c  are not coplanar, then they form 
a basis, i.e. any vector d


 can be submitted as 

d xa yb zc  
   . 

This equality is called the decomposition of the vector d


 in 
the basis  , ,a b c

   . Numbers , ,x y z  are components of the vector 

d


 in this basis.  
If the components of the basis vectors a , b


, c  and the vector 

d


 in the coordinate basis  , ,i j k
 

 are known, then, writing the 

decomposition of the vector d


 over the new basis  , ,a b c
    in a 

scalar form, we obtain a system of linear equations  

;
;

x x x x

y y y y

z z z z

a x b y c z d
a x b y c z d
a x b y c z d

  
   
   

 

for finding the new components , ,x y z of the vector d


. 
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Example 4.8 Show that the vectors a , b


 and c  form a basis 
and find the decomposition of the vector d


 in this basis. 

 2; 1;4a  
 ,  1; 2;2b  


,  1;2;1c  
 ,  4;14;7d  


. 

Solution. Calculate the scalar triple product of the vectors a , 
b


 and c : 

2 1 4
1 2 2 4 8 2 8 1 8 9 0
1 2 1

abc


           


   ,  

therefore, vectors a , b


 and c  are not coplanar and they form a 
basis. Find the decomposition of the vector d


 in this basis. 

Construct a system of equations and solve it by the Cramer’s 
rule: 

2 4;
2 2 14;

4 2 7,

x y z
x y z
x y z

   
   
   

   
2 1 1
1 2 2 9

4 2 1


      , 

1

4 1 1
14 2 2 8 28 14 14 14 16 18
7 2 1

 
           , 

2

2 4 1
1 14 2 28 7 32 56 4 28 27

4 7 1

 
          , 

3

2 1 4
1 2 14 28 8 56 32 7 56 45

4 2 7


             . 
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18 2
9

x 
 


,   27 3

9
y   


,   45 5

9
z 
 


. 

Let us check the obtained solution:  

 
 
 

2 2 3 5 4 3 5 4;

2 2 3 2 5 2 6 10 14;

4 2 2 3 5 8 6 5 7.

        

          
         

 

Thus, the decomposition of the vector d


 in the basis  , ,a b c
    

is  

2 3 5d a b c  
   . 

Example 4.9 Prove that the vectors  
2

b

abbap   and b  are 

orthogonal. 
Solution. As we know, vectors are orthogonal if their scalar 

product is equal to zero. Check this, multiply the vectors  

      02

2

22 







 abab

b

abbab
b

abbbab
b

abbabpb . 

Since 0pb  then b  and p  are orthogonal vectors ( pb  ). 
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Lecture 5 
Basic concepts of tensor calculus 

 
Tensor calculus is a multidimensional generalization of matrix 

algebra. It is very useful in the analysis of multidimensional linear 
systems, such as the wideband MIMO channel. In particular, the 
HOSVD can be used to decompose a higher order tensor into 
several orthogonal bases, one for each dimension of the tensor, and 
a core tensor that describes the interaction between the bases. The 
n-th orthogonal basis is computed by computing the SVD of the 
tensor’s n-th unfolding. The HOSVD, and the relevant tensor 
algebra, provide the inspiration for the structured model. 

A tensor is an object carrying upper (contravariant) and lower 
(covariant) indices, each running through D different values, and 
transforming when the coordinates of a certain class are replaced in 
a certain linear way, in which the zero tensor (all components of 
which are equal to zero) remains zero in any coordinates. Here D is 
a dimension of a space. For a 4-dimensional tensor in a 4-
dimensional space-time we have:  

, .  

For a 3-dimensional tensor in a 3-dimensional space-time is:  

, .  

Hereinafter, small Latin indices will run from 0 to 3, and 
Greek indices will run from 1 to 3. Tensor valence or tensor rank is 
the total number of indices. Do not confuse tensor rank (number of 
indices) and matrix rank (number of linearly independent columns / 
rows). These are different concepts. If a tensor has two indices, then 
it has the rank (valence) of the tensor 2, and the rank of the 
corresponding matrix can be any integer from zero to the dimension 
of the space. The tensor generalizes the concepts of scalar, vector 
and matrix. Moreover, the transformation rules for the tensor 
components are arranged so that we can construct new tensors from 
the existing ones according to some simple rules. Other objects that 

...
...

mn
ijT  3,2,1,0...,,..., nmji

...
...


T  3,2,1...,,..., 
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carry indices can also be used, but they are transformed according 
to different rules and are not tensors. 

Note that vectors in different areas of mathematics call 
different objects. As a rule, an element of linear space is called a 
vector, i.e. vectors can be multiplied by a number and added. Our 
vectors will also allow these operations, i.e. will be elements of 
some linear space. Elements of a certain linear space will be 
covectors, as well as any tensors of a certain type (with a certain 
number of superscripts and subscripts). However, the word “vector” 
will further mean not only belonging to a linear space, but also a 
certain transformation law. Immediately we will stipulate that the 
coordinates will carry the superscript ( , or ), but the set 
of coordinates (“radius vector”) can be considered a vector only if 
we restrict ourselves to linear transformations that leave the origin 
of coordinates fixed. 

A scalar is a tensor without indices. It has one component. 
When changing coordinates, the scalar is not transformed, i.e. is an 
invariant. 

One and the same vector can be written in both covariant and 
contravariant components. Usually, some of them are natural for the 
under consideration vector. The coordinates of the geometric vector 
(displacement vector) are naturally contravariant. A contravariant 
vector is denoted in the form: , that is, with a index at the top. 
The components of the covariant vector change, as it were, opposite 
to the change in the basis vectors (hence its name). For example, 
Let us pass from one coordinate system to another one, such that: 

, ,  . 

In other words, we changed the scale of the first axis, making 
it smaller. The new unit of length on this axis has decreased, and is 

 from the old. And the corresponding new coordinate of the 

vector, on the contrary, has increased in  times, as if opposite to 
the scale of the axis. This is contravariance. For a covariant vector, 

,..., ji ,...,

ix

11 Nxx  22 xx  33 xx   1N

N
1

N
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the opposite is true ... Although the same displacement vector can 
be represented in covariant form:  . Its covariant components: , 

,  are components not in the basis of our task. And in some 
other (dual) coordinate system. We just know how to go to it: 
through the coefficients . And so we keep such a transition in a 
mind. 

Einstein's rule is that by an index that occurs twice (once at 
the top, another time at the bottom) summation is meant. So,  is 
a shorthand expression of . Here the index  (running 

through the values 1, 2, 3) is called dumb: it is not included in the 
resulting expression it seems to be “reduced”. In such cases, it is 
said that the convolution has been performed. 

Let us rewrite again formulas (5.1) for obtaining covariant 
components from the original contravariant ones: 

                           (5.1) 

Look at the each expression from (5.1). We will see in them 
the result of multiplying two matrices (5.1a):  

.                (5.1a) 

Remember we mentioned that a vector is a special case of a 
tensor? It’s time to clarify that the vector is a tensor of the first rank 
(sometimes instead of “rank” they say “valence”). A contravariant 
vector is usually represented by a column matrix. Covariant vector 
is usually represented by a row matrix. We are introduced here to 
the second-rank tensor represented by the matrix  ( ). A 
tensor of the third rank will have to be imagined as a three-

ix 1x

2x 3x

ikg

i
iba


i

i
iba i

.
,
,

3
33

2
32

1
3113

3
23

2
22

1
212

3
13

2
12

1
111

xgxgxgx
xgxgxgx
xgxgxgx





 


































3

2

1

332331

232221

131211

321 ,,
x
x
x

ggg
ggg
ggg

xxx

33 ikg
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dimensional table. The number of indices in a symbolic notation 
corresponds to the rank of the tensor. And the sizes of rows and 
columns always correspond to the number of dimensions of space 
(in our example, it is three-dimensional).  

Let us write (5.1) in shorthand: 

.                                      (5.2) 

What can we see from (5.2)? So much.  
1. This is an entry shortened by Einstein’s rule. In full, it 

looks like this: 

.                            (5.2а) 

Here  is a dumb index (not included in the result).  
2.  is a symbol for the second rank covariant tensor, 

because there is indexes below. And it is at the bottom, because 
there is a rule: repeating indices must alternate (top-bottom). When 
combining covariant components and contravariant components, the 
laws of its transformation are they are mutually simplified. 
Otherwise, the final result will not be a tensor – it will lose 
invariance! 

3. The result is a covariant vector (  at the bottom), because 
the right index  is covariant.  

4) The number of dimensions of space (the number of values 
that the summation index runs through) is not clearly visible here, 
and should be understood from the context of the task. Accordingly, 
by (5.1a) one should actually mean three formulas: for .  

For tensors are possible to add component wise tensors of the 
same structure, multiply them by a number - we will not dwell on 
this too much. The space of tensors, as in the case of vectors, is 
assumed to be linear, that is, the result of such operations will again 
be a tensor. By and large, you have to keep in mind two basic 
operations with tensors: multiplication and convolution. These 
operations with tensors lead to the same tensors. Here is an 
illustration of the tensor product: 

k
iki xgx 


i

k
iki xgx

k
ikg

i
i

3,2,1i
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. 

As you can see, the resulting tensor  it is a tensor of a 
total rank. It contains components equal to the product of the 
components of the factors - each with each. And all the indices of 
the factors simply went over to the product. Important: the fact that 
the product of two vectors is a tensor of the 2nd rank does not at all 
follow that any such tensor can be represented as a product of some 
vectors! For example, the product:  will be the tensor 
of the 5-th rank. Moreover, as they say, it is mixed: it is twice 
contravariant and three times covariant. 

We have already noted, using the example of the square of the 
length of a vector, that the simplest convolution is the dot product. 
Let’s consider the question in more details. Convolution appears 
during the multiplication record, when one of the indices is repeated 
above and below. So, the product:  will not have 5-th 
rank, it will have the third rank: during a single convolution, the 
rank decreases by 2. Here the convolution goes by index . 
Remembering that the repeated index means summation, we write 
our convolution in details:  

. 

Here you can see how the dumb index  disappears. The 
convolution of a tensor of the 2nd rank within itself is called a 
tensor trace; experts of the old school prefer the German equivalent: 
spur. So the square of the length  is the tract (spur) of the 
tensor . In fact, this is the sum of the elements of its main 
diagonal. Obviously, the trace, like any scalar, is an invariant. 

We know that the invariant of a vector is its length, which is 
expressed through the convolution of the vector with the co-vector 


















333231

232221

131211

xxxxxx
xxxxxx
xxxxxx

Xxx ik
ki

ikX

ik
lmnlmn

ik CBA 

ik
mnlmn

ik CBA 

i

mn
k

mn
k

mn
k

i
imn

ik
imn

ik BABABABABA 3
3

2
2

1
1 

i

i
ixxx 2

i
i

i
i xxX 
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(that is, the conjugate vector). And what about the tensor of higher 
rank? Any tensor has an invariant (scalar) obtained by convolution 
with the conjugate tensor. For example, the expression  will 
be an invariant of a tensor of the second rank, twice contravariant: 

. Let us describe what double convolution is. First, we collapse, 
for example, by index :  

. 

At the second step, we fold each of the three resulting terms 
by k:  

 

. 

The resulting expression is invariant, because as a result of 
double convolution all indices disappear and we get a scalar. Simple 
rules of index manipulation save us from time consuming proofs. 
Of course, the invariant of the combined tensor  will be a value 

. 
Writing the formula for the length of a vector using the dot 

product as:  

.                                (5.3) 

Now we can write it in a short form:  

.                                      (5.3а) 

Recall formula (5.2) for  and substitute it in (5.3а), we get:  

.                                     (5.4) 

This is a general form of a tensor expression for a length 
using contravariant (natural) components. Tensor  is a metric 
tensor of a space. The metric tensor is, as it was, a rule for 

ik
ik AA

ikA
i

k
k

k
k

k
k

ik
ik AAAAAAAA 3

3
2

2
1

1 

    23
23

22
22

21
21

13
13

12
12

11
11 AAAAAAAAAAAAAA ik

ik

 33
33

32
32

31
31 AAAAAA 

k
iA

i
k

k
i AA

3
3

2
2

1
1

2 xxxxxxx 

i
ixxx 2

ix
k

iik xxgx 2

ikg
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calculating of the length of any vector from the values of its 
components. In relation to a formula (5.2), they say that here the 
vector  is convolved with the metric tensor and the vector is 
obtained . That is, the metric tensor is also a way to transform 
components - from contravariant to covariant and vice versa. Now 
we have some options (to choose from) for the calculating of a 
vector length:  

 or  or . 

Similarly, we have for the dot product: 

 or  or . 

In the course of the above transformations, we use some 
properties. First, remember that we introduced the coefficients in 
the expression for the length (for reasons of symmetry) so, that is: 

. Here is the first property of the metric tensor: its matrix is 
symmetric (the elements symmetric about the main diagonal are the 
same). Further, in Cartesian coordinates we have 

     2322212 xxxx  , 

that is, there is no difference between ix  and ix . We came to the 
second conclusion: this is where the metric tensor looks extremely 
simple (5.5):  


















100
010
001

ikg .                                  (5.5) 

Members with mixed indices ( ki  ) in the expression of the 
length are not included. So, the metric tensor for the case of 
rectangular coordinates is a diagonal matrix, and all elements of the 
main diagonal are equal to one. 

ix
ix

i
ixxx 2 ki

ik xxgx 2
kiik xxgx 2

i
i yxxy  ki

ik yxgxy  kiik yxgxy 

kiik gg 
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The unit tensor, denoted by the Kronecker symbol k
i  is a 

tensor that is determined as:  
kik

i xx                                       (5.6) 

for arbitrary vector x . The unit tensor, as it were, highlights the 
desired vector k -component. The sum is written on the left, let's 
open it:  

3
3

2
2

1
1 xxxx kkkik

i   . 

The equality will be fulfilled, if and only if one of 
components k

i , which has equal indices ki  , be equal to one. 
And the rest should be zero. Hence, the unit tensor looks exactly 
like (5.5)! Let’s go to another coordinate system, the components of 
the vector will change. And the unit tensor too … But what we have 
explained regarding (5.6) remains, nevertheless, in force.! It turns 
out that the tensor k

i  has a rare property: its components are the 
same in any coordinate system, do not change. 
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Lecture 6 
Elements of analytic geometry on a plane 

 
Two mutually perpendicular coordinate lines Ox  and Oy  

with common origin O  form a Cartesian rectangular coordinate 
system on a plane. Ox  is called the abscissa axis ( x -axis), and Oy  
is the ordinate axis ( y -axis). The set of straight lines, 
perpendicular to the coordinate axes, forms a coordinate grid on the 
coordinate plane Oxy . The location of a point is specified by a pair 
of numbers called the x - and y -coordinates of a point and is 
written as  ,x y . 

The distance d  between points  1 1 1;M x y  and  2 2 2;M x y  
on the plane is determined by the formula:  

   2 2
2 1 2 1d x x y y    . 

The coordinates of the point  ;M x y , which divides the 

segment 1 2M M  in a given ratio 1

2

M M
MM

  , are determined by the 

formulas: 
1 2

1
x xx  


 

,   1 2

1
y yy  


 

. 

If the point M  divides the segment 1 2M M  into two equal 
parts, then 1  . The coordinates of the midpoint of the segment 
are determined by the formulas: 

1 2

2
x xx 

 ,   1 2

2
y yy 

 . 

The area of a triangle with vertices at the points  1 1;A x y , 

 2 2;B x y  and  3 3;C x y  can be calculated by the following 
formula: 
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1 1

2 2
1 2 2 3 3 1 2 1 3 2 1 3

3 3

1 1

1 1
2 2

x y
x y

S x y x y x y x y x y x y
x y
x y

       . 

Example 6.1 Find the length of the median AK  and the area 
of the triangle ABC  with vertices  3, 4A ,  3, 1B   ,  3, 2C  . 

Solution. As we know that median AK  divides the opposite 
side BC  into two equal parts, i.e. point K  is the midpoint of the 
side BC . Then, the coordinates of point K  are 

3 3 0
2

x  
  , 1 2 3

2 2
y  
   . 

Find the length of the median AK  as the distance between the 
points A  and K : 

   
2 2

2 23 11 121 157 1570 3 4 3 9
2 2 4 4 2

AK                   
   

. 

Calculate the area of the triangle ABC : 
3 4
3 11 1 13 6 12 12 3 6 36 18

3 22 2 2
3 4

S
 

           


. 

Any equation of the first power with respect to x  and y , i.e. 
an equation of the form 

0Ax By C    

(where A , B  and C  are the constant coefficients, with 2 2 0A B  ) 
defines a straight line on the plane. This equation is called the 
general equation of a line. 
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Special cases of the general equation of a straight line: 

1) 0C  , 0A  , 0B  , i.e. 0Ax By   is the equation of 
straight line passing through the origin; 

2) 0A  , 0B  , 0C  , i.e. 0By C   (or y b , where 
/b C B  ) is the equation of straight line parallel to the x -axis; 

3) 0B  , 0A  , 0C  , i.e. 0Ax C   (or x a , where 
/a C A  ) is the equation of straight line parallel to the y -axis; 

4) 0B C  , 0A  , i.e. 0Ax   (or 0x  ) is the equation of 
y -axis; 

5) 0A C  , 0B  , i.e. 0By   (or 0y  ) is the equation of 
x -axis. 

If in the general equation of the line 0B  , then, resolving it 

 with respect to y , we obtain an 
equation in the slope-intercept form: 

y kx b  , 

where 2 1

2 1

y yk tg
x x


  


 is called the 

slope of the line; the angle  , measured 
counter-clockwise from the positive 
direction of the x -axis to a line, is called 
the inclination of the line; b  is the y -

intercept of a graph of the line (Figure 6.1). 
The equation of a line passing through two points  1 1 1;M x y  

and  2 2 2;M x y  

1 1

2 1 2 1

x x y y
x x y y
 


 

 

is called the two-point form of a line. 

x 

y 



b 

Figure 6.1 



55 
 

Since 2 1

2 1

y yk
x x





, the two-point form of a line can be reduced 

to the point-slope form: 
 1 1y y k x x   . 

Example 6.2 Let , ,  be the vertices 
of the triangle. Find: 1) the lengths of the sides  and ; 2) 
the equations of the sides  and ; 3) the point of the 
intersection of the medians of a triangle . 

Solution. 
1. Find the lengths of the sides as the distance between two 

points: 

, 

. 

2. To compose the equations of the sides, we use two-point 
form of a line. 

For : 

,   ,   ,   , 

 – general equation of AB , 
3 15
4 4

y x   – slope-intercept form of the AB  equation. 

For : 

,   ,   ,  

,    
 – general equation of AC , 

 5;0A   3;6B  7; 5C 
AB AC

AB AC
ABC

    2 22 2
2 1 2 1( ) ( ) 3 5 6 0 64 36 10AB x x y y           

    2 22 2
2 1 2 1( ) ( ) 7 5 5 0 144 25 13AC x x y y            

AB
 
 

5 0
3 5 6 0
x y  


  

5
8 6

x y
  6 5 8x y  6 30 8 0x y  

3 4 15 0x y  

AC
 
 

5 0
7 5 5 0
x y  


   

5
12 5

x y



 5 5 12x y  

5 12 25 0x y   

5 12 25 0x y  
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5 25
12 12

y x    – slope-intercept form of the AC  equation. 

3. Let us draw two medians: from the vertices A  and C  
(Figure 6.2).  

 
 

Figure 6.2 
 

First way. The medians of a triangle intersect each other in 
the ratio 2:1 starting from the vertex. 

Find the coordinates of the point L , which divides the median 
CM  in ratio 2  , starting from the vertex C : 

 7 2 1 7 2 5
1 2 3 3

x
   

  


,   5 2 3 5 6 1
1 2 3 3

y     
  


. 

Thus,  is the median intersection point. 

Second way. Three medians in a triangle intersect at one 
point and this point is called the center of gravity of the triangle. Its 
coordinates can be found by formulas: 

1 2 3 5 3 7 5
3 3 3

x x xx     
   ,  

5 1,
3 3

L  
 
 
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1 2 3 0 6 5 1
3 3 3

y y yy    
   . 

When two straight lines intersect, they form two angles at the 
point of intersection. One is an acute angle and another is an obtuse 
one. Both these angles are supplements of each other. By definition, 
when we say ‘angle between two straight lines’ we mean the acute 
angle between two lines and not the obtuse one. However, since the 
two angles are supplementary, if one is known, we can find the 
other. 

If two lines in the xy -plane are given by the equations in the 
slope-intercept form 1 1y k x b   and 2 2y k x b  , then the acute 
angle between them is determined by the formula 

2 1

1 21
k ktg

k k


 


. 

This formula cannot be used to find the angle between the 
lines, if one of them is parallel to y -axis, since the slope of the line 
parallel to y -axis is indeterminate. 

For parallel lines 0  , 0tg  : 

1 2k k . 

For perpendicular lines 90   , tg : 

1 2 1k k   . 

Example 6.3 Let  4,0A ,  7, 4B ,  8,2C  (Figure 6.3) be 
the vertices of the triangle. Find: 1) angle BAC ; 2) the equation of 
the altitude CD ; 3) the equation of a line l  passing through the 
midpoint of AC  parallel to side AB ; 4) the point of intersection of 
CD  and l . 

Solution. We should find four answers to the four questions.  
1. The angle BAC  is acute and formed by two straight lines 

AB  and AC . Find the slopes of these lines: 
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4 0 4
7 4 3ABk 

 


,   2 0 1
8 4 2ACk 

 


, 

then  

4 1 8 3
5 6 13 2 6tg 4 1 6 41 6 10 21

3 2 6

AB AC

AB AC

k kA
k k


     

   
, 

 
Figure 6.3 

 

1arctg
2

BAC     
 

. 

2. The altitude CD  is perpendicular to the side AB , so 
1AB CDk k    and 

1 1 3
4 4
3

CD
AB

k
k

      . 

Also it passes through the point  8,2C . According to the 
point-slope form of straight line equation, we get: 
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32 ( 8)
4

y x    ,   32 6
4

y x    ,   3 8
4

y x   . 

3. Find the coordinates of the point E  that is the midpoint of 
the side AC : 

4 8 12 6
2 2

x 
   ,   0 2 2 1

2 2
y 
   . 

The straight line l  to be determined is parallel to the side AB

, so 4
3l ABk k  . Also it passes through the point  6,1E . 

According to the point-slope form of straight line equation, we get: 
41 ( 6)
3

y x   ,   41 8
3

y x   ,   4 7
3

y x  . 

4. To find the coordinates of point P  of intersection of CD  
and l  we should solve the system which contains the equations of 
these lines: 

3 8;
4

4 7,
3

y x

y x

   

  


 

3 48 7
4 3

x x    ,   4 3 8 7
3 4

x x   ,   25 15
12

x  , 

12 12 3615 3
25 5 5

x      , 

4 36 48 48 35 137 7
3 5 5 5 5

y 
       . 

Thus, 36 13,
5 5

P  
 
 

. 
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Pay attention to the issue how to 
find the distance between point that are 
not located on the line and this straight 
line (Figure 6.4). 

If the straight line l  is given by its 
general equation 0Ax By C   , and the 
coordinates of the point 0M  are 0x  and 0y
, then the distance from the point 

 0 0 0,M x y  to the line is calculated by the 
formula: 

0 0

2 2

Ax By C
d

A B

 



. 

Example 6.4 Find the length of the altitude CD  from the 
example 6.3. 

Solution. Find the equation of the line AB  by applying the 
two-point form of a line: 

4 0
7 4 4 0
x y 


 

,   4
3 4

x y
 , 

 4 4 3x y  ,   4 16 3x y  ,   4 3 16 0x y   . 

Find the length of the altitude CD  as a distance from the 
point  8,2C  to the line AB : 

 22

4 8 3 2 16 32 6 16 10 10 2
516 9 254 3

CD
     

    
 

. 

Example 6.5 Compose the equation of a line passing through a 
point )2,3( K  and it is perpendicular to the line 0752  yx . 

Solution. The desired line is perpendicular to the line 
0752  yx , then we have a fair equality for its slopes of these 

0M  

d  

N  

l  

Figure 6.4 
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lines as 112  kk . Find the slope of a given line and, substituting it 
in this equality, determine the slope of the desired line. 

0752  yx , 725  xy , 
5
7

5
2

 xy , 
5
2

1 k . 

2
5

52
11

1
2 




k
k . 

We know that the slope of the required line, the coordinates of the 
point belonging to this line, so we make the equation using the 
point-slope form and get a final answer: 

 3
2
5)2(  xy , )3(5)2(2  xy , 01925  yx .  

Example 6.6 Find the coordinates of the lines intersection 
point if we have equations of these lines 02043  yx  and 

02  yx . 
Solution. To find the coordinates of lines intersection point we 

should to solve the system of the given equations 







;02

,02043
yx
yx







;2

,02043
yx

yx  







;2
,020423

yx
yy  








;2
,020466

yx
yy








;2
,01410

yx
y











;2

,
5
7

yx

y













.
5

17

,
5
7

x

y
 

The lines intersection point has coordinates 
5

17
x and 

5
7

y . 
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Lecture 7 
PLANE AND LINE IN SPACE  

 
We know that a line is determined by two points. In other 

words, for any two distinct points, there is exactly one line that 
passes through those points, whether in two dimensions or three. 
Similarly, given any three points that do not all lie on the same line, 
there is a unique plane that passes through these points. Just as a 
line is determined by two points, a plane is determined by three. 

This may be the simplest way to characterize a plane, but we 
can use other descriptions as well. For example, given two distinct, 
intersecting lines, there is exactly one plane containing both lines. A 
plane is also determined by a line and any point that does not lie on 
the line. These characterizations arise naturally from the idea that a 
plane is determined by three points. Perhaps the most surprising 
characterization of a plane is actually the most useful. 

Imagine a pair of orthogonal vectors that share an initial point. 
Visualize grabbing one of the vectors and twisting it. As you twist, 
the other vector spins around and sweeps out a plane. Here, we 
describe that concept mathematically. Let  CBAN ,,  be a vector 
and  0000 ,, zyxM  be a point. Then the set of all points  zyxM ,,  

such that MM0  is orthogonal to N  
forms a plane   (Figure 7.1).  

We say that N  is a normal 
vector, or perpendicular to the plane. 
Remember, the scalar (dot) product of 
orthogonal vectors is zero. This fact 

generates the vector equation of a plane: 00  MMN . Rewriting 
this equation provides additional ways to describe the plane: 

 0000 ,, zzyyxxMM  , 00  MMN , 

      0000  zzCyyBxxA . 

N


 

  

Figure 7.1 
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A plane in space is the set of all terminal points of vectors 
emanating from a given point perpendicular to a fixed vector. 

If we open parentheses in this equation we get a new form of 
a plane equation in space as  

0 DCzByAx , 

it is a general equation of a plane in space, where coefficients 
CBA ,,  can not be equal to zero at the same time. Consider some 

cases when one or two of coefficients equal zero. 
1. If 0D  ,  ; ;N A B C


 and (0, 0, 0)O    then we get 

the plane equation in a form 0Ax By Cz   , and it is a plane 

passing through the origin, that is, the free term D  indicates the 
distance at which the desired plane is located from the origin. 

2. If 0, 0A D   then  0; ;N B C


and N Ox


, and we 

get an plane equation in a form 0By Cz D   , it is a plane   that 

is parallel to the axis Ох . So, if 0, 0B D  ,  ; 0;N A C


, 

N Oy


 then we get an equation in a form 0Ax Cz D    and we 

have a plane   that is parallel to the axis Оу . If 0, 0C D  , 

 ; ;0N A B


, N Oz


 then we get an equation in a form 
0Ax By D    and we have a plane   that is parallel to the axis Оz . 

3. If 0A D   and  0; ;N B C


, then we get a plane 
equation in a form 0By Cz  , it is a plane   that contain an axes 

Ох , Ox   . Similarly,  if 0B D  ,  ; 0;N A C


 then Oy   ; 
if 0C D  ,  ; ;0N A B


 then Oz   . 

4. If 0D , 0A B  ,  0;0;N C


, OzN  , then a plane 
has this form of an equation 0Cz D  , it is an equation of a plane 

that is parallel to the plane xOy and perpendicular to the axis Оz . If 
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0D , 0A C  ,  0; ;0N B


, OуN   then Oxz//  and 

Oy  . If 0D , 0B C  ,  ; 0;0N A


, OxN   then 
yOz//  and Ox  .  

Example 7.1 Compose the equation of a plane that is 
perpendicular Оz  and passes through a point  3,2,1 P . 

Solution. The equation of a plane, that is perpendicular to the 
axis Оz , has a form:  0 DCz . We know that this plane passes 
thought the given point,  3,2,1 P , in this case, the point 
coordinates satisfy to the plane equation; substitute the coordinates 
of the point in the equation and obtain: 

3 0C D      3D C  . 

Thus, 03  СCz , we can divide both side by С  ( 0С ) and 
get answer  

03 z  or 3z . 

Write an equation for the 
plane containing points 

1 1 1 1( ; ; )M x y z , 2 2 2 2( ; ; )M x y z , 
3 3 3 3( ; ; )M x y z . We choose an 

arbitrary point ( ; ; )M x y z  
belonging to the desired plane 
(Figure 7.2) and compose vectors 

21MM , MM1 , 31MM  so they 
belong to the plane and their mixed 

product is zero. Let’s take advantage of this fact  and get new plane 
equation 

1 2 1 1 3( , , ) 0M M M M M M 
  

,  
1 1 1

2 1 2 1 2 1

3 1 3 1 3 1

0
x x y y z z
x x y y z z
x x y y z z

  
   
  

. 

  1M  

2M  

3M  

M  

   Figure 7.2 
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0M  

  

d  

Figure 7.2 

Example 7.2 Compose the equation of a plane that passes 
thought points 1(1;3; 2)M  , 2(4; 5;6)M  , 3( 3;1;2)M   

Solution.  

1 3 ( 2)

4 1 5 3 6 ( 2) 0

3 1 1 3 2 ( 2)

x y z   

     

    

; 
1 3 2

3 8 8 0

4 2 4

x y z  

 

 

; 

8 8 3 8 3 8
( 1) ( 3) ( 2) 02 4 4 4 4 2x y z

 
     

   
; 

( 1)( 32 ( 16)) ( 3)(12 ( 32)) ( 2)( 6 32) 0x y z             ; 

16( 1) 44( 3) 38( 2) 0 : ( 2)x y z        ; 

8( 1) 22( 3) 19( 2) 0x y z      ; 

8 8 22 66 19 38 0x y z      ;  

8 22 19 36 0x y z    . 

Now, that we can write an 
equation for a plane, we can use the 
equation to find the distance d  between 
a point 0M  and the plane   
(Figure7.2). It is defined as the shortest 
possible distance from 0M  to a point on 
the plane. 

Just as we find the two-
dimensional distance between a point 

and a line by calculating the length of a line segment perpendicular 
to the line, we find the three-dimensional distance between a point 
and a plane by calculating the length of a line segment 
perpendicular to the plane. The distance between a point 
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0 0 0 0( ; ; )M x y z  and the plane : 0A x By Cz D      can be 

calculated by this formula: 

0 0 0
2 2 2

A x By Cz D
d

A B C
  


 

. 

In addition to finding the equation of the line of intersection 
between two planes, we may need to find the angle formed by the 
intersection of two planes. For example, builders constructing a 
house need to know the angle where different sections of the roof 
meet to know whether the roof will look good and drain properly. 
We can use normal vectors to calculate the angle between the two 
planes. We can do this because the angle between the normal 
vectors is the same as the angle between the planes. 

The angle between the planes 1 1 1 1 0A x B y C z D     
2 2 2 2 0A x B y C z D     is determined by the formula: 

1 2 1 2 1 2
2 2 2 2 2 2
1 1 1 2 2 2

cos A A B B C C
A B C A B C

 
 

    
. 

The angle between two planes can be 
1) when 0  then two planes are parallel and their  normal 

vectors are parallel (Figure 7.3). So, the necessary and sufficient 
conditions for the parallelism of two planes is  

1 1 1

2 2 2

A B C
A B C

  ; 

2) the necessary and sufficient conditions for the coincidence 
of two planes is 

1 1 1 1

2 2 2 2

A B C D
A B C D

   ; 
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        Figure 7.3                                Figure 7.4 

 

3) when 90  then two planes are perpendicular and their  
normal vectors are perpendicular too (Figure 7.4). So, the necessary 
and sufficient conditions for the perpendicularity of two planes is 

1 2 1 2 1 2 0A A B B C C   . 

Example 7.3 Compose the equation of a plane passing through 
points (1; 1;2)P   and (3;1;2)Q , and it is perpendicular to the plane 
4 5 3 2 0x y z     (Figure 7.5) 

Solution (the first way): let us consider the normal vector N


 
of the desired plane to be a vector product of vectors PQ


 і 1N


. Find 
the coordinates of the vector PQ


 

 
(3 1;1 ( 1);2 2) (2;2; 0)PQ      


,

1

2 0
2 2 0

5 3
4 5 3

i j k

PQ N i   




 

 
 

2 0 2 2
6 6 18

4 3 4 5
j k i j k    


   

, 

thus   (6; 6; 18)N   


. 
We use the equation of the plane passing through a given 

point and perpendicular to the vector (scalar equation) 

P  

Q  
N


 

1N


 

Figure 7.5 
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0 0 0( ) ( ) ( ) 0A x x B y y C z z       

and we have: 6A  , 6B   , 18C   , 0 1x  , 0 1y   , 0 2z   

6( 1) 6( 1) 18( 2) 0x y z      ; 

6 6 18 24 0x y z    , then 3 4 0x y z    . 

Solution (the second way): use the equation of the plane 
passing through a given point P  and perpendicular to the vector: 

( 1) ( 1) ( 2) 0A x B y C z      . 

Also this plane passing through a given point Q , therefore, its 
coordinates satisfy the plane equation: 

(3 1) (1 1) (2 2) 0A B C      , 

whence we have 2 2 0A B   or 0A B  . 
We use the condition of perpendicularity of two planes: 

4 5 3 0A B C   . 
Find A  and B  from the equations system: 

0

4 5 3 0

A B

A B C

 
   

   
0

4 5 3

A B

A B C

 
   

 

1 1
5 4 94 5      


, 

0 1
0 ( 3 ) 3

3 5A C C
C

     
 

, 

1 0
3 0 3

4 3B C C
C

      


, 
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3
9 3

A C CA 
   

 
, 3

9 3
B C CB  

  
 

. 

Let’s denote 3C t , then A t  , B t . SubstituteA , B , 
C  at the a plane equation 

( 1) ( 1) ( 2) 0A x B y C z      , 

( 1) ( 1) 3 ( 2) 0 : ( )t x t y t z t        , 

( 1) ( 1) 3( 2) 0 : ( )x y z t       , 

1 1 3 6 0x y z      , 
3 4 0x y z     

Example 7.4 Find the intersection point of three planes:   

2 4 3 1 0x y z    , 3 5 2 0x y z    , 4 3 4 0x y z   . 

Solution. Make a system of plane equations and solve it using 
the Cramer’s rule: 

2 4 3

3 1 5 8 27 80 12 48 30 31;

4 3 4



             

1 4 3

2 1 5 4 18 0 0 32 15 31;

0 3 4
x



            

2 1 3

3 2 5 16 0 20 24 12 0 0;

4 0 4
y          
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2 4 1

3 1 2 0 9 32 4 0 12 31.

4 3 0
z



            

31 1
31

xx 
   

 
, 0 0

31
yy


  

 
, 31 1

31
xx  

  
 

. 

The intersection point of three planes is ( 1; 0;1)M  . 
The relationship between two planes in space has also two 

possibilities: the two distinct planes are parallel or they intersect. 
When two planes intersect, the intersection is a line (Figure 7.6). 

So, the general equation of a line in a 
space can be written  in a form 








0
0

2222

1111

DzCyBxA
DzCyBxA , 

 1111 ,, CBAN   is a normal vector of 
the first plane 1P ;  2222 ,, CBAN   is a 
normal vector of the second plane 2P . 

By now, we are familiar with 
writing equations that describe a line in 

two dimensions. To write an equation for a line, we must know two 
points on the line, or we must know the direction of the line and at 
least one point through which the line passes. In two dimensions, 
we use the concept of slope to describe the orientation, or direction, 
of a line. In three dimensions, we describe the direction of a line 
using a vector parallel to the line. In this section, we examine how 
to use equations to describe lines and planes in space. 

As in two dimensions, we can describe a line in space using a 
point on the line and the direction of the line, or a parallel vector, 
which we call the direction vector. It is a vector s  that has 
coordinates k, l, m, they are call the direction coordinates. 

The canonic equation of a line in a space looks like this 

N2 

N1 

N1N2 

P1 

P2 

Figure 7.6 
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m
zz

l
yy

k
xx 000 





 , 

where  mlks ,,
  is a direction vector,  0000 ,, zyxM  is a point 

on this line. 
After some transformations we can rewrite in a parametric 

equations 













mtzz
ltyy
ktxx

0

0

0

. 

Example 7.4 Make the parametric equations of a line, if we 

have her canonic equation 
3
3

2
4

5
1









 zyx

. 

Solution. Equate each of the relations 
5

1x , 
2
4


y , 

3
3


z   to the 

parameter t , which remains unchanged  

tx



5

1 , ty




2
4

, 3
3

z t



, 

and express variables x, y, z.  
We get  

15  tx , 42  ty , 33  tz . 

It is the parametric equations of a line. 
However, we use an equation of a line passes thought two 

point in a space, it is 

12

1

12

1

12

1

zz
zz

yy
yy

xx
xx










 , 

where  111 ,, zyx  and  222 ,, zyx  are coordinates of points 1M  and
2M  respectively, that belong to the line. 

The angel between two lines can be found by the formula 
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2
2

2
2

2
2

2
1

2
1

2
1

212121cos
mlkmlk

mmllkk




 , 

where  111 ,, mlk  is a normal vector of the first line,  222 ,, mlk  is a 
normal vector of the second line. 

The parallel condition of two lines is 

21 ss    
2

1

2

1

2

1

m
m

l
l

k
k . 

The perpendicularity condition of two lines is 

21 ss     0212121  mmllkk . 

The angel between a line and a plane in a space can be found 
by the formula 

2 2 2 2 2 2
sin Al Bm Cn

A B C l m n
  


    
 ,  

it is a sine of an angel   between a line a  and a plane   in a 
space, where , ,A B C  are coordinates of a normal vector N


 of a 

plane  ; k, l, m  are coordinates of a direction vector  s


 of a line a . 
If a line and a plane in a space are parallel then we have a 

parallel condition:  

0Ak Bl Cm   , 

and if  a line and a plane in a space are perpendicular then we have 
a perpendicularity condition:   

A B C
k l m
  . 

Example 7.6 Check that the line 2 3 1
2 1 3

x y z  
   belongs 

to the plane 6 0x y z    .  
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Solution. We apply the condition of belonging of a line to a 
plane: 

 
1 2 1 3 1 ( 1) 6 0
1 2 1 1 1 3 0
       

      
. 

It is performed, therefore, this line belongs to the plane. 
Example 7.7 Find the plane equation, which passes thought 

point (1;2; 1)P   and perpendicular to a line 
3 2 1

1 3 4
x y z  

 


. 

Solution. Write the equation of the desired plane, applying the 
equation of the plane passing through this point: 

( 1) ( 2) ( 1) 0A x B y C z      . 

Applying the condition of perpendicularity of the line and the plane, 
we replace the values , ,A B C  by proportional values k, l, m from 
the line equation  

3 2 1
1 3 4

x y z  
 


, 

and we get: 

1( 1) 3( 2) 4( 1) 0x y z      . 

After simplification we have the equation of the desired plane: 

3 4 9 0x y z    . 
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Lecture 8 
Second order curves: circle, ellipse, hyperbola, parabola 

 
The second order line is described by a second order 

equation, the general form of which is 
2 22 2 2 0Ax Bxy Cy Dx Ey F      , 

where , , , , ,A B C D E F  are constant coefficients, moreover, at least 
one of the numbers A , B , C  is non-zero, i.e. 2 2 2 0A B C   . 

There are four types of second-order lines: a circle, an ellipse, 
a hyperbola, and a parabola. 

 

 
Figure 8.1 

A circle is a set of all 
points in a plane that are at a 
given distance from a given 
point, the centre. The 
distance between any of the 
points and the centre is 
called the radius 
(Figure 8.1). 

The circle is described by 
the equation 

   2 2 2x a y b R    , 

where  is the center and  is the radius of the circle. 
Equation of a circle centered at the origin 

2 2 2x y R   
is known as the standard form of the equation of a circle. 

Example 8.1 The circle is given by the equation  
2 2 6 4 4 0x y x y     . 

Find the radius and the coordinates of the center. 

 ,C a b R

 

M  

C  R  

a  x  x  

b  

y  

y  

O  
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Solution. Transform the quadratic polynomial on the left-hand 
side of the equation by adding and subtracting the corresponding 
constants to complete the perfect squares: 

   2 26 4 4 0x x y y     , 

     2 26 9 9 4 4 4 4 0x x y y         , 

   2 23 9 2 4 4 0x y       , 

   2 23 2 9x y    . 

Then the given equation is reduced to the form which 
describes the circle centered at the point  3,2C  with radius 3R  . 

An ellipse (Figure 8.2) is a curve in a plane such that the sum 
of the distances to the two fixed points 1F  and 2F  is constant and 
equal to 2a  for every point on the curve.  

 

 
Figure 8.2 

 
The fixed points  1 ;0F c  and  2 ;0F c  are the foci of the 

ellipse. The line through the foci is the focal axis. The point on the 
focal axis midway between the foci is the center. The points 

 1 ;0A a ,  2 ;0A a ,  1 0;B b ,  2 0;B b  where the ellipse 
intersects coordinate axes are the vertices of the ellipse. A line 
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segment with endpoints on an ellipse is a chord of the ellipse. The 
chord lying on the focal axis is the major axis of the ellipse. The 
chord through the center perpendicular to the focal axis is the minor 
axis of the ellipse. The length of the major axis is 1 2 2A A a , and of 
the minor axis is 1 2 2B B b . The number a  is the semimajor axis, 
and b  is the semiminor axis. 

The shape of an ellipse (how “elongated” it is) is represented 
by its eccentricity, which for an ellipse can be any number from 0 
(the limiting case of a circle) to 1: 

c
a

 . 

The equation 
2 2

2 2 1x y
a b

   ( 2 2 2 0b a c   ) 

is the standard form of the equation of an ellipse centered at the 
origin with the x -axis as its focal axis. 

An ellipse centered at the origin with the y -axis as its focal 
axis has an equation of the form 

2 2

2 2 1y x
a b

  . 

Example 8.2 Find the vertices, the foci and the eccentricity of 
the ellipse 2 24 16 64 0x y   . 

Solution. Dividing both sides of the equation by 64  yields the 
standard form: 

2 24 16 64 : 64x y  ,   
2 24 16 1

64 64
x y

  , 

2 2

1
16 4
x y

  . 

Because the larger number is the denominator of 2x , the focal 
axis is on the x -axis. So, 2 16a  , 2 4b   and 
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2 2 2 16 4 12c a b     . Therefore, 4a  , 2b   and 
12 2 3c   . 
Thus, the vertices are  1 4;0A  ,  2 4;0A ,  1 0; 2B  , 

 2 0;2B , the foci are 1( 2 3;0)F  , 2 (2 3;0)F  and the eccentricity 

is 2 3 3
4 2

   . 

Example 8.3 Find an equation of the ellipse with the 
eccentricity 0,5  whose semimajor axis is on the x -axis and has 
length 8 . 

Solution. The semimajor axis is 8a  . The eccentricity of the 

ellipse is 0,5c
a

  , so 0,5 8 0,5 4c a     . Using 2 2 2b a c  , 

we have 2 2 28 4 64 16 48b      . So the standard form of the 
equation for ellipse is 

2 2

1
64 48
x y

  . 

A hyperbola (Figure 8.3) is the set of all points in a plane 
whose distances from two fixed points 1F  and 2F  in the plane have 
a constant difference equals 2a .  

 

 
Figure 8.3 
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The fixed points  1 ;0F c  and  2 ;0F c  are the foci of the 
hyperbola. The line through the foci is the focal axis. The point on 
the focal axis midway between the foci is the center. The points 

 1 ;0A a ,  2 ;0A a  where the hyperbola intersects its focal axis 
are the vertices of the hyperbola. A line segment with endpoints on 
a hyperbola is a chord of the hyperbola. The chord lying on the 
focal axis connecting the vertices is the transverse axis of the 
hyperbola. The length of the transverse axis is 2a . The line segment 
of length 2b  that is perpendicular to the focal axis and that has the 
center of the hyperbola as its midpoint is the conjugate axis of the 
hyperbola. The number a  is the semitransverse axis, and b  is the 
semiconjugate axis. Notice that the hyperbola has two branches. 

The shape of a hyperbola is represented by its eccentricity. 
For a hyperbola the eccentricity 1  : 

c
a

 . 

The equation 
2 2

2 2 1x y
a b

   ( 2 2 2 0b c a   ) 

is the standard form of the equation of a hyperbola centered at the 
origin with the x -axis as its focal axis. This hyperbola has two 

asymptotes by x
a

  . 

A hyperbola centered at the origin with the y -axis as its focal 
axis has an equation of the form 

2 2

2 2 1y x
a b

  , 

and two asymptotes ay x
b

  . 

Example 8.4 Find an equation of a hyperbola, if the distance 
between its foci is equal to 26 , and the eccentricity is 13 /12  . 
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dl  

F  

M  

O  x  

y  

Figure 8.4 
 

Solution. Since the distance between the foci of a hyperbola is 

2 26c  , then 13c  . The eccentricity of the hyperbola is c
a

  , so 

13 1213 12
13/12 13

ca     


. Using 2 2 2b c a  , we have 
2 2 213 12 25b    . So the standard form of the equation for 

hyperbola is 
2 2

1
144 25
x y

  . 

Example 8.5 Find an equation of a hyperbola with asymptotes 
2y x  , if the distance between its foci is equal to 10 . 
Solution. Since the distance between the foci of a hyperbola is 

2 10c  , then 5c  . From the equations of asymptotes 

2by x x
a

     we have 2b
a
 , so 2b a . Using 2 2 2b c a  , we 

have 
 2 2 22 5a a  ,   2 2 24 5a a  ,   2 2 24 5a a  , 25 25a  ,   2 5a  ,  

5a  , 2 2 5b a  . 

So the standard form of the 
equation for hyperbola is 

   
2 2

2 2 1
5 2 5

x y
  , 

2 2

1
5 20
x y

  . 

A parabola is the set of all 
points in a plane equidistant from a 
particular line dl  (the directrix) and 
a particular point F  (the focus) in 
the plane (Figure 8.4). 

The line passing through the focus and perpendicular to the 
directrix is the (focal) axis of the parabola. The axis is the line of 
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symmetry for the parabola. The point where the parabola intersects 
its axis is the vertex of the parabola. The vertex is located midway 
between the focus and the directrix and is the point of the parabola 
that is closest to both the focus and the directrix. 

The general equation is complicated because of the choice of 
a general point and a general line. By an appropriate choice of axes 
this equation can be simplified; but it will then represent only 
parabolas in special positions. For example, if axes are chosen so 

that the focus has coordinates ;0
2
pF  

 
 

 and the equation of the 

directrix is :
2d
pl x    (Figure 8.4), then the standard form of the 

equation of such parabola is 
2 2y px . 

The eccentricity of the parabola is equal to one 1 . 
Some more cases are shown at the figures below. 

2 2y px  , 

:
2d
pl x  ,   

;0
2
pF   

 
 

2 2x py , 

:
2d
pl y   ,   

0;
2
pF  

 
 

 

 

2 2x py  , 

:
2d
pl y  ,   

0;
2
pF   

 
 

Figure 8.5 Figure 8.6 Figure 8.7 
 
Example 8.6 Find the focus and the equation of the directrix 

of the parabola 2 4 0y x  . 

y 

x 
F 

O 

ld 

y 

x 

F 

O 
ld 

y 

x F O 

ld 
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Solution. The standard form of the given equation is 2 4y x  . 
The coefficient of x  is   2 4p   ,   2p  . 

So, the focus is  ;0 1;0
2
pF F    

 
.  

The directrix is the line 
2
px  , i.e. 1x  . 

In the Cartesian coordinate system to define the point with the 
coordinates ( , )x y  we start from the origin and then move x  units 
horizontally followed by y  units vertically. 

However, this is not the only one way to define a point in two 
dimensional space. The polar coordinate system is a two-
dimensional coordinate system in which each point on a plane is 
determined by a distance from a reference point and an angle from 
a reference direction. 

Figure 8.8 

The reference point O  
(analogous to the origin of a 
Cartesian coordinate system) is 
called the pole, and the ray from the 
pole in the reference direction is the 
polar axis. The distance OM   
from the pole is called the radial 
coordinate or radius, and the angle 
  is called the angular coordinate, 
polar angle, or azimuth (Figure 8.8). 

Polar coordinates ( , )   are connected with rectangular 
coordinates ( , )x y  by the relations: 

cosx   , siny   , (remember that 2 2 2x y   ). 

The Cartesian coordinates ( , )x y  can be converted to polar 
coordinates ( , )   by the following relations: 

( , )M    

  

O  E  
x  

  
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2 2x y  , ytg
x

 , 
2 2

sin y
x y




 , 
2 2

cos x
x y




 . 

The equation defining an algebraic curve expressed in polar 
coordinates is known as a polar equation. In many cases, such an 
equation can be specified more simply by defining   as a function 
of  . Then the resulting curve consists of points in a form 
( ( ), )    and it can be regarded as the graph of the polar function 
  respecting to  . 

Example 8.7 The curve graph given by the equation 

1 cos 2   . 

Solution. To draw a line in a polar coordinate system, we will 
compile a table of values of the polar radius   for certain values of 
the polar angle  : 

0 ,  1 cos 2 0 1 cos 0 1 1 0        , 

8



 , 21 cos 2 1 cos 1 0, 29
8 4 2

         
 

 
 , … 

  0  

8


 
4


 
3
8


 
2


 
3
4


 
  5

4


 
3
2


 
7
4


 
2  

  0  0, 29  1 1,7  2  1 0  1 2  1 0  

Mark the points and construct a line (Figure 8.9). 
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Figure 8.9 

 
Remember, that sometimes in a some complicated tasks more 

easy to use polar system coordinate, that help to simplify the 
process of a solution, namely to replaced the Cartesian coordinate to 
the polar. 

Also, in addition to the polar coordinate system, a cylindrical 
or spherical coordinate system is sometimes used, which also 
significantly simplify the process of finding a solution. 

We will talk about these coordinate systems later. 
You can find out more about these coordinate systems by 

yourself using the list of literature suggested at the end of the 
synopsis. 
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Lecture 9 
Surfaces of the second order 

 
The surface of the second order is called the set of points of 

space, the coordinates of which satisfy the algebraic equation of the 
second degree 

0222222222  LKzHyGxFxzEyzDxyCzByAx .     (9.1) 

where at least one of the coefficients FEDCBA ,,,,,  is non-zero. 
This equation can define a sphere, an ellipsoid, a hyperboloid 
(single-cavity or double-cavity), a paraboloid (elliptical or 
hyperbolic), a cone, a cylinder (elliptical, hyperbolic or parabolic), 
as well as a degenerate surface, an empty plane, a couple of planes). 
Due to the parallel transfer and rotation of the coordinate system, 
equation (9.1) can be reduced to the canonical form. The shape and 
location of surfaces are studied by the method of cross sections 
(Appendix A). To do this, cross the surface with planes parallel to 
the coordinate planes, and determine the type of curve obtained at 
this intersection 

Canonical equation of an ellipsoid with semiaxes cba ,,  is: 

12

2

2

2

2

2


c
z

b
y

a
x         (9.2) 

The surface (Figure 9.1) is 
symmetrical about the 
coordinate axes and coordinate 
planes. The center of symmetry 
is at the origin. We use the 
cross-sectional method to 
determine the shape of the  

                Figure 9.1                       surface. Cut the surface with a: 

plane 
 

hx 
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; 

1) if ah   then 01 2
2

2

 H
a
h  and in this case in cross 

section will be an ellipse with axes  HcHb, ; 
2) if ah   then we get two points  0,0,a ,  0,0,a ; 

3) if ah   then we get 01 2

2


a
h  and in this case the plane 

and the surface do not intersect.  
If Rcba   then the equation (9.1) transform in a sphere 

equation that has the centre at the origin point and radius R : 
2222 Rzyx     (9.3) 

Sphere equation that has the centre at the point  000 ,, zyxM o  
and radius 0R  is: 

      22
0

2
0

2
0 Rzzyyxx      (9.4) 

Hyperboloid is a quadric surface having a center not at 
infinity, and some of its plane sections 
hyperbolas. There are two kinds of 
hyperboloid, those of one and of two 
sheets. The hyperboloid of one sheet has a 
real intersection with every plane in space; 
that of two sheets has only imaginary 
intersections with some planes. In either 
case all the plane sections perpendicular to 
one of the axes are ellipses, and those 
perpendicular to either of the others are 
hyperbolas. 

Canonical equation of a single- 
           Figure 9.2                cavity hyperboloid (Figure 9.2) is 

2

2

2

2

2

2

1
a
h

c
z

b
y


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12

2

2

2

2

2


c
z

b
y

a
x

, 0,, cba                           (9.5) 

The surface is symmetrical with respect to the coordinate planes 
zx0  і zy0 .  

The origin is the center of symmetry. The cross sections of the 
surface equation (9.5) by planes 0x , 0y  are hyperbolas and we 
get: 

12

2

2

2


c
z

b
y

,      12

2

2

2


c
z

a
x

. 

The cross section of the surface by plane hz   is an ellipse   

   
11 2

2

2

2
2

2

2

2

2

2

2


bH

y
aH

xH
a
h

c
z

b
y . 

A single-cavity hyperboloid belongs to linear surfaces. It can 
be constructed using two systems of 
straight lines.  

Canonical equation of a two-
cavity hyperboloid is: 

12

2

2

2

2

2


c
z

b
y

a
x , )0,,( cba    (9.6) 

The surface (Figure. 9.3) is 
symmetrical about the coordinate 
axes and coordinate planes. The 
center of symmetry is at the origin. 

             Figure 9.3                   

The cross sections of the surface (9.6) by the planes 0x  and 
0y  are hyperbolas that have the following equations: 

12

2

2

2


c
z

b
y , )0,( cb ; 
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12

2

2

2


c
z

a
x , )0,( ca . 

Consider the cross sections of the surface (9.6) by the plane 
hz  : 

12

2

2

2

2

2


a
h

c
z

b
y ; 

1) if ch  – then the section is an empty set; 

2) if ch   that at the section we get two points:   с,0,0 , 
 с,0,0 ; 

3) if ch   that at the section we get an ellipse:  

   
12

2

2

2


bH
y

aH
x ,    








 12

2
2

c
hH . 

A conical surface is a surface described by a straight line 
(generating) passing through a fixed point S  (the vertex of a cone) 
and a variable point M  moving along a curve (a conical surface 
guide). If the guide of a conical surface is a curve of the second 

order, then the surface is called a cone of 
the second order. 

The canonical equation of an 
elliptical cone of the second order is:  

02

2

2

2

2

2


c
z

b
y

a
x , )0,,( cba .        (9.6) 

The surface is symmetrical about the 
coordinate axes and coordinate planes. The 
center of symmetry is at the origin 
(Figure 9.4). 

Cone cross sections by planes 0x   
         Figure 9.4             and 0y  are intersecting lines:  
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cbzy  , cazx  . 
Surface sections by plane   are ellipses:   

2

2

2

2

2

2

c
h

b
y

a
x

 ,   
   

12

2

2

2


bH
y

aH
x ,    








 2

2
2

c
hH . 

The equations of elliptical conical surfaces of the second 
order, the axes of which coincide with the axes х0 , у0 , have the 
form: 

02

2

2

2

2

2


c
z

b
y

a
x , )0,,( cba , 02

2

2

2

2

2


c
z

b
y

a
x , )0,,( cba          (9.7) 

Canonical equation of an elliptical 
paraboloid  is: 

z
q
y

p
x 2

22

 , )0,( qp            (9.8) 

The surface is symmetrical about 
the coordinate planes zx0 , zy0  and the 
axis z0  (Figure 9.5). Surface sections by 
planes 0x , 0y  are parabolas: 

qzy 22  ,  pzx 22  . 
Figure 9.5 

Surface sections by planes 0 hz   are ellipses  

1
)2()2( 2

2

2

2


qh
y

ph
x  

Equation of hyperbolic paraboloid is: 

z
q
y

p
x 2

22

 , )0,( qp                              (9.9) 

The surface is symmetrical about the coordinate planes zx0 , 
zy0  (Figure 9.6 ). 

hz 
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Figure 9.6 

 
1. In the cross section of the surface by the plane 0x  we 

obtain a parabola: qzy 22  . The branches of the parabola are 
directed downwards. 

2. In the cross section of the surface by the plane 0y  we 
obtain a parabola: pzx 22  . The branches of the parabola are 
directed upwards. 

3. In the cross section of the surface by the plane hz   we 

obtain a hyperbola: h
q
y

p
x 2

22

  . If 0h  then the hyperbola 

branches intersect the axis x0 ; if 0h  then the hyperbola branches 
intersect the axis y0 . When 0h  we get two straight lines 
intersecting at the origin point. 

A cylindrical surface is a surface described by a straight line 
(generating) that moves parallel to itself along a given line (cylinder 
guide). If the guide of the cylinder lies in the plane yx0 , and the 
generator is parallel to the axis z0 , then the equation of the cylinder 
has the form:   0, yxF  or  xfy  . Similarly,   0, zxF  or 

 xfz   is an equation of a cylindrical surface whose generator is 
parallel to the axis y0 ;   0, zyF  or  yfz   is an equation of a 
cylindrical surface whose generator is parallel to the axis x0 . 
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If the guide of a cylindrical surface is a second-order curve, 
then the surface is called a cylindrical surface of the second order. 

According to the type of curve obtained in the cross section of 
the cylinder with a plane perpendicular to the generating, 
distinguish such second-order cylinders: 

222 Ryx   is an equation of a circular cylinder;  

12

2

2

2


b
y

a
x  is an equation of a elliptical cylinder; 

12

2

2

2


b
y

a
x  is an equation of a hyperbolic cylinder;  

pyx 22   is an equation of a parabolic cylinder. 
Similarly, we can write the equation of cylindrical surfaces of 

the second order, the product of which is parallel to the axes x0 , 
y0 . 

At the figures below we can see circular (Figure 9.7) and 
hyperbolic (Figure 9.8) cylinders. 

Figure 9.7    Figure 9.8 
 
All graphs of surfaces of the second order with their equations 

are presented in Appendices B. 
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Lecture 10 
Theory of Limits 

 
The number A  is called the limit of the function  y f x  

when x a , if for all values of x  that differ little enough from the 
number a , the corresponding values of the function  y f x  
differ little enough from the number A : 

 lim
x a

f x A


 . 

If x a  and x a , then we write conventionally 0x a  ; 
similarly, if x a  and x a , then we write 0x a  . The 
numbers 

0
( 0) lim ( )

x a
f a f x

 
   and 

0
( 0) lim ( )

x a
f a f x

 
   

are called, respectively, the limit of the function ( )f x  from the left 
and the limit of the function ( )f x  from the right at the point a  (if 
these numbers exist). 

For the existence of the limit of a function ( )f x  as x a , it 
is necessary and sufficient to have the following equality: 

( 0) ( 0)f a f a   . 

Example 10.1 Find the limits on the right and left of the 
function 

1( ) arctanf x
x

  

when 0x  . 

Solution: 

 
0

1 1( 0) lim arctan arctan arctan
0 2x

f
x




         
, 
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 
0

1 1( 0) lim arctan arctan arctan
0 2x

f
x




          
. 

Obviously, the function ( )f x  in this case has no limit as 
0x  . 
If the limits 1lim ( )

x a
f x


 and 2lim ( )

x a
f x


 exist, then the following 

theorems hold: 

1)        1 2 1 2lim lim lim
x a x a x a

f x f x f x f x
  

     , 

2)        1 2 1 2lim lim lim
x a x a x a

f x f x f x f x
  

     , 

3)    1 1lim lim
x a x a

C f x C f x
 

     , 

4)  
 

 
 

11

2 2

lim
lim

lim
x a

x a
x a

f xf x
f x f x






  (  2lim 0
x a

f x


 ). 

Example 10.2 Compute 
1

4lim 2

2

2 


 x
xx

x
. 

Solution: 
 
  













 1lim

4lim

1
4lim 2

2

2

2
2

2

2 x

xx

x
xx

x

x

x































1limlim

4limlimlim

1limlim

4limlimlim

2

2

2

22

2

2

2

2

2

22

2

2

xx

xxx

xx

xxx

x

xx

x

xx
 

   

 








 







 





























1lim2lim

4lim2lim2lim

1limlim

4limlimlim

2

2

2

22

2

2

2

2

2

22

2

2

xx

xxx

xx

xxx

x

xx

   
  5

6
12

422
2

2





 . 
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The function ( )f x  is called infinitesimal as x a  if 

lim ( ) 0
x a

f x


 . 

The function ( )f x  is called infinitude as x a  if 

lim ( )
x a

f x


  . 

Properties of infinitesimal and infinitude functions: 

1) if ( )f x  is infinitesimal function as x a , then ( )f x  is 
also infinitesimal one; 

2) if 1( )f x  and 2 ( )f x  are infinitesimal functions as x a , 
then 1 2( ) ( )f x f x  is also infinitesimal one; 

3) if 1( )f x  and 2 ( )f x  are infinitude functions as x a , then 

1 2( ) ( )f x f x  and 1 2( ) ( )f x f x  are also infinitude ones; 
4) if 1lim ( ) const

x a
f x b


  , 2lim ( )

x a
f x


  , then 

 1 2lim ( ) ( )
x a

f x f x b


     ,    1 2lim ( ) ( )
x a

f x f x b


     , 

  1 ( )
2lim ( ) f x b

x a
f x


    ,   1 ( )

2lim ( ) bf x

x a
f x


    ,   

1

2

( )lim 0
( )x a

f x b
f x

 


; 

5) if 1lim ( ) const
x a

f x b


  , 2lim ( ) 0
x a

f x


 , then 

1

2

( )lim
( ) 0x a

f x b
f x

   . 

We will now consider the cases where, for some assigned 
value of x , the numerator and denominator are both zero or both 
infinity. The fraction is then said to be indeterminate. 
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During computing of the limit of two integral polynomials 

ratio as x   and getting the indeterminate form  
  

, it is 

necessary, firstly, to divide both terms of the ratio by nx , where n  
is the highest degree of these polynomials. A similar procedure is 
also possible in many cases for fractions containing irrational terms. 

Example 10.3 Compute 
2

2
3 5lim

2 3x

x x
x

 


. 

Solution: 
2

2 2 2 2 2 2

22 2

22 2

3 5 3 513 5 3 5lim lim lim 32 32 3 2 3 2
x x x

x x
x x x x x x x

xx
xx x

  

                   
 

2

2

3 51 1 0 0 1
3 2 0 22

      




. 

Example 10. 4 Compute 
2 3 5lim

3x

x x
x

 


. 

Solution: 
2

2 2 2 2 2 2

2 2 2

3 5 3 513 5 3 5lim lim lim3 1 33 3x x x

x x
x x x x x x x

xx
x x x x

  

                   
 

2

2

3 51 1 0 0 1
1 3 0 0 0

        


 

. 

If ( )P x  and ( )Q x  are integral polynomials and ( ) 0P a   or 
( ) 0Q a  , then the limit of the rational fraction 
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( )lim
( )x a

P x
Q x

 

is obtained directly. 
But if ( ) ( ) 0P a Q a  , then it is advisable to cancel the 

binomial x a   out of the fraction ( )
( )

P x
Q x

 once or several times. To 

do it, we can use the formulas of abridged multiplication: 
1)    2 2a b a b a b    , 

2)   3 3 2 2a b a b a ab b    , 

3)   2
1 2ax bx c a x x x x     , where 1 2,x x  are roots of 

the equation 2 0ax bx c    which can be found by using the 
discriminant: 

2 4D b ac  , 1,2 2
b Dx

a
 

 . 

Example 10.5 Evaluate the following limits 

a) 
2

21

2 1lim
1x

x x
x

 


; b) 
27

352lim 3

2

3 


 x
xx

x
. 

Solution: 

a)  
 

22

221

2 1 1 12 1 2 1 1 0lim
1 1 1 01 1x

x x
x

                
 

Factorize the numerator and denominator and cancel: 
  2 1 1 1x x x    ,  

 21 4 2 1 1 8 9D         , 

1
1 9 1 3 2 1
2 2 4 4 2

x    
   


, 

22 1x x 
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2
1 9 1 3 4 1
2 2 4 4

x     
    


, 

 2 12 1 2 1
2

x x x x      
 

. 

 

  
 

1 1 1

1 12 1 2 2 1 12 1 2 1 3 32 2lim lim lim
1 1 1 1 1 1 1 1 2 2x x x

x x x
x

x x x x  

                       
        

; 

b) 



 0

0
27

352lim 3

2

3 x
xx

x
 

  

  

  
   











 933

2132lim

93327
2
1;3;1

2132352

23

23

21

2

xxx
xx

xxxx

xxD

xxxx

x
 

 
27
7

999
132

93
212lim 23











 xx
x

x
. 

To find the limit of an irrational expression, when one gets the 

indeterminate value 0
0
 
  

 or   , it is necessary to transfer the 

irrational term from the numerator to the denominator, or vice 
versa, from the denominator to the numerator. 

Example 10.6 Compute 
0

lim
1 3 1x

x
x  

. 

Solution. 

0

0 0lim
01 3 1 1 3 0 1x

x
x

          
 

Multiply the numerator and denominator of the fraction under 
the limit sign by the conjugated expression of the denominator, i.e. 
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by 1 3 1x  : 

 
   

 
 

 
 20 0 02

1 3 1 1 3 1 1 3 1
lim lim lim

1 3 11 3 1 1 3 1 1 3 1x x x

x x x x x x

xx x x  

     
  

      
 

 
0 0

1 3 1 1 3 1 1 0 1 2lim lim
3 3 3 3x x

x x x
x 

     
    . 

We have two fundamental limits that help us to simplify the 
limits calculation and they are frequently used. 

Trigonometric functions: 

0

sinlim 1





 , 

and some useful consequences : 

0

tanlim 1





 ,   
0

arcsinlim 1





 ,   
0

arctanlim 1





 , 

0
lim 1

sin



 ,   

0
lim 1

tan



 ,   

0
lim 1

arcsin



 ,   

0
lim 1

arctan



 . 

Exponential functions: 

 
1

0

1lim 1 lim 1 2,72
x

x
x x

x e
x 

      
 

. 

If you get the indeterminate value 0
0
 
  

 of the limit with 

trigonometric expressions it is necessary to factorize the numerator 
and denominator by using trigonometric formulas and cancel or 
apply the frequently used limits for trigonometric functions. 
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Note. Sometimes we need to use your school knowledge 
about the trigonometric functions which we can find at Appendices 
B-C. 

Example 10.7 Compute 
0

sin 3lim
x

x
x

. 

Solution: 

0 0 0

sin 3 sin 0 0 sin 3 3 sin 3lim lim 3 lim 3 1 3
0 0 3 3x x x

x x x
x x x  

           
. 

Example 9.8 Compute: a) 
0

1 cos 4lim
1 cos8x

x
x




, b) 



 


 x

xctg
x 4

)4(lim
4

. 

Solution: 

a) 
0

1 cos 4 1 cos 0 0lim
1 cos8 1 cos 0 0x

x
x

         
, 

firstly, we should use a trigonometric formula 2 1 cos 2sin
2





  

(look at Appendixe C), then frequently used limits for trigonometric 
functions: 

2
2

2
2 20 0 02

42sin sin 2 sin2 sin2 2 221 cos2 2sin lim lim lim8 sin 4 sin 4 2 22sin
2

x x x

x
x x x x x

x x x x x  

  
       

 
 


 x

x
x

x
x

x
x

x
x

x
xxxxx 4sin
lim

4sin
4lim11

4sin
4lim

2
2sinlim

2
2sinlim

002

2

000
 

4
1

4
11

4
1

4sin
4lim

44sin
4lim111

00









 x

x
x

x
xx

; 

b) 








 04
;4;4

0
0

4
)4(lim

4 ux
uxxu

x
xctg

x 






 








 u
uctg

u
uctg

uu 4
)2(lim

)4(4
)44(lim

00



  
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4
11

4
1lim

4
1

0


 u
utg

u
. 

When taking limits of the form 

  ( )lim ( ) g x

x a
f x A


 , 

one should bear in mind that: 
1) if there are final limits 

lim ( )
x a

f x B


  and lim ( )
x a

g x C


 , 

then CA B ; 
2) if lim lim ( ) 1

x a
f x B


   and lim ( )

x a
g x


  , then 

0, 1;
, 1;

B
A

B


  
 

3) if lim ( ) 1
x a

f x B


   and lim ( )
x a

g x


  , then we get the 

indefinite value 1    and should use frequently used limits for 
exponential functions. 

Example 10.9 Compute 
42 3lim

1

x

x

x
x

 
  

. 

Solution: 
2 3( )

1
xf x
x





,   ( ) 4g x x , 

2 3 3 32 22 3 2 3 2 0lim ( ) lim lim lim 21 1 11 1 1 01 1
x x x x

x
x x x xf x xx

x x x
   

                      


, 

lim ( ) lim(4 ) 4
x x

g x x
 

     . 
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Thus, we have the second case and 
42 3lim 2

1

x

x

x
x





      
, 

because 2 1 . 

Example 10.10 Compute 
43lim

1

x

x

x
x

 
  

. 

Solution: 
3( )
1

xf x
x





,   ( ) 4g x x , 

3 3 31 13 3 1 0lim ( ) lim lim lim 11 1 11 1 1 01 1
x x x x

x
x x x xf x xx

x x x
   

                      


, 

lim ( ) lim(4 ) 4
x x

g x x
 

     . 

Thus, we have the third case:  
43lim 1

1

x

x

x
x





        
 

and to find the limit we should use frequently used limits for 
exponential functions: 

4 4 4 43 3 ( 1) 3 1 4lim 1 1 lim 1 lim 1 lim 1
1 1 1 1

x x x x

x x x x

x x x x x
x x x x   

                                          
 

444 1 1 14 16 161 4 4 lim
1 14 4lim 1 lim 1

1 1
x

xx x xx xx
x

x x
e e e

x x


         
 

 
                   

 

 

16
16 16lim lim1 1 1611 1 161 0

x x

x
x

x
x x xe e e e e

   
     . 
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Lecture 11 
Derivative calculus 

 
An increment of a variable quantity is any addition to its 

value, and is denoted by the symbol   written before this quantity. 
Thus x  denotes an increment of x , y  is an increment of y . 

The derivative of a function ( )y f x  at a point x  is the limit 
of the ratio 

   
0 0

lim lim
x x

f x x f xyy
x x   

   
 

, 

where    y f x x f x      is the increment of the function 
corresponding to the increment of the argument x . The derivative 

y  is also denoted by xy , dy
dx

,  f x , df
dx

. 

The operation of finding the derivative y  is usually called 
differentiation of the function. 

Example 11.1 Calculate the derivative of the function 2y x . 
Solution. The function 2( )f x x  has the increment  

           2 2 2f f x x f x x x x x x x x x x x x x                  . 

Find the limit: 

       
0 0 0

2
lim lim lim 2 2 0 2
x x x

f x x f x x x x
x x x x

x x     

   
     

 
. 

Thus, 
2y x  . 
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Figure 11.1 

Geometrical sense 
of the derivative. The 
value of the derivative of 
the function  f x  at the 
point 0x  is equal to the 
tangent of the angle 
formed by the positive 
direction of the x -axis 
and by the positive 
direction of the tangent 
line drawn to the graph 

of this function at the point with the 0x  abscissa (Figure 11.1): 

 0tg f x  . 

This quantity is denoted by the term slope. 

Let  y f t  be the function describing the path y  traversed 

by a body by the time t . Then the derivative  f t  is the velocity of 
the body at the instant t  (physical sense of the derivative).  

Basic rules for finding derivatives 
Let C  be a constant,  u u x ,  v v x  be functions having 

derivatives. Then: 
1) the constant C  can be “moved outside” or “moved 

through” the derivative: 

 Cu Cu  ; 

2) the addition symbol can be moved through the derivative: 

 u v u v     ; 

3) for a product of functions:  uv u v uv    ; 

0x  x  

y  

  

 y f x  
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Table 11.1 – Table of derivatives of basic functions 
№ Function Derivative № Function Derivative 

1. Constant 0C    5. Sine  sin cosu u u     

2. Power 
function   1a au au u

  6. Cosine  cos sinu u u      

2a  1x    7. Tangent   2

1tan
cos

u u
u

     

2b    1
2

u u
u


   

8. Cotangent   2

1cot
sin

u u
u

   

  

2c  2

1 1 u
u u


      

  9. Arcsine 
 

2

1arcsin
1

u u
u

  


  

3. Exponential 
function 

  lnu ua a a u


 
  

10. Arccosine  
2

1arccos
1

u u
u

   


 

3a Exponent  u ue e u


    11. Arc- 
tangent 

 
21 u

u
arctgu




  

4. Logarithmic 
function 

  1log
lna u u

u a
  

  
12. Arc-

cotangent 
 

21 u

u
arcctgu




   

4a Natural 
logarithm   1lnu u

u
      

  

4) for a quotient (division) of functions: 2

u u v uv
v v

     
 

; 

5) for a composite function:    u xf u x f u      ; 

6) for the inverse function: 1 1
x

y

dyy dxdx x
dy

   


; 

Example 11.2 Find the derivatives of the functions: 
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a) 2 1y x  ,     b) 33 2y x  ,     c) 3y x ,     d) 2siny x , 

e) cos3y x ,      f) ln tany x ,     g) ln 2 tany x x  ,  h) 
2xey
x

  

i) 2ln siny x , j) 3 sin 3y x x  , k) 
2arctg xy

x
 . 

Solution: a)    2 1 2 1 2 0 2 1 2y x x x              ; 

b)      3 3 3 2 23 2 3 2 3 0 3 3 9y x x x x x             ; 

c)    
3 122 2 2 2

3 3 2
33 3 3
2

1 1 3 3 3 3 33
2 2 22 2 2 2

x x x x xy x x x
x x x x


            , 

 
3 1

3 2 23 3
2 2

xy x x x
 

     
 

; 

d)     2sin 2sin sin 2sin cos sin 2y x x x x x x        ; 

e)       cos 3 sin 3 3 sin3 3 sin3 3 1 3sin3y x x x x x x x                ; 

f)      2 2
1 1 cotln tan tan cot

tan cos cos
xy x x x

x x x
        ; 

g)         2

1 1ln2 tan ln2 tan ln2 tan 2 tan ln2
2 cos

y x x x x x x x x x
x x

                 

2 2

1 ln 2 tan ln 22 tan
2 cos cos

x x xx
x x x x

      ; 

h)      2 2 2 2 22 2 2

2 2 2 2

2 1 2 12x x x x xx x xe x e x e x x e e xe e x ey
x x x x x

                 
 

; 
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i)      2 2 2 2
2 2

1 1lnsin sin cos
sin sin

y x x x x
x x

           

2
2 2

2
cos 2 2 2
sin

x x ctgx x xctgx
x

    ; 

j)        3 3 3 2 3sin3 sin3 sin3 3 sin3 cos3 3y x x x x x x x x x x x               
2 3 23 sin 3 cos 3 3 3 sin 3x x x x x x    

 3 23 cos3 3 sin 3 cos3x x x x x x  ; 

k) 
   

 
2 22

2

arctg x x arctg x xarctg xy
x x

    
    

 
 

  2 2
2

1 1 12 2
12 2

arctgx arctgx x arctg x arctgx x arctg x
xx x

x x

       
   

2

2
2

1 2
xarctgx arctg x

x x
x


  2

2
1 2

arctgx x arctgx
x x x

 
    

. 

 
If     x

y f x


  is a composite exponential and powerful 
functions, it is necessary, first of all, take logarithms of the function: 

    ln lny x f x  , 

and then to find the derivative of both sides of the equation: 

       ln lny x f x    . 

Take into account the following properties of logarithms: 
 ln ln lna b a b   , 
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ln ln lna a b
b

    
 

, 

ln lnba b a  . 

Example 11.3 Find the derivative of the function  
2

cos xy x . 
Solution. This function is a composite exponential one, so, it 

is necessary first to take logarithms of the function: 

 
2

ln ln cos xy x ,    2ln ln cosy x x , 

and then to find the derivative of both sides of the equation: 

    2ln ln cosy x x   , 

      2 21 ln cos ln cosy x x x x
y

    , 

  21 sin2 ln cos
cos

xy x x x
y x

   , 

  22 ln cos tgy y x x x x   , 

    
2

2cos 2 ln cos tgxy x x x x x   . 

 
To find the derivative of an implicit function defined by the 

equation ( , ) 0f x y   it is sufficient:  
a) to calculate the derivative, with respect to x , of both sides 

of the equation, taking y  as a function of x ; 
b) to solve the resulting equation for y . 

Example 11.4 Find the derivative of the function: 

arctgy x y  . 
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Solution:    arctgy x y   ,  arctgy x y    , 

2

11
1

y y
y

  


, 

 2 21 1y y y y     , 

2 21y y y y y      , 

2 21y y y   , 
2

2

1 yy
y
  . 

To find the derivative of a parametrically defined function 
 x x t ,  y y t  it is necessary to use the following formula: 

t
x

t

yy
x


 


. 

Example 11.5 Find the derivative of the function: 

 ln 1 ;

1.

x t

y t

 


 
 

Solution: 

   1 1 11 1 1
2 1 2 1 2 1ty t t

t t t
         

  
, 

    1 1 1ln 1 1 1
1 1 1tx t t

t t t
         

  
, 

1
1 1 1 12 1

1 1 22 1 2 1
1

x
t t tty

t t
t

       
 



. 
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Lecture 12 
Derivatives of higher orders. Differentials of functions.  

L’Hospital rule for evaluating indeterminate forms 
 

The second-order derivative or the second derivative of a 
function ( )y f x  is the derivative of the derivative ( )f x . The 

second derivative is denoted by y , xxy , 
2

2
d y
dx

, ( )f x . 

The derivative of the second derivative of a function 
( )y f x  is called the third-order derivative, ( )y y   . The nth-

order derivative of the function ( )y f x  is defined as the 
derivative of its ( 1)n  th derivative: 

( ) ( 1)( )n ny y   . 

The nth-order derivative is also denoted by ( )n
xy , 

n

n
d y
dx

, 

( ) ( )nf x . 
When finding higher order derivatives of an implicit 

function use the same rules as for the finding the first order 
derivative of an implicit function. 

If the function is parametrically defined, then the derivatives 
of the second order and above are found by the formulas: 

 x t
xx

t

y
y

x


 


, 

 xx t
xxx

t

y
y

x


 


, … , 

 ( 1)
( )

n
xn t

x
t

y
y

x

 



. 

Example 12.1 Find the third-order derivative of the function: 

  21 9 6
6

y x x   . 

Solution: 

           2 2 21 19 6 9 6 9 6
6 6

y x x x x x x
                     

   
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        2 2 2 21 1 12 6 9 1 2 12 9 3 12 9
6 6 6

x x x x x x x x              

,      21 1 13 12 9 6 12 6 2 2
6 6 6

y x x x x x
              

 
,   

 2 1y x     . 
Example 12.2 Find the second derivative of the function: 

 
tan ;

ln 1 cot .
x t

y t


  
 

Solution. This function is parametrically defined one. So, we 
should use the formulas: 

t
x

t

yy
x


 


,   
 x t

xx
t

y
y

x


 


. 

Let us do it: 

     


 t
t

tу t cot1
cot1
1cot1ln  

 tttt cot1sin
1

sin
1

cot1
1

22 







 


 ,   2

1tan
costx t

t
   , 

 
 

2 2 2

2

2

1
sin 1 cot cos cot

1 sin 1 cot 1 cot
cos

x

t t t ty
t t t

t


 

     
  

, 

       
 

2 22

2

cot 1 cot cot 1 cotcot
1 cot 1 cotx t

t t t tty
t t

               
 

 

 
 

 

2
22 2

2 2 2

1 12cot 1 cot cot 2cot 1 cot cotsin sin
1 cot 1 cot sin

t t t t t tt t
t t t

                   
 
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 
 

 

2 2

2 22 2

cot 2 cot2cot 2cot cot
1 cot sin 1 cot sin

t tt t t
t t t t

 
 

 
, 

 
   

 
 

 

2 2 2 3

2 22

2

cot 2 cot
1 cot sin cot 2 cot cos cot 2 cot

1 1 cot sin 1 cot
cos

xx

t t
t t t t t t t

y
t t t

t



  
   

 
. 

The increment x  is also called the differential of the 
independent variable x  and is denoted by dx . 

The differential dy  of a function ( )y f x  is the principal 
part of its increment y  at the point x . It is equal to the product of 
its derivative by the differential of the independent variable:  

dy y dx . 

Basic properties of the differential: 

1) 0dC  , where C  is constant, 4)  d uv vdu udv  , 

2)  d Cu Cdu ,   5) 2

u vdu udvd
v v

   
 

 ( 0v  ), 

3)  d u v du dv   ,   6)    df u f u du . 

The second-order differential is the differential of the first-
order differential, 2 ( )d y d dy . If x  is the independent variable, 
then 2 2d y y dx . In a similar way, one defines differentials of 
higher orders. 

Example 12.3 Find the derivatives and differentials up to the 
third order inclusive for a function lny x x  . 

Solution: 

      1ln ln ln ln ln 1y x x x x x x x x x
x

              , 
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      1ln 1 ln 1y x x
x

        , 2

1 1y
x x

     
 

, 

 ln 1dy x dx  ,   2 21d y dx
x

 ,   3 3
2

1d y dx
x

  . 

 
L’Hospital rule. If ( )f x  and ( )g x  are both infinitesimals or 

both infinites as x a , that is, if the quotient ( )
( )

f x
g x

, at x a , is 

one of the indeterminate forms 0
0
 
  

 or  
  

, then 

 
 

 
 0 0

lim lim
x x x x

f x f x
g x g x 





 

provided that the limit of the ratio of derivatives exists. 
The rule is also applicable when a   . 

If the quotient  
 

f x
g x



 again yields an indeterminate form, at 

the point x a , of one of the two above-mentioned types and 
 f x  and  g x  satisfy all the requirements that have been stated 

for ( )f x  and ( )g x , we can then pass to the ratio of second 
derivatives, etc. 

Example 12.4 Compute 
0

5lim
arctgx

x
x

. 

Solution: 

0

5 5 0 0lim
arctg arctg0 0x

x
x

      
 

Applying the L’Hospital rule we have: 
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 
 

   2

0 0 0

2

5 5lim lim lim5 1 5 1 0 51arctg
1

x x x

x
x

x
x

  


       




. 

Example 12.5 Compute 2 20

1 1lim
sinx x x

  
 

. 

Solution: 

 2 2 2 20

1 1 1 1 1 1lim
sin sin 0 0 0 0x x x

         
 

 

Reducing to a common denominator, we get 
2 2 2 2

2 2 2 20

sin 0 sin 0 0lim
sin 0 sin 0 0x

x x
x x

         
 

Before applying the L’Hospital rule, we will use one of 

special limits for trigonometric functions, i.e. 
0

lim 1
sin



 : 

 2 2 2 2 2 2 2 2

2 2 2 2 2 2 40 0 0 0

sin sin sinlim lim lim 1 lim
sin sinx x x x

x x x x x x x x
x x x x x x x   

   
     

 
 

The L’Hospital rule gives 

 
 













 30304

22

0 4
2sin2lim

4
cossin22limsinlim

x
xx

x
xxx

x

xx
xxx

 

 
 

















 20303 12

2cos22lim
4

2sin2lim
0
0

04
0sin02

x
x

x

xx
xx

 

3
1sinlimsinlim

3
1

3
sinsinlim

6
sin2lim

6
2cos1lim

000

2

020












 x

x
x

x
xx

xx
xx
x

x
x

xxxxx
. 

To evaluate an indeterminate form like  0  , one should 
transform the appropriate product ( ) ( )f x g x , into the quotient 
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 

 
1

f x

g x

 or  

 
1

g x

f x

 to get one of the indeterminate forms 0
0
 
  

 or  
  

, 

and then to apply the L’Hospital rule. 

Example 12.6 Compute 2

0
lim ln
x

x x


 . 

Solution:  

 2 2

0 0

2 2

ln ln 0lim ln 0 ln 0 0 lim 1 1
0

x x

xx x

x
 

           
 

 

 

3 2 2

30 0 0 02

1
ln 0lim lim lim lim 0

2 2 2 2x x x x

x x xx
x xx
   


     

   
. 

Example 12.7 Compute 
0

limsin 6 ctg4
x

x x


 . 

Solution: 

 
0 0 0

sin6 sin6 sin0 0limsin6 ctg4 sin0 ctg0 0 lim lim1 tg4 tg0 0
ctg4

x x x

x xx x
x

x
  

            
 

 
 

2 2

0 0 0

2

sin6 cos6 6 6cos6 cos 4 6 cos0 cos 0 6 1 1 3lim lim lim1 4 4 4 2tg4 4
cos 4

x x x

x x x x

x
x

  

     
     

 
. 

Indeterminate expressions in the form 1   , 0   , 00    can 

be reduced to expressions in the form 0
0
 
  

 or  
  

 by taking 

logarithm and using the formulas lnln ln
1/

b aa b a
b

   . 

Example 12.8 Compute  
1

lim x x
x

e x


 . 
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Solution: 

   
1 1

0lim x x
x

e x e 


       . 

Taking logarithms and applying the L’Hospital rule, we get 

     












 x

xexe
x

xe
x

x

x

x
xx

x

lnlimln1limlnlim
00

1

0
 

  

























 



 e
e

xe
exe

e

x
xe

x

x

x

x

x

x

x

x

11lim
1

1

limlnlim  

 
 

 
 

1lim
1

lim
1

lim1lim 





















 x

x

xx

x

xx

x

xx

x

x e
e

e

e
e

e

xe

e . 

Therefore,  
1

lim x x
x

e x e


  . 

Example 12.9 Compute  
1

ln
0

lim cot x
x

x


. 

Solution: 

   
1 1

0ln ln 0
0

lim cot cot 0x
x

x


     . 

Taking logarithms and applying the L’Hospital rule, we get  

     









 x

xx
x

x
xx

x
x ln

cotlnlimcotln
ln
1limcotlnlim

00
ln
1

0
 

  
 

 














x

xx

x

x
x

x

x
xxx 1

sin
1

cot
1

lim1

cot
cot

1

lim
ln

cotlnlim
2

000
 

1
cos

1lim
sin

lim
sincos

lim
sin

sin
coslim

sincot
lim

0002020











 xx
x

xx
x

x
x
x

x
xx

x
xxxxx

. 
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Note. Of course, we could have solved this limit in another 
way, using the formula (Appendix C) we could represent 

xxx 2sin
2
1sincos  , and then we would need to repeat the 

application of the the L’Hospital rule again. So, it should be 
remembered that sometimes it is possible to combine the 
application of the L’Hospital rule and previously known methods in 
particular the standard limits. 

Thus,  
1

1ln
0

1lim cot x
x

x e
e




  . 

Example 12.10 Compute 
1

2 1

1
lim

2

x

x

x x 



 
 
 

. 

Solution: 
1 1

2 21 1 1

1

1 1lim 1
2 2

x

x

x x  




            
   

. 

Taking logarithms and applying the L’Hospital rule, we get  
2 2

1
2 21

1 1 1

1 1ln ln
2 21 0limln lim ln lim

2 1 2 1 1 1 0

x

x x x

x x
x x x x

x x



  

    
                            

 

 
 

2

2
2

2 2 21 1 1 1

1
2ln

2 2 1 2 1 2 1 1 32lim lim lim 2 1 lim
1 2 1 1 21x x x x

x x
x x x x

xx
x x x xx   

           
           

  
. 

Therefore, 

1
32 1
2

1
lim

2

x

x

x x e




 
 

 
. 
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Lecture 13 
Tangent line and normal to function graph.  

Application of differentials for approximate calculations. 
 

In your experience with mathematics thus far, you have most 
likely come across the task of calculating the slope between two 
points. Whether you know it as “rise over run” or “change in y over 
change in x”, the formula 

12

12

xx
yy


 , 

you should remember it from our topic about the analytic geometry, 
will give you the slope between points  11, yx  and  22 , yx . For a 
purpose that will later be revealed, however, what if we were to find 
the slope of the function at a single point? Such is the nature of the 
tangent line problem that we are about to explore, and is one of the 
basic questions of calculus. 

The equation of the tangent line to the graph of a function 
 y f x  at a point  0 0,M x y  has the following form: 

 0 0 0y y y x x   . 

The normal to a curve at point M  is a straight line that passes 
through point M  perpendicular to the tangent line. 

The equation of the normal to the graph of a function 
 y f x  at a point  0 0,M x y  has the following form: 

 0 0
0

1y y x x
y

   


. 

Example 13.1 Determine the slope of the tangent line to the 

graph of a function xtgy 22 2  at 
6


x . 
Solution. Find the first derivative of  xf  using the Power 

Rule and Chain Rule, and get 
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 
x

xtgxtgy
2cos

22422 2
2 


 . 

Plug x  value of the indicated point into  xf   to find the 
slope at x  

332

2
1

38

3
cos

3
8

6
2cos
6

28

6 2
22




























 tgtg

y . 

The slope of the tangent line to the graph of given function is 
332 . 

Example 13.2 Make the equation of the tangent line and the 
normal to the curve 2 4 3y x x    at the point with the abscissa 

0 4x  . 
Solution. Calculate the value of a function at a point 0 4x  : 

2
0 4 4 4 3 16 16 3 3y         . 

Find the derivative of the function: 

 2 4 3 2 4y x x x      . 

Calculate the value of the derivative at the point 0 4x  : 

0 2 4 4 8 4 4y       . 

Then the tangent line (Fig. 11.1) equation has the form: 
 0 0 0y y y x x   , 

 3 4 4y x   ,   4 16 3y x   , 

4 13y x  , 
and the equation of the normal (Figure 12.1) is: 

 0 0
0

1y y x x
y

   

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 13 4
4

y x    ,   1 1 3
4

y x    , 

1 4
4

y x   . 

 
Figure 13.1 

 
Approximate equality y dy   allows the use of the 

differential for approximate calculations of the function values. 
Since  

0 0( ) ( )dy y f x x f x      and 0 0( ) ( )dy f x dx f x x    , 

then we have  

0 0 0( ) ( ) ( )f x x f x f x x        or   0 0 0( ) ( ) ( )f x x f x f x x     . 

4 13y x   

1 4
4

y x    
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Example 13.3 Find the approximate values of the functions 
using the differentials of the specified functions. 

a) 51, 03 ,   b) tan 44 . 
Solution: 
a) since   5f x x , then   45f x x  . 
From the conditions of the task we have 

0 1x  ,   0 1,03x x   ,   01,03 1,03 1 0,03x x      . 

Calculate the value of a function and its derivative at a point 
0 1x  : 

  51 1 1f   ,     41 5 1 5f     . 
Thus, 

51,03 1 5 0,03 1 0,15 1,15      ; 

b) since   tanf x x , then   2
1

cos
f x

x
  . 

Taking into account that tan 44 tan(45 1 )     , let us take 

0 45x   , then 1x    , i.e. 0 4
x 
 , 

180
x 

   . Calculate the 

value of a function and its derivative at a point 0 4
x 
 : 

tan 1
4 4

f      
 

,   
2

2

1 1 1 1 22 14 2cos
4 4 22

f            
 
 

. 

Thus,  
3,14 3,14tan 44 1 2 1 2 1 0, 965

180 180 90
            

 
. 
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Lecture 14 
Conditions for increasing and decreasing the function. Extrema 

 

The function ( )y f x  is called increasing (decreasing) on 
some interval if, for any points 1x  and 2x  which belong to this 
interval, from the inequality 2 1x x  we get the inequality 
   2 1f x f x  (    2 1f x f x ). If ( )f x  is continuous on the 

interval [ , ]a b  and ( ) 0f x   ( ( ) 0f x  ) for a x b  , then ( )f x  
increases (decreases) on the interval [ , ]a b . 

The domain of definition of ( )f x  may be subdivided into a 
finite number of intervals of increase and decrease of the function 
(intervals of monotonicity). These intervals are bounded by critical 
points x  (where ( ) 0f x   or ( )f x  does not exist). 

A maximum value of a function is a value greater than those 
immediately preceding or 
immediately following. A 
minimum value of a 
function is a value less 
than those immediately 
preceding or immediately 
following. 

If the function is 
represented by the curve 

( )y f x  (Figure 14.1), 
then PM  represents a 
maximum value of y  or 
of ( )f x , and QN  

represents a minimum value. 
At both P  and Q  the tangent line is parallel to x -axis, and 

therefore we have for both maxima and minima,  

0y     or   ( ) 0f x  . 

O  
x  

y  

P  

M  

 

N  

Figure 14.1 
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The minimum point or maximum point of a function is its 
extremal point, and the minimum or maximum of a function is 
called the extremum of the function. If 0x  is an extremal point of the 
function ( )f x , then 0( ) 0f x  , or 0( )f x  does not exist (necessary 
condition for the existence of an extremum). 

When y  changes from   to   at critical point, this point is a 
maximum, and when y  changes from   to  , it is a minimum 
(sufficient condition for the existence of an extremum). 

Example 14.1 Find the extrema of the function 

21
xy
x




. 

Solution. The domain of function definition is: 
21 0x  , x R . 

Find the derivative of the given function: 

   
 

 
     

2 2 2 2 2 2

2 2 2 22 2 2 2 2

1 1 1 1 2 1 2 1
1 1 1 1 1

x x x x x x xx x x xy
x x x x x

                        
. 

Solve the equation 0y  : 

 
2

22

1 0
1

x

x





, 21 0x  ,   2 1x  ,   1x   . 

Put all critical point taking into account the point where our 
function does not exist (or undetermined) on the axis and 
investigate the sign at the obtained intervals. 

 

1  1 y  
x  

y        

min  max  
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To determine what the sign of y  is in the interval ( ; 1)  , it 
is sufficient to determine the sign of y  at some point of the 
interval. For example, taking 2x   , we get  

2

2 2 2( 2)
1 ( 2) 1 4 5

y       
  

, 

hence, 0y   in the interval ( ; 1)   and the function in this 
interval decreases. 

Therefore, the function increases in the interval  1,1x  , 

decreases in the interval    , 1 1,x    , 1x    is the 
minimum point of the function, 1x   is the maximum one. 

 min 2
1( 1) 0,5

1 1
y 

   
 

,   max 2
1(1) 0,5

1 1
y  


, 

( 1; 0,5)A   , (1;0,5)B  are the extremal points. 

To find the largest (smallest) value of a function  f x  on a 

segment  ,a b , it is necessary to choose the largest (smallest) 
values of the function from the values of the function on the 
boundaries of the segment and at the critical points belonging to this 
segment. 

Example 14.2 Find the largest and smallest values of a 
function 3 29 1y x x    on a segment  2,2 . 

Solution. Since  

 3 2 29 1 3 18y x x x x      , 

it follows that the critical points of the function are 
23 18 0x x  , 

 3 6 0x x   , 

 0 2;2x    ,    6 2;2x     . 
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Comparing the values of the function at 0x   and at the end-
points of the given interval 

  3 20 0 9 0 1 1y       , 

     3 22 2 9 2 1 8 36 1 27y             , 

  3 22 2 9 2 1 8 36 1 43y         , 

we conclude that the function attains its smallest value 1m    at 
the point 0x   and the greatest value 43M   at the point 2x  : 

 
[ 2;2]
max 2 43y y


  ,    
[ 2;2]
min 0 1y y


   . 

Example 14.3 Find the maximum value and the minimum 

value attained by  
)1(

1
xx

xf


 in the interval  3,2 . 

Solution. Note that the domain of  xf  does not contain 

0x  and 1x , and these points are not in the interval  3,2 . Find 
critical points. Compute 

  22 )1(
21

xx
xxf




 ,   0 xf , 0
)1(

21
22 





xx
x , 12 x , 

2
1

x . 

Therefore, the only possible critical point is 
2
1

x . As this point is 

not in the interval  3,2 , it is not a critical point.  Compute  xf  
only at the boundaries of the closed interval 

 
6
1

)31(3
13 


f ,  
2
1

)21(2
12 


f . 

Compare the data resulted in Step 2 to make conclusions:

 xf  attains its absolute maximum value  
6
13 f  at 3x  and 

f(x) attains its absolute minimum value  
2
12 f  at 2x . 
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Lecture 15 
Concavity and inflection points. Asymptotes.  

General scheme of analysis of a function 
 

A curve is said to be concave upwards (look at Figure 15.1) 
(concave downwards (look at Figure 15.2)) at a point M , when in 
the immediate neighborhood of M  it lies wholly above (below) the 
tangent at M . 

    
Figure 15.1   Figure 15.2 

 
A sufficient condition for the concavity upwards 

(downwards) of a graph ( )y f x  is that the following inequality be 
fulfilled in the appropriate interval: 

  0f x   (   0f x  ). 

A point of inflexion is a point M  where  f x  changes sign, 
the curve being concave upwards on one side of this point, and 
concave downwards on the other. 

We can identify such points by first finding where   0f x   
and then checking to see whether it changes sign from positive to 
negative or negative to positive at these points.  

Example 15.1 Find the intervals of concavity and the 
inflection points of the graph of the functions: 

a) 3 215 36 2y x x x    ;   b) xy x e  . 
Solution: a) the domain of the function definition is: x R . 

M  

M  



125 
 

Find the derivative of the given function: 
3 2 2( 15 36 2) 3 30 36y x x x x x        ,   

2(3 30 36) 6 30y x x x      .  
Solve the equation 0y  : 

6 30 0x   ,   5x  . 

 
Thus, when passing through a point 5x  , the second 

derivative changes its sign: in the interval ( ;5)  it is negative and 
the curve is concave up, and in the interval (5; )  it is positive and 
the curve is concave down. Therefore, 5x   is the inflection point: 

3 2(5) 5 15 5 36 5 2 125 375 180 2 68y             ; 
b) the domain of the function definition is: x R . 

Find the second order derivative of the given function: 

     1x x x x x xy x e x e x e e x e e x             , 

              1 1 1 1 1 1 1 2x x x x x x xy e x e x e x e x e e x e x                     . 

Solve the equation 0y  : 

 2 0xe x  ,   2 0x  ,   2x   . 

 

 ( ; 2)   2  ( 2; )   
( )f x    0   
( )f x    0, 27    

 

5  
x  

y  

y      

    
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Thus, when passing through a point 2x   , the second 
derivative changes its sign: in the interval ( ; 2)   it is negative 
and the curve is concave up, and in the interval ( 2; )   it is 
positive and the curve is concave down. Therefore, 2x    is the 
inflection point: 

2
2

2( 2) 2 0, 27y e
e

        . 

If a point ( , )x y  is in continuous motion along a curve 
 y f x  in such a way that at least one of its coordinates 

approaches infinity (and at the same time the distance of the point 
from some straight line tends to zero), then this straight line is 
called an asymptote of the curve. 

The curve  y f x  has a vertical asymptote x a  if 

 f x   as 0x a  : 

 
0

lim
x a

f x
 

  . 

To determine the vertical asymptotes, it is necessary to find 
those values of the argument, near which  f x  increases without 
limit in absolute magnitude. 

To determine an oblique asymptote y kx b   of the curve 
 y f x , it is necessary to find the numbers k  and b  from the 

formulas 
 lim

x

f x
k

x
 ,     lim

x
b f x kx


  . 

If k   , there are no oblique asymptotes.  
If 0k  , then an oblique asymptote turns into a horizontal 

one y b : 

 lim
x

b f x


 . 

Example 15.2 Find the asymptotes of the function: 
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2 3 3
1

x xy
x
 




. 

Solution. The domain of the function definition is:  
1 0x   , 1x  ,    ,1 1,x   . 

Therefore, 1x   is a vertical asymptote of the given function: 

   22

1 0

1 0 3 1 0 33 3 1 3 3 1lim
1 1 0 1 0 0x

x x
x 

       
    

    
, 

   22

1 0

1 0 3 1 0 33 3 1 3 3 1lim
1 1 0 1 0 0x

x x
x 

       
    

    
. 

Find the coefficients k  and b  for this function: 
2

2 2 2

2 2

3 3
3 3 3 3 3 31lim lim lim

( 1)x x x

x x
x x x xxk

x x x x x  

 
                   

 

2

2

( 3 3) 2 3 2 3 (2 3) 2lim lim lim 1
2 1 2 1 2( ) (2 1)x x x

x x x x
xx x x  

                   
, 

2 2 2 23 3 3 3 ( 1) 3 3lim lim lim
1 1 1x x x

x x x x x x x x x xb x
x x x  

          
        

 

2 3 2 3 2 3 ( 2 3) 2lim lim lim 2
1 1 1 1( 1)x x x

x x x
x x x  

                        
, 

so 2y x   is an oblique asymptote of the given function. 

General scheme of analysis of a function 

1. Determine the domain in which the function is defined. 
2. Find the points at which the graph crosses the coordinate 

axes. Notice that the y -intercept occurs where 0x  , and the x -
intercept occurs where 0y  .  
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3. Determine whether the function is odd or even and whether 
it is periodic. 

A function is even if    y x y x  . The graph of such 
function is symmetric with respect to the y -axis. A function is odd 
if    y x y x   . The graph of such function is symmetric with 
respect to the origin. A function is said to be periodic if 
   y x T y x   for some nonzero constant T  (a period of the 

function). 
4. Find extremal points and intervals of monotonicity. 
5. Determine the directions of convexity of the graph and its 

inflection points. 
6. Find the asymptotes of the graph. 
7. Draw the graph. 

Example 15.3 Examine the function 
2

1
xy

x



 and construct 

its graph: 
Solution: 
1. The domain of the function definition is:  

1 0x   , 1x  ,    ;1 1,x   . 

2. Points of intersection of a graph with coordinate axes: 

Ox : 0y  , 
2

0
1

x
x




, 2 0x  , 0x  ,  0,0O . 

Oy : 0x  , 
20 0

0 1
y  


,  0,0O . 

3. This function is neither odd nor even, since  

   2 2 2

( )
1 1 1

x x xy x y x
x x x


      
    

. 

Obviously, this function is nonperiodic. 



129 
 

4. Find the derivative of the function: 
2 2 2 2

2 2

( ) ( 1) ( 1) 2 ( 1) 1
1 ( 1) ( 1)

x x x x x x x xy
x x x

                    
 

2 2 2

2 2 2

2 2 2 ( 2)
( 1) ( 1) ( 1)

x x x x x x x
x x x
   

  
  

. 

Solve the equation 0y  : 

2

( 2) 0
( 1)
x x
x





, 

( 2) 0x x   , 

0x  ,   2x  . 

 
Therefore, the function increases in the interval 

   ,0 2,x   , decreases in the interval    0,1 1, 2x  , 

max 0x  ,   , 

min 2x  ,   
2

min
2 4(2) 4

2 1 1
y   


, 

(0;0)O  is the graph point corresponding to the maximum, 

1(2;4)M  is the graph point corresponding to the minimum. 
5. Find the second derivative of the function: 

2

max
0(0) 0

0 1
y  



0  1 2  
x  y  

        

max  min  
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2 2 2 2 2

2 4

2 ( 2 ) ( 1) ( 2 ) (( 1) )
( 1) ( 1)
x x x x x x x xy
x x

                
 

2 2 2 2

4 4

(2 2) ( 1) ( 2 ) 2( 1) 2( 1) ( 1) ( 2 ) 2( 1)
( 1) ( 1)

x x x x x x x x x x
x x

             
  

 
 

2 2 2 2

4 3 3

2( 1) (( 1) ( 2 )) 2( 2 1 2 ) 2
( 1) ( 1) ( 1)

x x x x x x x x
x x x

        
  

  
, 

3

2 0
( 1)x




, there are no inflection points. 

 
 

In the interval  ;1x   0y   and the curve is concave up, 

and in the interval  1;x   0y   and the curve is concave 
down. 

6. 1x   is a vertical asymptote, since 

 22

1 0

1 0 1lim
1 1 0 1 0x

x
x 


   

   
,    22

1 0

1 0 1lim
1 1 0 1 0x

x
x 


   

   
. 

Find the coefficients k  and b  for this function: 
2

1lim lim lim 1
1 ( 1)x x x

x
x xxk

x x x  

          
, 

1 
x  y  

y      

    
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 22 2 21
lim lim lim lim 1

1 1 1 1x x x x

x x xx x x x xb x
x x x x   

     
          

, 

1y x   an oblique asymptote. 
7. Draw the graph (Figure 15.3). 

 

 
Figure 15.3 
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QUESTIONS TO CONSOLIDATE LECTURE 
 

Lecture 1 
1. What is a determinant? 
2. What is a minor?  
3. What is a cofactor of a determinant element? 
4. By what rule the value of the determinant of the n -th order 

is calculated? 
5. Formulate the rules of the “cross” and “triangles” for 

calculating respectively the determinants of the second and third 
order 

6. What are the basic properties of the determinant? Which of 
them can we use to calculate it. 

7. How a determinant of a triangular form is calculated? 
8. Will be the value of the determinant changed if the 

elements of some column are multiplied by 5? If so, how much?  
9. Which of the properties can we use to simplify calculation 

the determinant of any order? Explain your answer. 

Lecture 2 
1. What is a matrix? 
2. Which of matrix is called non-degenerate? 
3. How are doing the operations of adding (subtracting) 

matrices and multiplying the matrix by the number?  
4. What is the difference between multiplication of the matrix 

by the scalar and the multiplication of the determinant by the 
number? 

5. How is operation of multiplication of the matrixes carried 
out? What are the properties of this operation? 

6. Which of matrix has determinant? 
7. What is an inverse matrix and how is it calculated? 
8. Does any matrix have an inverse matrix? Why? 
9. How can you check the accuracy of the found inverse 

matrix? 
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Lecture 3 
1. What kind of the form has a system of m  linear algebraic 

equations (SLAE) with n  unknowns? 
2. Which of a system is called the compatible?  
3. Which of a system is called the defined system? 
4. What is the system of linear algebraic equations which has 

all free terms are zeros? Does such system have a solution? How 
many? 

5. How can we find a solution of a square SLR with an 
inverse matrix? 

6. How should you do the check out of your solution? What 
result can you get? 

7. How to solve the square system of linear equations by 
Cramer’s rule? 

9. Could the inverse matrix method and Cramer method be 
applied to solve any kind of systems? Explain your answer. 

10. How is an arbitrary SLAE solved by the Gaussian 
elimination method? 

11. Is it possible to determine the consistency of the system 
using the Gaussian elimination method? Explain your answer. 

12. How can we know by performing the Gaussian 
elimination method that the system does not have a solution? 

Lecture 4 
1. What is a vector? 
2. What are the direction cosines? 
3. Formulate properties of a scalar product. 
4. What do determine the sign of a scalar product? 
5. How to use the concept of scalar product in mechanics? 
6. What is a scalar square? 
7. Can we use such transformations to the vector product? 
8. What is a right-hand system?  
9. Do you need to consider the orientation of a system?  
10. What is a geometric interpretation of the vector product? 
11. How to calculate the triangular area? 
12. Could items order be changed in the vector product? 
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13. What can you tell about coordinates of collinear vectors? 

Lecture 5 
1. What is a tensor? 
2. Is it important to understand a sense of tensors? Could an 

index position change the sense of tensors or their properties? 
3. When do we say that it is a convolution? How can be it 

found?  
4. What is contravariance? 
5. What is Einstein’s rule? 
6. What is a tensor invariant? Have all tensors an invariant? 
7. What is a tensor trace? 
8. What is a metric tensor? What is its properties? 
9. What is Kronecker symbol? 

Lecture 6 
1. What is a general equation of a straight line on a plane? 
2. What do know special cases of the general equation of a 

straight line? 
3. How to write the equation of a straight line? 
4. How to find the slope of a line?  
5. What is happened with line if its slope is zero? 
6. What can you say about the parallel lines? perpendicular 

lines? 
7. Do we have deference between concepts as distance between 

two points and distance between point and lines? 
8. How to find the coordinates of the lines intersection point? 

Lecture 7 
1. What is a normal vector? 
2. Tell all special case of a plane general equation. 
3. What kind of plane equations do you know? 
4. What are relationships between two planes in space have? 
5.  
6. What is the condition of perpendicularity of two planes? 
7. What are the differences between a normal vector and a 

direction vector? 
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8. Can we determine the coordinates of a direction vector 
knowing the equation of a line? 

9. Can we transform the canonic equation of a line in other 
forms of equations? How could we do it? 

10. Give some example about the location of lines in a space, 
and location of planes in a space, location of a line and a plane in a 
space. 

Lecture 8 
1. What is a circle?  
2. What is its standard equation of a circle? 
3. What is an ellipse? 
4. What are the foci of the ellipse and where are they located? 
5. What does the eccentricity of the ellipse characterize ? 
6. What properties of the ellipse could we learn from its 

canonical equation? 
7. What is a hyperbola? 
8. What features do have a hyperbola? 
9. What are hyperbola asymptotes? 
10. What is a parabola?  
11. Give some examples of special case of its graphs? 
12. What are polar coordinates? 
13. What are the relationships between polar and Cartesian 

coordinates? 

Lecture 9 
1. What is a sphere? What is its equation? 
2. What can we get in the cross section of the ellipsoid? 
3. What is a cone? 
4. What is a canonical equation of an elliptical cone of the 

second order? 
5. Do all surfaces have similarities? Which of them have? 
6. What are differences between a single-cavity hyperboloid 

and a double-cavity hyperboloid? 
7. What is a hyperbolic paraboloid? How could it get? 
8. How could we get a cylindrical surface? 
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9. What is type of curve obtained in the cross section of the 
cylinder with a plane perpendicular to the generating? 

Lecture 10 
1. Explain how do you understand this “limit of the function 
 from the left and the limit of the function  from the 

right at the point ”? Is it enough to assert that a function have the 
limit at the point ? 

2. What is an infinitesimal function? 
3. Call some properties of infinitesimal and infinitude 

functions. 
4. Which of fundamental limits do know? 
5. What kinds of indeterminate forms do you know? Tell us 

the features of disclosing some of them. 

Lecture 11 
1. What is an increment of a variable? 
2. What is a derivative of a function?  
3. How to find the derivative of a compose function? 
4. In which case should we use the Chain Rule? 
5. How to find the derivative of an implicit function? 
6. What is a logarithmic differentiation? When could we use 

it? 

Lecture 12 
1. What is the second-order differential? How can we find it? 
2. Explaine the L’Hospital rule. 
3. Can we use the L’Hospital rule at all examples or not? 
4. How can we use this rule if you need to compute the limit 

having one of these indeterminate forms , , ? 
5. Can you combine the using of the L’Hospital rule with 

other ways or previously learned technology? 

Lecture 13 
1. What is a slope of a curve? 
2. What is an equation of the tangent line? 
3. What is an equation of the normal line? 

( )f x ( )f x
a
a

1  
0  

00  



137 
 

4. How can we the concept of a function derivative in a 
approximation calculus? 

5. Explain why we can do it. 

Lecture 14 
1. What are conditions of increasing and decreasing the 

function? 
2. What are properties of a critical point? 
3. How can be found critical points? 
4. What is a necessary condition for the existence of an 

extremum? 
5. What are the exteremal points 
6. How can we find the largest (smallest) value of a function 
 on a segment ? 

Lecture 15 
1. What is a point of inflexion? How to find it? 
2. What does it mean when we say that the curve is concave 

upwards? 
3. What is a sufficient condition for the concavity upwards 

(downwards) of a function graph? 
4. How can we determine that this cure is concave upwards? 
5. What is an asymptote? What kind of them do you know? 
6. What should we do to find an asymptote to the graph of a 

function? 
7. What is a general scheme of a function analysis?  
8. Should we calculate the arbitrary points to draw a graph of 

a function? 

 
 

  

 f x  ,a b
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APPENDICES 
 

APPENDIX A 
 

The cross-sectional method 
To find out the shape of a surface in a space according to its 

equation 
  0,, zyx                               (A.1) 

the so-called section method is often used. It consists of analyzing 
the intersections of a surface with planes parallel to the coordinate 
planes, for example with planes like cz  , c  where the parameter 
c  runs through all real values. The equations system  

 







cz
zyx 0,,

                             (A.2) 

gives the corresponding intersection for each value c . The criterion 
for a point  zyxM ,,  to belong to this intersection is the following 
conditions: a) cz  ; b) the coordinates x  and y  are its projections 
onto the coordinate plane xOy , i.e. coordinates of a point  0,, yxN  
satisfy to the equation 

  0,, cyx                              (A.3) 

Knowing these intersections, i.e. a curves equation (A.3), we 
can imagine the shape of the surface. Note that the indicated “X-
ray” of the surface can be carried out by other planes, but they must 
be parallel to each other. 

Usually, when studying the shape of a surface by the method 
of sections, two points of view on the equation (A.3). The first is 
that it is interpreted as the equation of projection onto the 
coordinate plane xOy  by the sections (A.2). According to the 
second point of view, it is assumed that in the secant plane there is a 
rectangular coordinate system with the origin at the point O  
intersection of the secant plane with the axis Oz  and axes, xO  and 
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yO , which are projected onto the corresponding axes Ox  and Oy  
of a system coordinates Oxyz . This 
allows us to speak of equation (A.3) 
as the equation of the section (A.2) 
in the secant plane. 

Draw the surface 22 yxz  . 
Fix a value of x  as 0x  and 

draw a parabola 2yz   in a plane 
zOy . Fix 0y  and draw a 
parabola 2xz   in a plane zOx . If 
we assume that 0z , then we get 
the origin point  0,0,0O . Let it be 

               Figure A.1                4z  then we will find a section of  

an elliptic paraboloid by this plane 

4
;4

,4 22
22 








yx
yx

z
 , 

422  yx  is a circle centered at origin point and it has radius 
2R . Draw it. We get a desired surface at the figure A.1. 
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APPENDIX B 
 

Table B.1 –Graphs and equations of surfaces of the second order 

N
am

e 

Equation Graph 

Sp
he

re
 

2
0( )x x   

2
0( )y y    

2
0( )z z    
2R  

 

E
lli

ps
oi

d 2 2 2

2 2 2 1x y z
a b c

  

 x  

y  

z  

O  
a  b  

c  

O  

С  

M  

x  

z  

y  
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Continued Table B.1 
C

on
e 

2 2 2

2 2 2

x y z
a b c

  

 

2 2 2

2 2 2

y z x
a b c

  

 

2 2 2

2 2 2

x z y
a b c

  

 
x  y  

z  

O  

a  

b  
c  

x  

y  

z  

O  c  
a  

b  

x  
y  

z  

O  

c  
a  b  
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Continued Table B.1 
E

lli
pt

ic
 c

yl
in

de
r 

2 2

2 2 1x y
a b

   

 

2 2

2 2 1x z
a b

   

 

2 2

2 2 1y z
a b

   

 

y  

x  

z  

O  
a  

b  

x  

y  

z  

O  a  

b  

x  
y  

z  

a  b  
O  
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Continued Table B.1 
H

yp
er

bo
lic

 c
yl

in
de

r 

2 2

2 2 1x y
a b

   

 

2 2

2 2 1y z
a b

   

 

2 2

2 2 1x z
a b

   

 

Pa
ra

bo
lic

 c
yl

in
de

r 

2 2y px  

 x  

y  

z  

O  

x  

y  

z  

O  
a  

b  

y  

x  

z  

O  
a  

b  

x  

y  

z  

O  
a  

b  
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Continued Table B.1 
Pa

ra
bo

lic
 c

yl
in

de
r 

2 2x py  

 

2 2z px  

 

2 2x pz  

 

2 2y pz  

 x  

y  

z  

O  

x  y  

z  

O  

x  

y  

z  

O  

x  
y  

z  

O  
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Continued Table B.1 
Si

ng
le

-c
av

ity
 h

yp
er

bo
lo

id
 

2 2 2

2 2 2 1x y z
a b c

    

 

2 2 2

2 2 2 1y z x
a b c

    

 

2 2 2

2 2 2 1x z y
a b c

    

 

 

 

   

 

 

 
 

 
x  y  

z  

a  

b  

c  

 

  

 

 
 

 

 
 

 x  
y  
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b  
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x  
y  a  b  
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Continued Table B.1 
D

ou
bl

e-
ca

vi
ty

 h
yp

er
bo

lo
id

 

2 2 2

2 2 2 1x y z
a b c

     

 

2 2 2

2 2 2 1y z x
a b c

     

 

2 2 2

2 2 2 1x z y
a b c

     

 
x  

y  

z  

a  

b  

c  

x  y  

z  

a  

b  

c  

x  y  

z  

a  b  

c  
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Continued Table B.1 
E

lli
pt

ic
al

 p
ar

ab
ol

oi
d 

2 2

2 2

x y z
a b

   

 

2 2

2 2

y z x
a b

   

 

2 2

2 2

x z y
a b

   
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y  

z  

a  

b  

 

 

  

 

x  
y  

z  

a  

b  

x  

y  

z  

a  
b  



150 
 

Ending Table B.1 
H

yp
er

bo
lic

 p
ar
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oi
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2 2

2 2

x y z
a b

   

 

x  

y  

z  
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APPENDIX C 
 

Frequently used trigonometric formulas 
 

2 2sin cos 1   , 
sintan
cos





 ,   coscot

sin





 ,  

2
2

11 tan
cos




  ,   2
2

11 cot
sin




  , 

sin 2 2 sin cos   ,   2 2cos 2 cos sin    , 

2 1 cos 2sin
2





 ,   2 1 cos 2cos

2





 , 

sin sin 2 sin cos
2 2

   
 

 
  ,   

sin sin 2 cos sin
2 2

   
 

 
  , 

cos cos 2 cos cos
2 2

   
 

 
  ,   

cos cos 2 sin sin
2 2

   
 

 
   . 
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APPENDIX D 

 
Table D.1 – The values of trigonometric functions 

Value of angle 
  

Functions 

degrees radians sin  cos  tan  cot  
o0  0 0 1 0 не існує 
o30  

6
  

2
  3

2
 3

3
 3  

o45  
4
  2

2
 2

2
 

1  1  

o60  
3
  3

2
 2

  3  3
3

 
o90  

2
  1  0  does not exist 

( ) 
0  

o180    0  1  0 does not exist 
( ) 

o270  3
2
  1  0  does not exist 

( ) 
0  

o360  2  0  1  0  does not exist 
( ) 
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