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1 DYNAMICS of POINT 
 

Dynamics studies the mechanical motion of material objects (material point, 
system of material points, solids) under the action of the forces applied. 

1.1 Axioms of Dynamics ( Newton’s lows of motion): 

First Law (of inertia): A point isolated from other bodies remains at rest or 
continues to move in straight line with a constant velocity if there is no any force 
acting on it. 

Second Law (basic): A free point under the acting of any other force is 
accelerated; the acceleration is in the direction of the force and is directly 
proportional to the force and inversely proportional to the mass of the point: 

.Fam   
Third Law (law of action and reaction) For any action there is always an 

equal and opposite reaction or, the mutual actions of any two bodies are always 
equal and oppositely directed. ܨଵଶ =  ଶଵܨ−

Forth Law (Principle of superposition): The resulting acceleration caused by 
two or more forces is geometrical sum of the accelerations, which would be caused 
by each force separately: ܽ = ܽଵ + ܽଶ +⋯+ ܽ௡. 

 
1.2 Differential forms of free point equation of motion 

The basic equation of dynamics: 



n

i
iFam

1
 can be written as a differential 

equation: 
Vector form: 

2

2

d rm F
dt


 

  
dvm F
dt


 

, 
where m is mass of the point, ࢘ is vector-position, which is the function of the time. 

Coordinate form (in axis projections):  

mх Fiх
i

n
 




1
;     mу Fiу

i

n
 




1
;     mz Fiz

i

n
 ,




1
 

where xax  ; yay  ; zaz    projections of accelerations; 


n

i
ixF

1
,  



n

i
iyF

1
,  



n

i
izF

1
 

algebraic projections of all forces on coordinate axis, acted on point. 
Differential equations of a free point motion in projections to natural coordinate 

system  , ,n b (natural form): 
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m
d
dt

Fi
i

n



 ;

1
 m Fin

i

n


2

1



 ;  0

1



Fib
i

n
,  

where     velocity projection on tangent;    radius of trajectory curvature at 

given point; 


n

i
iF

1
,  



n

i
inF

1
,  Fib

i

n




1
  algebraic projections of all forces to a natural 

coordinate axis. This equations are used when a point is moving in a circle. 
 

1.3 The two problems of dynamics 

In the first type (straightforward problem) – the acceleration, motion and mass 
are given and the corresponding forces, acting on the point must be found. Solution is 
reduced to finding the point acceleration. 

In the second type (inverse problem) – the applied forces and mass and initial 
conditions are given and the resulting motion is to be found. Solution is connected 
with the integration of differential equations of motion. The general solution of these 
equations defines the coordinates of a point as a function of time. Constants of 
integration, when differential equations are integrated, are determined by the initial 
conditions. 

Initial conditions - the value of the coordinates of the point and its first 
derivatives in time (i. e. projections of the velocity vector to the coordinate axis) at 
some fixed time point (if t0 = 0): x xt 0 0 , у уt 0 0 , z zt 0 0 , x Vt x

0 0 , 

у Vt y
0 0 , z Vt z

0 0 . 

Problem. The material point with mass m moves in a straight line in the 
direction of the axis under the action of a constant force F . Find the law of point 
motion at initial conditions 

00 хx t  , 
x Vt 0 0 .  

Solution: 
1) a differential equation of a material point motion: 

mx F  , or ;
m
Fx   

2) after integrating the differential equation we get: 
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x F
m

t C  1 ;         x F
m

t C t С  
2

1 22
,  

where С1, С2  constant of integrations; 
3) determine constant of integrations with the initial conditions: 

V F
m

C0 10                           С V1 0 ;  

  210 0
2
0 СC

m
Fх              ;02 хС   

4) law of motion we get : 

00

2

2
хtVt

m
Fx  . 

 
1.4 Vibrations of the material point 

Mechanical vibration is the periodic motion of a point displaced from a position 
of equilibrium. Elastic restoring force, resistance force and external periodic force 
can act to the material point. The point movement directed at a straight line, which 
coincides with the action line of the given forces. There are three types of vibration, 
free, damped and forced oscillations depending on the combination of these forces. 

1.4.1 Free Vibration 
Restoring force is a force that gives rise to an equilibrium in a physical system. 

The restoring force magnitude is proportional to the point deviation from the 
equilibrium position and directed to this position: 

Free vibration occurs when the motion is maintained by gravitational or elastic 
restoring forces. 

 

rF c MO  , 
where с is proportional coefficient. 

The type of the restoring force is the elastic force or the spring's stiffness, 
through which the elastic properties of the springs are modeled. In linear problems, 
the force of elasticity corresponds to Hooke's law 

elF c   , 
where c - the spring stiffness, indicating which force should be applied to the end of 
the spring for its deformation per unit length;   - strain of the spring (the difference 
between the length of the spring in this state (stretched or compressed) and 
undeformed). 

Consider the vertical oscillation of the load m, which is suspended to the spring 

M  O 



7 

 

 

of stiffness c and carries translation motion. In this case load can be considered a 
material point of mass m. Define the equation of a point motion: 

1) let's draw the point in an arbitrary position on the calculation scheme. 

 

For this, we gradually denote three 
characteristic levels in the scheme: 

1 – free end of non-deformed spring (in this 
position 0elF  ); 

2 – the static equilibrium position of the point,  
which motion is studied (this position is lower 
than level 1). The distance between levels 1 
(non-deformed springs) and 2 (static equilibrium 
points) is called static strain of the spring and 
denoted st . In equilibrium position of the 

point, 
1

0
n

kx
k

F


   or  0elP F  .   

 

The last equality with the deformation st   of the spring get the form  
0stP c    . 

3 – an arbitrary point position during oscillations. 
2 ) in an arbitrary position we shall show the acting forces on the material point, 

considering it free. It will gravity force P  of the point and the spring's elasticity elF ; 
3 ) choose a reference system. To start the reference system in the position of the 

point equilibrium (level 2), and the x-axis should be directed towards the growth of 
the numbers 1, 2, 3. 

4 ) we write a differential equation of motion of a point. 
elma P F  . 

On the x-axis  ( )el elmx P F P c х       

stmx P c cх cx       
0 cxxm  . 

Differential equation of free vibration: 
2
0 0х х  , 

Where 2
0

c
m

    is circular frequency, rad/s. 

General solution: 

1 

2 

3 

 

х  

 х 

0 

А 

х0 
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1 0 2 0cos sinx C t C t      
where С1, С2  constant of integrations, determined by the initial conditions.  

1 0 0 2 0 0sin cosx C t C t         . 
The initial conditions:  

00t
x x


 ,    00t

x V

 . 

Substitute 
0 1 2

0 1 0 2 0

cos0 sin 0,
sin 0 cos0.

x C C
V C C 

   
       

 

Where constants of the integration are: 

1 0C x ,  0
2

0

VC


 . 

Substituting the constants of the integration into expression, we obtain the law 
of motion: 

0
0 0 0

0

cos sinVx x t t 


    . 

This equation is called the equation of free vibration of the material point. It can 
be presented in the form. 

 

Equation of free vibration 
 0 0sinx A t      

Amplitude of vibration is the maximum 
displacement of the point from its equilibrium 
position:  

2 2
1 2А C C  . 

 

Phase angle is 
2

1
0 C

Carctg .  

From formula (8) parameter A is the amplitude of vibration, the argument 

0 0t   is the phase of vibration, and the value 0  is the initial phase. The 
parameter 0 , as the coefficient of time t in the formula of the trigonometric 
function, is called the circular frequency (or natural frequency). The circular 
frequency determines the number of oscillations for a time interval of 2π seconds and 
is measured in rad / s (or 1 / s). 

Period is the time required to complete one cycle: 
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0
0

2



Т .  
0

2 mT 


 . 

The frequency f is defined as the number of cycles completed per unit of time, 
which is reciprocal of the period, and is measured in hertz (Hz): 

01
2

f
T




  . 

The mechanical system, considered in the figure, is conservative. According to 
(8), the body (material point) execute a harmonic vibration motion. The circular 
frequency 0  and period T0 don’t depend on the initial conditions and are determined 
by the parameters of the system (m, c). The amplitude A and the initial phase 0  of 
free oscillations depend on the initial conditions. 

Springs, which connect the body with the base, can form a system of parallel 
and series-connected elastic elements. In the case, shown in the figure, the output 
mechanical schemes need to be reduced into equivalent one elastic element in free-
body diagram, with equivalent a stiffness се. 

 

An equivalent spring stiffness in the 
free-body diagram with a parallel 
connection of the elastic elements 
will have a stiffness  

21е ссс  . 

 

 

An equivalent spring stiffness 
in the free-body diagram with a 
series-connected elastic elements 
will have a stiffness 

)/( 2121е ссссс  . 

When mixed connected three or more elastic elements are successively reduced 
by two elastic elements will remain until there is one of equivalence stiffness се left. 

 
1.4.2 Viscous Damped Vibration 

When body is moving in a substance liquid and it’s under the acting damping 

с1 

с2 

с1 с2 
or 

с1 

с2 
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force (viscous friction, such as water, oil, or air). The body moves slowly of through 
this substance, the resistance force to motion is directly proportional to the body’s 
velocity and has directional to the opposite velocity: R bV  , where b is called the 
coefficient of viscous damping and has units of Ns/m. The viscous properties of 
elastic bodies are created using résistance forces. Vibrations occurring under the 
action of the restoring force and the resistance force are damped. 

The mechanical system modeling in this case the vibrations of the load (material 
point) has the same form as in §1.4.1, only the resistance force is added (from the 
figure we assume that the point moves to the positive direction of the x-axis). 
Symbols in the figures are the same. 

The differential equation of a material point motion will get the form 

     elma P F R    
or    ( )stmx P c x bx      
or     0mx bx cx    . 

Let’s divide all the summands into m and introduce the notation 

 

                       2
0

c
m

  , 
m
bh 2 ,                         

where h  coefficient of damping vibration. 
So differential equation damped vibration 

gets the form 
                        2

02 0x hx x    .                        
The character of the load movement depends 

on the ratio h  and 0 . 
The equation of the load vibration x(t) and the 

first derivative in time ( )x t  in case of light damped 
(underdamped) (h < 0 )  

 
has the form 

1 

2 

3 

 

х  

х 

0 

А 

х0 
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   0
*
0

*
02

*
01 sinsincos    teAtCtCex htht , 

           tCtCetCtChex 02010
ht

0201
ht ***** cossinsincos    ,       

where 1 2,C C   constants of integration, which are determined by the initial conditions 

00t
x x


 ,    00t

x V

 : 

01 xС  ,    ;/ *
0002 hxVC   

 
2

0

2
002

0
2
2

2
1

hxV
xCCА *


 ;  

00

00

2

1
0 hxV

x
arctg

C
Carctg






*
 ;  22

0
*
0 h  . 

The mechanical system is called dissipative according to the figure, and the 
relation (13) is called the equation of damped vibrations. Therefore, the amplitude 
of vibrations htAe   over time decreases by exponential law to zero. The magnitude 

*
0  is a damped natural frequency of vibrations and is connected with a period of 

damped vibration *
0Т  by a formula 

*
0

*
0

2

Т . 

Heavy damped System. When ( 0h ), the general solution can be written as 
tptp eCeCx 2

2
1

1  , 

where   2
0

2
1  hhp ;  2

0
2

2  hhp ; 

This equation describes the aperiodic damped motion. The coordinate of the 
load is reduced in 0t  monotonously, and the load approaches the static 
equilibrium position. 

Critical damping: 0h . The law of the load movement will be as 

 tCCex ht  
21  

The considered motion is also aperiodic damped ( 0x  if t ). Motion 
corresponding to this solution is no vibrating.  

1.4.3 Damped Free Vibrations 

All vibrations are damped to some degree by forces due to dry friction, fluid 
friction, or internal friction. 
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With viscous damping due to fluid friction, 
݉ܽ =෍ܨ 

ݔ̈݉ = ܲ − ௦௧ߜ)ܿ + (ݔ −  ݔܾ̇
ݔ̈݉ + ݔܾ̇ + ݔܿ = 0 

Differential equation Damped Free Vibrations 
2
02 0x hx x    , 

where 
2
0

c
m

  ,  m
bh 2 , 

h – damped coefficient.  
Solutions: 

• light damping: (h < 0 ) 

   0
*
0

*
02

*
01 sinsincos    teAtCtCex htht  

 

,   

 

 

22
0

*
0 h   - damped frequency. 

 Critical damping: 0h  
      tCCex ht  

21 .     
  ( 0x  при t ) double roots, no vibratory motion. 

 
 Heavy damping: ( 0h ) 

     tptp eCeCx 2
2

1
1  ,     

where   2
0

2
1  hhp ;  2

0
2

2  hhp ; negative 
roots, no vibratory motion. 

1.4.4 Undamped Forced Vibrations 

Vibrations which occur under the action of restoring force and periodic force, 
which varies over time, are called forced vibration. These vibrations arise in the case 
of direct action on the point of exciting force (force excitation of oscillations),  when 

01 xС    ;/ *
0002 hxVC 

 
2

0

2
002

0
2
2

2
1

hxV
xCCА

*




00

00

2

1
0 hxV

x
arctg

C
Carctg






*

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moving the point according to the periodic support displacement of a system 
(kinematic excitation oscillations), as well as the mutual displacement of masses, 
which constitute a mechanical system connected with spring base. 

Forced Vibrations 

A force ( )Q t  which changes in time according to a given law is called exciting 
force. Let's consider a simpler important case where force varies according to a 
harmonious law 

sinQ H tf  , 

where Н  amplitude of exciting force; f   the forcing frequency. 

The mechanical system modeling in this case the vibrations of the load (material 
point) has the same form as in §1.4.1, only the exciting force is added (in the figure 
the exciting force directed to the positive direction of the x-axis). Symbols in the 
figures are the same. 

 

The differential equation of a material point 
motion will get the form 

elma P F Q    

or    st( ) sin fmx mg c x H t     , 

or sinmx cx H tf  . 

Let’s divide all the summands into m and 
introduce the notation 

2
0

c
m

  , f
Hh
m

 . 

So differential equation of forced vibration 
gets the form 

2
0 sinf fx x h t   . 

This equation (19) is a linear nonhomogeneous second-order differential equation. 
The general solution consists of x=x1+x2, where x1 is a complementary solution, and 
x2  is a particular solution. 

The general solution is therefore the sum of two sine functions having different 
frequencies. In determining the partial solution let’s consider three cases: 

1 

2 

3 

 

х  

х 

0 

А 

х0 
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0f  ; 0f  ; 0f  : 
1) 0f   (frequency of exciting force and circular frequency are different). 

In this case, the partial solution has the form 

sin2 2 2
0

h fx tf
f


 




 

and the equation of vibration of the load x(t) and the first derivative in time )(tx  have 
the form 

  1 0 2 0 2 2
0

cos sin sinf
f

f

h
x С t С t t  

 
  


 ,         

  1 0 0 2 0 0 2 2
0

sin cos cosf f
f

f

h
x C t C t t


    

 


        


 .        

where 1 2,C C   constants of integration, which are determined by the initial 
conditions and in the case 0 0tx x  ,  0 0tx V   are 

01 xС  ,  
 

0
2 2 2

0 0 0

f f

f

hVС


   


 


. 

Equation (20) is the equation of forced vibrations. The law of motions of the 
load with forced vibrations is biharmonic (two-frequency ones) – there is an overlay 
of free (own) oscillations of the conservative mechanical system (the first two 
additions in formula (20)) to the forced vibrations with a frequency of pereodic force 
(the last addition in formula (20)). The feature of such vibrations is that their 
oscillations are also excited under zero initial conditions. In real systems, their own 
vibrations due to the resistance of the movement quickly fade out and there are purely 
forced oscillations. The circular frequency of purely forced vibrations f  from 

system parameters and initial conditions doesn’t depend, but it’s determined by the 
parameters of exciting force. Amplitude of purely forced vibrations 

2 2
0

f
f

f

h
A

 



 also doesn’t depend on the initial conditions but it’s determined by 

the parameters of the exciting force (Н, f ) and mechanical system (m, с). 

2) 0f   (frequency of exciting force and own frequency are close). 

Supposing the initial conditions are zero ( 0 00, 0x V  ). Then, considering 

0 1f   , but 2 2
0 0f    і 0 2f f    , from equation (20) we get 
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       0
02 2 2 2

0 0

(sin sin ) 2 sin( ) cos
2

f f f
f f

f f

h h
x t t t t

 
  

   


       
 

.       

This movement is called a beating: oscillatory motion that occurs with 
frequency f  exciting force and amplitude which is periodic (with frequency 

0( ) / 2f  ) time function. 

3) 0f   (frequency of exciting force and own frequency are coincide). In 
this case, the partial solution has the form 

2 cos
2

f
f

f

h t
x t


   

and the equation of vibration of the load x(t) 

1 0 2 0cos sin cos
2

f
f

f

h
x C t C t t t  


      . 

It’s easy to notice the amplitude of forced oscillations 
2

f

f

h t



 increases directly 

proportionally to time and with t   unlimited increases. The phenomenon of 
unlimited growth of the amplitude of forced oscillations is resonance, and equality 

0В   is a condition of resonance. In practical constructions, the phenomenon of 
resonance takes place as the reason for their destruction.  

Periodic Support Displacement 

Periodic Support oscillation movement takes place when the base at the point of 
attachment starts oscillation movement due to the law late  

ߦ = ܽక ∙  ,ݐ௙߱݊݅ݏ
where a  – the amplitude of base movement, ωf – its circular frequency. 

The mechanical system modeling in this case the vibrations of the load (material 
point) has the same form as in §1.4.1, only periodic support displacement   is added 
(considering in the figure the displacement directed to the positive direction of the x-
axis). Symbols in the figures are the same. 

The differential equation of a material point motion will get the form 
elma P F   
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or           st( )mx mg c x     , 
or          sin fmx cx с a t     . 

To divide all the summand into m and 
introduce the notation 

                     2
0

c
m

  , f

с a
h

m


 .                    

So differential equation of excited vibration 
gets the form 

                     2
0 sinf fx x h t   .             

 
Consequently, the properties of forced 

vibrations in the kinematic excitation will be the 
same as in force. 

1.4.5 Examples of solving research problems 
vibration motion of a material point 

 
Problem 1. Determine the equation of the vibration motion of the load D along 

a smooth inclined plane in the direction of the x-axis, which coincides with the axis 
of two series of connected springs. 

 

Given. The system of D ( Dm 20 
kg) and E Em( 10 kg) put on 
springs is in the position of static 
equilibrium. In time 0t , the load 
E is take off from the load D. At the 
same time, the load D adds an 
initial velocity 1,000  xV   m / s 
at  

positive direction reference x coordinates. The stiffness of the springs are equal с1 =  
с2 = 400 N/сm. Angle 030 . 

Solution. Convert the given mechanical system to the free-body diagram with 
one spring element (see the methodology of § 1.4.1) and represent it in the figure, 
where 1,2,3 are determined by the free end of the undeformed spring respectively, the 
position of the static balance of the load D and its arbitrary position during the 
vibrations, point A – the position of the load D at the moment of oscillation, stD

  

static deformation of the spring under the action of the load D, D, , ,D elР N F   the 
weight of the load, the normal surface reaction and the spring strength of the spring, 
accordingly. 

1 

2 

3 

 

х  

х 

0 

А 

х0 
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 In this scheme, in the position of the static equilibrium of the load D, the spring 
strength elF  does not balance the weight of the load DP , but only its component 

sinDx DP P    in the direction of the axis Ox, which coincides with the axle of the 
spring. 
 We find an equivalent stiffness с (show § 1.4.1): 

1 2

1 2

400 400 200
400 400

c cc
c c
 

  
 

N/сm =2104 N/m. 

 
We write a differential equation of the point's motion: 

sin ( ) sin
D DD Dx el D st D stm x P F P c x P c cx cx             , 

and convert it into a standard form  

 

0Dm x cx   
or   

0
D

cx x
m

  , 

denoted  2
0

D

c
m

  ,  

so  2
0 0x x  . 

The received 
equation has the form of 
the differential equation of 
free vibrations. It solution 
– function ( )x t , and it first 
derivative in time ( )x t  has 
form  

1 0 2 0cos sinx C t C t     , 

1 0 0 2 0 0sin cosx C t C t         . 
To determine the constant of integration we take the initial conditions (the 

coordinate of point A (see free-body diagram) and the projection of the initial 
velocity A0 VV  = 0,1 m/s): 

0 DE D Estt st stx   

   ,    00t

x V

  

Substitute them in expression ( )x t  і ( )x t   

1 2

0 1 0 2 0

cos0 sin0,

sin 0 cos0.
Eст C C

V C C



 

   


      
 

So the constant of integration will be 

 

А 

0 

1 

2 
 

х 
3 

 

α 

х 
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1 EstC  ,  0
2

0

VC


 . 

Substituting them into function ( )x t , we obtain the law of weight motion in a 
general form  

0
0 0

0

cos sin
Est

Vx t t  


    . 

Calculate the values of constant parameters:      
the value of static strain   

2
4

sin 10 10 0,5 0,25 10  m
2 10E

E
st

m g
c

   
   


, 

the value own frequency  
4

0
2 10 rad1000 31,6 

20 sD

c
m

 
    , 

20

0

0,1 0,32 10
31,6

V


    m. 

Law of motion: 
2 20,25 10 cos31,6t 0,32 10 sin31,6tx        (m). 

 Checking: If 0t  we get 2
0

0,25 10tx 

   m, which coincides with the value 

of the earlier defined initial condition 0x . 
 Answ: Weight performs free vibration according to the law  

2 20,25 10 cos31,6t 0,32 10 sin31,6tx         (m), with a circular frequency                                       

0 = 31,6 rad 
s

, period  0T = 0,2 s and amplitude 2
2

2
1 CCА  = 0,41·10-2 m. 

Diagram ratio coordinate x  in time t   

 
  
Problem 2. Find the equation of the vibration motion of the load D in the direction 
of the horizontal axis x, considering it as material point. The bar that connects the 
spring and damper is weightless. The bar is vertical position in a state of rest, motion 
considered as translational. 

-0,5
-0,4
-0,3
-0,2
-0,1

0
0,1
0,2
0,3
0,4
0,5

0 0,08 0,16 0,24 0,32 0,4 0,48 0,56

t, s 

х, сm 
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 Condition of the Problem. Mass of load Dm  4 kg. Stiffness of two springs 
c1 = 2 N/сm, c2 = 3 N/сm, damped coefficient 16b   Ns/m.  

 
 

Before moving, the load is rejected 
on the length 3 сm in the 
direction of the negative reference 
coordinates  х  in time , giving 
the load an initial velocity 0,6 
m/s, directed to left. 

Solution. Convert the original mechanical system into a free-body diagram 
with one elastic element (see § 1.4.1) and give it into figure, where levels 1,2,3 show 
the free end of the non-deformed spring, the position of the static equilibrium of the 
load D (which for a horizontal spring coincides with level 1; in the case 0st  ) and 
its arbitrary position during vibrations respectively. Point А – position of load D at 
the moment of start vibration, 0V   initial velocity vector, , , ,elР N F R   the force of 
gravity of the load, the normal reaction of the surface, the elastic force of the spring 
and the resistance force in respectively  

 

Determine equivalent stiffness с: 
    1 2 2 3 5c c c     N/сm = 
       = 5102 N/m. 
 Wright a differential equation of 
the point's motion: 

,D elm x F R cх bx        

and convert it into a standard form: 

0
D D

b cx x x
m m

    . 

Noted   2
0

D

c
m

  , 
m
bh 2 , so  2

02 0x hx x    . 

The resulting equation has the form of the differential equation of free 
vibrations considering of damped vibration. We calculate the values of circular 

frequency of free vibrations:   
2

0
5 10 rad125 11,2 

4 sD

c
m




    , 

and damped coefficient:  16 rad2 
2 2 4 s
bh
m

  


. 

Comparing these parameters, we have  a case of light damped vibration. 
In this case, the function ( )x t  and its first derivative in time ( )x t  have the form  



0t
0V

0h 

D 
х с1 

b 

с2 

0 
λ 

 

х 

1,2 

 

 

 

 

3 х 

А 
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 * *
1 0 2 0cos sinhtx e C t C t    , 

* * * * *
1 0 2 0 0 1 0 2 0( cos sin ) ( sin cos )ht htx h e C t C t e C t C t                   . 

To determine the constants of integration we take the initial conditions (the 
coordinate of point A (see free-body diagram) and the projection of the initial 
velocity): 

0t
x 


  ,    00t

x V

   

and substitute them for function ( )x t  і ( )x t   

  
0

1 2
0 0 *

0 1 2 0 1 2

( cos0 sin0),
( cos0 sin 0) ( sin0 cos0).

e C C
V h e C C e C C




     

              

 

So constants of integration 

1C   ,  0
2 *

0

V hC 


 
 . 

in a general form  
* *0
0 0*

0

cos sinht V hx e t t  


  
      

 
. 

 * 2 2
0 0

rad125 4 121 11 
s

h       , 

0
*
0

0,6 2 0,03 0,66 0,06
11 11

V h

  

    m. 

So equation of motion is: 
2te (0,03 cos11t 0,06 sin11t)x       (m). 

 Checking: at time 0t  get 
0

0,03
t

x

   m, which coincides with the value of 

the initial condition 0x . 
 Answ: the load performs damped vibration according to the law   

2te (0,03 cos11t 0,06 sin11t)x        (m), with damped natural frequency *
0 = 11 

rad/s and period *
0T = 0,58 s. The diagram ratio the coordinate x of time t is  

 
 
 



21 

 

 

Problem 3. Find the equation of the vibration motion the load D in the direction 
of the x-axis from the time it touches the plate, considered, the load from the plate 
isn’t separated with further motion. The plate, which is horizontal position in a state 
of rest, is weightless. Plate and bases motion are considered translationally. 
 

 
 

Condition of the Problem. Come down 
without initial velocity distance h 0,2 m, 
load D ( Dm 20 kg) connecting with plate 
at time 0t , which connects the system of 
two non-deformed parallel-connected 
springs. Springs have coefficients of 
stiffness and viscous damping с1 = 100 
N/сm, с2 = 200 N/сm,  21 bb 0. At the 
same time, the basis begins to move by law 

sin 0,5 sin30fa t t      (сm).         

Solution: First, consider the auxiliary problem of the free fall of the material 
point (load) from the height 0h A A  to the time of contact with the plate. 

 

 

Free-body diagram this problem shown in the figure. 
Differential equation motion is: Dm x P , or D Dm x m g , or 
x g . By integrating both parts of the last equation in time, 
we get  

1
2

1 2

,
/ 2 .

x gt C
x gt C t C
 


  


 

If initial conditions are zero, so the constants of integration are zero. Writing 
functions ,x x  at the final point A the segment 0A A , we have a system algebraic 
equations 

2

,
/ 2,

AV g
h g









 

where, excluding the time of motion on the segment of the fall  , we get the formula 
for the point velocity at the time of contact with the plate  

2 2 10 0,2 2AV gh      (m/s). 
Consider the basic problem of the material point variation (load). 

Convert the original mechanical system into a free-body diagram with one elastic 
element (show § 1.4.1) and give it into figure, where levels 1, 2, 3 determine the free 
end of the non-deformed spring, the position of the static equilibrium of the load D 

А 

А0 0 

х 
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(which for a horizontal spring coincides with level 1; in the case st 0  ) and its 
arbitrary position during vibrations respectively. Point A is the position of the load at 
the time of touching the plate, ст  is static strain of the spring under the action of the 
load, , elР F  - the force of gravity the load and the elastic force of the spring 
respectively,  is the direction of kinematic excitation at the point of fixing the spring 
to the moving support. Determine equivalent stiffness с: 

30020010021  ccc  N/сm =3104 N/m. 

 

Write differential equation point motion: 
( )

sin ,
D

f

el st

st

m x P F P c х
P c cx c cx ca t

 
  

      

      
 

and convert it to standard form: 
sin fDm x cx ca t    

or              sin
D D

f
cacx x t

m m
   , 

noted  2
0

D

c
m

  ,  f
D

с a
h

m


 ,  

            2
0 sinf fx x h t   . 

The got equation has the form  differential equation of kinematic oscillations. 
Its solution – function ( )x t , and its derivative in time ( )x t  are  

  1 0 2 0 2 2
0

cos sin sinf
f

f

h
x C t C t t  

 
     


,  

  1 0 0 2 0 0 2 2
0

sin cos cosf f
f

f

h
x C t C t t


    

 


        


 .  

For determination constants of integration 1 2,C C  write initial conditions 
(coordinate of point А (show free body diagram) and projection its initial velocity 

A0 VV  = 2 m/s): 

0 stt
x 


  ,    00t

x V

  

and substitute them into the equations ( )x t  і ( )x t   

 

х 

0 

 

А 

 

х 

 

3 

2 

1 
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1 2 2 2
0

0 1 0 2 0 2 2
0

cos0 sin 0 sin 0,

sin 0 cos0 cos0.

f
st

f

В В

В

h
C C

hV C C


 

 
 


       


          

 

So constants of integration 1 2,C C  are 

1 stC   ,  2 0 2 2
0 0

1 ( )f f

f

h
C V


  


  


. 

Substituting them in a function ( )x t , we get the equations of motion load in 
general form 

0 0 02 2 2 2
0 0 0

1cos ( ) sin sinf f f
st f

f f

h h
x t V t t


   

    


        
 

. 

Calculate the value of constants:      

the value of static strain  2
4

10 20 0,67 10  m
3 10

D
st

g m
c

  
   


, 

the value of circular frequency 
4

0
3 10 38,7 

20D

c
m

 
   rad/s, 

4 2

2

3 10 0,5 10 m7,5
20 sf

D

с a
h

m


   
   , 

2
42 2

20

7,5 7,5 1,25 10 m
3 10 1500 90030

20

f

f

h
 

   
 

, 

2
0 42 2

20 0

1 1 7,5 30 1( ) (2 ) (2 0,375) 4,2 10
3 1038,7 38,730

20

f f

f

h
V


  

 
         

 
m. 

Then the load equation is: 
2 2 20,67 10 cos38,7t 4,2 10 sin38,7t 1,25 10 sin30tx             (m). 

 Checking: If 0t  we get 2
t 0

x 0,67 10

    m, that coincides with the value 

of the earlier defined initial coordinate 0x . 
 Answ. The load has kinematics oscillations by law   

2 2 20,67 10 cos38,7t 4,2 10 sin38,7t 1,25 10 sin30tx              (м), with free 
circular frequency 0 = 38,7 rad / s  and exciting frequency f =30 rad / s . The 

respective periods are 0T = 0,16 s  and fT = 0,21 s. The diagram of ratio the 
coordinate x of time t is  
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1.5 The Main Principles of Dynamics 

Measures of particle system motion: total linear momentum, total angular 
momentum and total kinetic energy of the system. 

Measure of particle 
motion 

Measure of 
particle motion  

Measure of 
particle  system 
motion 

Effect of forces General 
principle 

Linear momentum 

(vector, 
mkg
s

   
) 

  
Total vector of 
external forces 

Force-Linear 
momentum 
principle 

Angular momentum 

(vector, 
2mkg

s
 

 
 

) 

  
Total moment of 
external forces 
about the center 
O 

Moment-
Angular 
momentum 
principle 

Kinetic energy 
(scalar,  J )   

Total work done 
by external and 
internal forces 

Work-Energy 
principle 

 

1.5.1 A particle linear momentum principle 

A particle linear momentum is a vector value, which is equal to the 
multiplication of its mass and its vector velocity 

.mQ   

Linear momentum direction is the same as that of the velocity. 

Elementary linear impulse of the force F is the multiplication of force and 
elementary time defined as .dtFSd    

Total linear impulse of the force of time period τ is the vector 

q mv
 

1

n

k
k

Q q



 

Ol r mv 
  

1

n

O k
k

L r q


 
  

2

2
mvT 

2

1 2

n
k k

k

m vT



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


0
.dtFS  

The projection of the linear impulse on the coordinate axis: 

S F dtх х  ;
0


  S F dtу у  ;

0


  S F dtz z  .

0


 

 

Force-linear momentum principle for a particle 

Differential form. The resultant of all forces acting on a particle equals the first 
derivative of the linear momentum in time. 

.)( R
dt
md

dt
Qd




 

The projection of this principle on the coordinate axis: 

;)(
x

x R
dt
md




  ;
)(

y
y R

dt
md




  .
)(

z
z R

dt
md




 

Integral form. Change the linear momentum of a material point over a period of 
time 01 tt   is equal to the impulse of force resultant over the same period of 
time: 

,01 Smm    
where 10 ,  – velocity of the point in time t0  and t1  respectively. 

In the projections of this principle on the coordinate axis: 

m m Sх х х 1 0  ;  m m Sу у у 1 0  ;  m m Sz z z 1 0  .  
 

1.5.2 The Work-Energy principle 
Kinetic energy of the material point 

is scalar value equals a half of product 
mass of point on the square of its velocity: 

.
2
1 2mТ   

Elementary work d A  of the force 
F  on elementary displacement 

 

(infinitely small) of the force point application rd  is a scalar value: 
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).,cos(


 rdFFdrrdFAd  

If under the applied force F  the material point moves from position M 0  to 
M 1 , then the work of force F  on the trajectory M 0 M 1  is equal to 

0 1 0 1 0 1

cos ( , ) .
M M M M M M

A dA F dr F F dr dr


       

Formulas for determining the elementary and total work of force in an analytical 
form: 

   d A F dx F dy F dzx y z ;  
A F dx F dy F dz

M M
x y z   ( ).

0 1

 

The work of constant force F  moving along a straight-line S  is defined by the 
formula  

.cos),(cos 


SFSFFSА  
The unit of work is the Joule (J). 
Dimension of work   Nm=J. 

 

Work of a weight. (P = mg):  
A Ph ,  
where h 10 zz   - the vertical 
displacement from the initial and final 
points position. Notice that the work done 
by gravity depends only on the vertical 
movement of the object.  

Work of a spring force the elongation of the spring from a position х1  to a 

position х 2 :          ).(
2

2
2

2
1 xxcA   

Consider spring force is exerted to a horizontal force ܨ௫ =  that is (ݔܿ−)
proportional to its deflection in the x direction independent on how a body moves. 

ܣ = න ܨ ∙ ݐ݀ݒ = −න ݐ௫݀ݒݔܿ = −
௧

଴

ܿ
2

௧

଴
ଵଶݔ) −  (ଶଶݔ

Work of a friction force. ܨ௙௥ = ܣ ;݂ܰ =  Note that for the friction .߮ݏ݋ܿ	௙௥݀ܨ−
force (ܨ௙௥ × ݀ < 0 - always) and the velocity of the object is always reduced! 

М1 М0 

 γ 

 

 
z 

O y 

М0 

 
М1 

h 
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The work applied by the force F is zero if: 
 s = 0: displacement equal to zero, 
 cos 900 = 0: force perpendicular to displacement. 
 

The Work-Energy principle 

Differential form. The differential of the kinetic energy of a material point 
equals the elementary work of forces applied to a point 

2( / 2)dT d mv d A   
Integral form. The change in the point's kinetic energy KE equals the work A of 

applied resultant of external forces to a point: difference of the particle’s final and 
initial kinetic energy, respectively, equals the sum of the work done by all the forces 
acting on the particle as the particle moves from point 1 to point 2. 

,
22

2
0

2
1 Amm


  

where vi and vf are the velocities of the particle before and after the application of 

force,  m is the point's mass, 



n

i
iAА

1
 is the algebraic sum of the all forces work 

applied to a point on the trajectory. 
 

1.5.3. Moment-Angular momentum principle 
Angular momentum of a material point about the center O is vector product of 
vector-position, the start of which is at the point O, on the linear momentum this point 

.vmrQr)Q(MK  00  

Angular momentum of a material 
point about axis Oz:  

hmQMK zz  )( . 

 

Moment-Angular momentum principle for the point: the derivative in time 
from the total angular momentum about the point O equals the total moment MO(R) 
of external forces acting on the point about the same fixed point O. 

).(RM
dt
Кd

0
0   

In the projections of this principle on the coordinate axis: 
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);( i

n

1i
x

х FM
dt

dК



  );( i

n

1i
у

у FM
dt

dК



  ).( i

n

1i
z

z FM
dt

dК



  

So the derivative in time from the total angular momentum about the fixed axis 
equals the total moment MOz(R) of external forces acting on the point about the same 
fixed axis O. 

 
1.6 D’Alambert’s principle for the point 

Inertial force of material point Ф  is equal to the product of the mass of a 
point on the magnitude of its acceleration and is directed oppositely to the 
acceleration point vector  

.; maФ  amФ   

 

If the point moves on the curvature trajectory, the force of inertia can be given 
as the sum of two components: 

ФФФ n  , 

where    ;;

 2

nnn mФ  amФ   

    .;
dt
dmФ  amФ 

   

D’Alambert’s principle for the constrained material point: when the material 
point is moving, the active forces and reactions of constraints, and the force of inertia 
conventionally applied of the material point, this  system  represent a balance of 
forces 

0 ФRF , 
where F   is total vector of active forces; R   is total vector of external reactions of 
constraints; Ф   inertial force of point. 
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2 DYNAMICS OF MECHANICAL SYSTEM 
AND RIGID BODY 

Mechanical system (material system) is a set of material points, the position 
and motion of each depend on the position and motion of the other. 

The forces acting on the mechanical system are divided into external and 
internal. 

External forces eF  are the forces of interaction of a mechanical system points 
with bodies which do not belong to this system. 

Internal forces iF  are the forces of interaction between points belonging to 
mechanical system. 

Internal forces properties: 
1) the resultant vector of the internal forces of the system is zero: 0iF . 
2) the resultant moment of the internal forces of the system about any point is 

zero: 0)(0 iFM . 

The mass of the mechanical system is equal to the sum of the masses of all 
points of the system: 




n

i
imM

1
. 

The center of mass is the point at which all of the mass in a system is 
concentrated. The center of mass of a mechanical system is a geometric point which 
vector-position is determined by expression: 

.

1

1







 n

i
i

n

i
ii

c
m

rm
r  

Coordinates of the center of mass is determined by expression: 







 n

i
i

n

i
ii

c
m

xm
x

1

1 , ,






 n

i
i

n

i
ii

c
m

ym
y

1

1  z
m z

m
c

i i
i

n

i
i

n 







1

1

.  

The center of mass is a geometric (not material) point by definition. The center 
of gravity of the system coincides with the center of mass. 
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2.1 Mass-Center motion of system principle 

Principle: Mass-center of mechanical system moves as point acted on by force. 
Mass of the point is equal to mass of the system. The force is equal to the total vector 
of external forces applied to the system. 

.e
c FaM   

Differential equations of the center of mass motion in the projections on the axis 
of the Cartesian coordinate system: 

M x FC ix
e

i

n
 ;




1
  M у FC iу

e

i

n
 ;




1
  M z FC iz

e

i

n
 .




1
 

These equations are differential equations of the translational motion of a 
absolutely rigid body. 

Internal forces do not enter into these equations and do not directly affect the 
motion of the center of mass of the mechanical system. In a changing system, internal 
forces cause motion of the system points; change their relative position, without 
changing the position of the center of mass. 

Internal forces are cause of external forces which make the center of mass move. 
For example, in vehicles (tram, trolley, car, etc.), the internal forces of the engine 
influence their motion through the friction forces between the driving wheels and the 
support surface (rails, track). 

The consequences of the theorem (principle of conservation of motion of the 
center of mass): 

1) if 0eF , then 0ас   і constvc    the center of mass of the system 
moves uniformly and rectilinearly or is at rest. 

2) if 



n

i

e
ix

e
x FF

1
0 , then 0xа cсx    and cx const     the projection of 

the velocity of the center of mass on the axis x is constant.  
 

2.2 Force-Linear momentum principle for a mechanical system 

The total linear momentum of a mechanical system is a vector equal to the 
geometric sum of the linear momentum of all material points of the system. 

ܳ is total linear momentum of the mechanical system 





n

i
iimQ

1
.  

The principle linear momentum of a mechanical system is equal to the product 
of the mass of the system on the velocity vector of its center of mass: 
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.сMQ   

Force-momentum principle for a mechanical system. Differential form. The total 
external force on a mechanical system equals the derivative of time of the principle 
linear momentum of the mechanical system. 

 edQ F
dt






 
The scalar view of equation is 

  dQ
dt

Fх
ix
e

i

n





1
;  

dQ
dt

Fу
iу
e

i

n





1
;  dQ

dt
Fz

iz
e

i

n



 .

1
 

Integral form. The principle linear impulse of force acting on a mechanical 
system equals the corresponding change in linear momentum of the system of time 

 01 tt  

,01
eSQQ   

where 1Q  and 0Q   the linear momentum of the system at finite t1 and initial t0 
moments of time; 




0
dtFS ee  – The total linear impulse of external forces in time  01 tt . 

Two Corollary of the Force-momentum principle for mechanical system 
(principle of conservation of linear momentum): 

1) when the total vector of external forces is zero ∑ܨ௞	
௘
= 0, then

0;dQ Q Const
dt

  .  

If the total external force on the mechanical system during a time interval equals 
zero than the principle linear momentum of the system is unchanged during the time 
interval.  

	௞௫ܨ∑ (2
௘

= 0, then 0 0x
x x

dQ V Q const
dt

     . 

If the projection on an axis of the total external force on the mechanical system 
during a time interval equals zero than the projection on the axis of the principle 
linear-momentum of the system is unchanged during the time interval. 
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2.3 Principle of angular impulse and momentum  
 

The angular momentum of a particle of mass m about the point O of the inertial 
reference is given by the vector multiplication 

( )ooK M q r mv  
    . 

The total angular momentum about point O fixed in an inertial reference is 
the vector sum of the angular momenta of the points of the mechanical system 

0
1 1 1

.
n n n

oх к к к к к
i i i

К К r Q r m V
  

        

The total angular momentum about axis Oz is the sum of the angular momenta 
of the points of the mechanical system about given axis: 

kKjKiКК zyx0     or    К Кz oz
i

n





1
.  

Principle: The total moment ( )e
OM  of external forces acting on a mechanical 

system about a point O fixed in an inertial reference equals the first derivative on the 
time of the total angular momentum relative to the point O. 

,0
0 eM

dt
Kd

  

where 



n

i

e
i

e FMM
1

00 )(  is the total moment ( )e
OM  of external forces about point O. 

Vector equation in projections on the Cartesian coordinate system:  





n

1i

e
x

x FM
dt

dК )( ;   



n

1i

e
у

у FM
dt

dК
)( ;   




n

1i

e
z

z FM
dt

dК )( . 

Principle of conservation of angular momentum: 

1) if the total moment of external forces ܯை
(௘)

= 0 acting on the mechanical 
system about a point O has no component in any direction, the total angular 
momentum about the point O remains constant: 0 0,eM   then 0K const . 

2) if the total moment of external forces acting on a the mechanical system about 
an axis x ܯ௫

(௘) = 0 equals zero during finite time interval, the total angular 
momentum about the axis remains constant during this time interval. 





n

i

e
iz FM

1
0)( , then constK z  . 
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2.3.1 The differential equation of the rigid body rotation about the axis Oz: 

1

( ),
n

e
z z i

i

dI M F
dt




  

where zI   moment of inertia of the rigid body about axis z ;    angular velocity 
body about axis z ; )( e

iz FM   moment of external forces about the axis Оz. 
 

2.3.2 Moments of inertia of a rigid body (mechanical system) 

Moment of inertia about axis (the second moment) is the sum of production 
mass of points on its squared distances from the axis: 

2

1

n

z i i
i

I m h


 . 

Moment of inertia of rigid body: 
2 2

1 ( )

lim
n

z iz i zn i m

I h m h dm




     , 

where h hiz z( )   distance from axis of body’s point mass m dmi ( );  х у z, ,    
coordinates of body’s point.  

Axial moments of body inertia:   
2 2

( )

( ) ;x
m

I y z dm     2 2

( )

( ) ;y
m

I x z dm     2 2

( )

( )z
m

I y x dm  . 

Polar moment of inertia 0I  (about the pole О) and planar , ,xoy xoz yozI I I  (about 
the plate) moment of inertia: 

2
0

( )

;
m

I r dm   2

( )

;xoy
m

I z dm   2

( )

;xoz
m

I y dm   2

( )
yoz

m

I x dm  , 

where r   distance the point from the pole О. 
Polar moment of inertia equals a half of the sum of inertia of axis moments and 

the sum inertia of planar moments: 

0
1 ( )
2xoy xoz yoz x y zI I I I I I I       

The product of inertia of a plane area are value, which expressed by formulas: 

( )

;xy
m

I xydm   
( )

;xz
m

I xzdm    
( )

.уz
m

I уzdm   

Products of inertia may be positive, negative, or zero, depending on the 
position of the xy axes with respect to the area. If the product of inertia of an area is 
zero with respect to any pair of axes this axis x, y called the centroidal axis in point 
O. If this point coincide with mas-center of the body, then coordinate axis are main 
centroidal axis of inertia. 
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Radius of gyration z   of the body about axis z is the value, which equals the 
distance from the axis to the material point. Which value is determined by 
expression: 

2;   .z
z z z

II m m    

Parallel-axis theorem for moments of inertia: The moment of inertia of an 
area with respect to any axis in its plane is equal to the moment of inertia with 
respect to a parallel centroidal axis plus the product of the area and the square of the 
distance between the two axes. 

     
1

2
zz CI I Мh  , 

where z1   arbitrary axis; z  the axis passing through the mass-center of C of the 
body parallel to the axis z1. 

 
 

Moment of some elements inertia 
Uniform rod 

1

2 2/12; / 3,
zC zI Мl I Мl   

where М – mass of body. 
 

Rectangular area 
 2 2/ 12;  / 12.

х yС CI Мb I Мa   

2 2( ).
12zC
МI a b   

 

х 

a 

b 

z 

у 
С 

Z Z1 

С l 
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Hollow cylinder: 

    2 21 ( )
2zCI М R r  . 

Thin ring: 
   2( ) :  .zr R I МR   

Cylinder (circular disk) 
   2( 0) :  / 2.

zСr I МR   

 
2.4 The Work-Energy principle for mechanical system 

Kinetic energy of mechanical system is a scalar value, which equals the sum 
of kinetic energy material points and has units of joules (J) and Nm. 

T mi i

i

n





2

1 2
,  

where mi   mass of the point,  i   velocity of the point. 

Koenig's Theorem: The kinetic energy of a system is equal to the sum of the 
kinetic energy of the center of mass of the system and the kinetic energy of the 
system in its relative motion with respect to the coordinate system, which moves 
translationally with the center of mass: 

T M mc i ri

i

n
 




 2 2

12 2
, 

where m i   mass of the point of the system; ri   relative point velocity about mass-
center; М   mass of mechanical system; с   velocity of mass-center of system. The 
kinetic energy of a rigid body determined by the formula:  

for translation motion  ;
2

2
cMT 

  
 

for rotation about a fixed axis          
21 ;

2 zТ I   
 

for general plane motion 

 T M c 
2

2
21

2 zСI  , 

 
where М  mass of body, с   velocity of mass-center of system; zcz II ,   moment 
of inertia about axis z (axis of rotation) or axis z, which pass through  mass-center;   
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 angular velocity of body. 
The work-energy principle for mechanical system: 

–differential form: the differential kinetic energy of the mechanical system is 
equal to the sum of elementary works of external and internal forces applied to the 
points of the system: 

dT d A d Ai
e

i

n
i
i

i

n
   

 
 

1 1
;  

– integral form: the change in the kinetic energy of the mechanical system on a 
certain displacement is equal to the sum of the work of external and internal forces on 
the same displacement: 

T T A Ai
e

i

n
i
i

i

n
1 0

1 1
  

 
  ,  

where Т 1 and Т 0   the kinetic energy of the system at the end and the start of the 

way; Аi
e   sum of works of external forces; Аi

i   sum of works of internal 

forces. 
 

The work of the force applied to a rigid body rotating about a fixed axis z  is 
equal to the product of the moment of force relative to a given axis by the angle of 
rotation of the body: 

0

( ) ;   ( ) ,z zd A M F d A M F d


      

where zM ( )F   moment of force about axis; ,d     elementary and real angle of 
rotation of the body. 

If ( ) zM const we get  ( ) .zA M F   
Elementary work of forces applied to a free-moving rigid body is equal to 

the sum of the work of the principal vector F  of the mechanical system on the 
elementary displacement 0dr  of the pole O and the work of the principal moment 

OM  of this system of forces with the respect to the pole on the elementary rotation 
movement: 

0 0 .d A F dr M d      
Power N  is a physical quantity, which characterizes the velocity of work. 

,zN F V F V M        
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where V   velocity of the point, F   projection of force on tangent axis, ( )zM F   
moment of force about axis of rotation ,    angular velocity of body. Units of 
power is Watt (W) (1 1 / =1 / ).W N m s J s    

 
2.5 D’Alambert’s principle for mechanical system 

 
D’Alambert’s principle for mechanical system: At any time, the sum of 

resultants of active and reactive forces acting on the system and inertial force is zero. 
At any time, the sum of principle moments of active, external reactive and inertial 
forces acting on the moving system about any point O is zero: 

 

1 1 1

0;
n n n

i i i
i i i

F R Ф
  

        0 0 0
1 1 1

( ) ( ) ( ) 0.
n n n

i i i
i i i

M F M R M Ф
  

      

The forces of inertia of the body are given: 
- if translation motion to resultants 
force of inertia CФ :  

,C CФ Мa    
which applied to mass-center C;  

- in rotation about fixed axis passing through the mass-center of the body – to 
principle moment in

zM  
;   ;in

z z O CM I Ф Мa     
- in general plane motion to the principal vector of inertial forces CФ  applied to the 
mass-center and the principal moment of inertial forces 

z

in
cМ : 

;C СФ Ма    ,
z

in
Cz СМ I    

 

where М  mass of the body; Cа   
acceleration of the mass-center;    
angular acceleration; ,  

zz cI I   moments 
of inertia rotating body about fixed axis  
z  and axis Cz , which pass through mass-
center C. 

 
 
 
 
 



38 

 

 

3 ELEMENTS OF ANALYTICAL MECHANICS 
3.1 Classification of constraints 

There are free and non-free mechanical systems. A mechanical system is called 
free if the movement of its points is unrestricted by any bodies (constrains). If the 
movement of the mechanical system is restricted by the constrains, then it is called 
non-free. 

Classification of Constraints. The restrictions which constraints put on a 
mechanical system are expressed analytically in the relations (equations or 
inequalities) between the time, coordinates, and velocities of the points belonging to 
the mechanical system. 

Classification of Constraints: 
Geometric (finite) are constraints, which do not include point velocities of 

systems: 
. 

Kinematic (differential) are such  constraints which include the velocities of 
system points: 

 
Holonomic (integrated) constraints can be expressed as a function of the 

coordinates and time. Non-holonomic (non-integrated): constraint relations which 
are not holonomic. 

Conservative: total mechanical energy of the system is conserved while 
performing the constrained motion. Constraint forces do not do any work. 
Dissipative: constraint forces do work and total mechanical energy is not conserved. 

Scleronomic: constraint relations do not explicitly depend on time,  
Rheonomic: constraint relations depend explicitly on time,  
Bilateral (restraining): at any point on the constraint surface both the forward 

and backward motions are possible. Constraint relations are not in the form of 
inequalities but are in the form of equations: 

( , , , , , ) 0f x y z x y z      

Unilateral (non-restraining): at some points no forward motion is possible. 
Constraint relations are expressed in the form of inequalities: 

 
 

3.2 Virtual work principle 

Virtual displacement. The displacement is called virtual (infinitesimal) 
displacement of a system, which is allowed by the system's constraints in this time 
(in this system position).  

) ... ,(                  ,),,,( nizyxtf iii 10 

). ... ,(                  ,),,,,,,( nizyxzyxtf iiiiii 10 

.0),,,,,,( tzyxzyxf 
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Ideal constraints are those which the virtual work done by the constraint 
forces along the virtual displacement must be zero: 

1
0

n

i i
i

R r


  . 

Principle of virtual work. The condition for static equilibrium is that the virtual 
work done by all the applied forces should vanish, provided the virtual work done by 
all the constraint forces escape. 

1 1

0
n n

a
i i i

i i
А F S 

 

    . 

Examples of ideal constraints: ideally smooth surface; ideal joints (bearing), 
rods, etc. 

The principle of virtual work states that in equilibrium the virtual work of the 
forces applied to a system is zero. This means the virtual work of the constraint 
forces must be zero as well. 

scalar form  
1

cos( , ) 0
n

i i i i
i

F S F S 




 ; 

analytical form 
1

( ) 0
n

ix i iy i iz i
i

F x F y F z  


   . 

 

3.3 Generalized coordinate, velocity and generalized force 

Generalized coordinates 1 2,  ,...  Sq q q  called  such independent parameters, 
when the task of which can individually determine the position of all points of the 
system. Such parameters can be Cartesian coordinates, angles, distances, etc. The 
number S of such independent parameters are called the number of degrees of 
freedom of the mechanical system. 

Time derivatives of generalized coordinates, that are  1 2,  ,...  Sq q q   , magnitudes, 
are called generalized system velocities.  

Let's calculate the work of the points of the active forces system kF  applied to 
the virtual displacement of the system:  

1 1 1 1
( ) ,

n S n S
k

k k k i i i
k i k ii

rA F r F q Q q
q

   
   


    

     

where        
1 1

( ),   i=1,2, ... S.
n n

k k k k
i k kx ky kz

k ki i i i

r x y zQ F F F F
q q q q 

   
   

      
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Values 1 2,  ,...  SQ Q Q , which are multipliers in the virtual displacements of 
generalized coordinates in the formula of the active forces work on the virtual 
displacement of the system are called generalized forces. 

To calculate the generalized force  (i=1,2, ... S),iQ  it is enough to give a virtual 
displacement of the coordinate iq  and to determine the work iA  of active forces on 
the displacements of the system points, which are caused only by a change of the 
coordinate iq . 

We get / ,i i iQ A q   ( =1,2, ... S).i  
If the active forces are potential then the generalized forces will be equal to the 

partial derivative of the potential energy U (q1, q2,…, qs) in the generalized 
coordinates: 

.i
i

UQ
q


 


 

3.4 Dynamics Equations of the System 
 
General equation. In the motion of a system obeying a holonomic two-sided 

ideal constraints, the sum of the active and inertial forces on any virtual displacement 
of the system must be zero: 

1 1
0

n n

k k k k
k k

F q Ф q 
 

      

or  0  ( 1,2,  ..., ),in
i iQ Q i S    

where kФ   inertial force of the point; in
iQ   generalized force of inertia; kq   

virtual displacement of the point. 
Lagrange’s Equations of the second kind is the following: 

    ( =1,2, ..., ),i
i i

d Т Т Q i S
dt q q
  

    
 

where Т  kinetic energy of the system, presented as a function of generalized 

coordinates, generalized velocities and time; ,
i

Т
q

 

 
i

Т
q



  partial derivatives of kinetic 

energy on generalized velocities and coordinates. 
 

3.5 Impact 
 
Impact occurs when two bodies collide with each other during a very short 

period of time, causing relatively large (impulsive) forces to be exerted between the 
bodies. 
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Impact  the phenomenon at which the velocities of body points in a very small 
(close to zero) time interval change to a final value. 

Impact forces are the forces at which an impact occurs. Impact forces operate 
for a very short period of time and reach very large values. 

In impact theory, the momentum are considered (not as impact forces) but as a 
measure of interaction. 

Impact impulse  a vector, which i determined by the formula 

0

,im imS F dt


   

where   time of impact. 
Force-Linear momentum principle for material point upon impact (general 

equation of impact theory of material point): the change in the linear momentum of a 
material point during impact is equal to the geometric sum of the impact impulses 
acting on the point: 

1

( ) ,
n

im
i

i
m U V S



   

where ,  U V   the velocities of the point after and before the collision. 
Coefficient of restitution in impact: 

 
 

r
n
r

n

U
k

V
 ,        0  ≤  k  ≤  1, 

where  r
nU ,  r

nV   the magnitudes of the normal components of the relative contact 

point velocity of bodies after and before impact, respectively. 

Physical meaning of two limits:  
1) k = 1  Elastic Impact (the bodies after the impact have different velocities); 
2) k = 0  Plastic Impact (after collision both particles couple or stick together 

and move with a common velocity). 
Force-Linear momentum principle for material system upon impact: the 

change in the linear momentum of a mechanical system during impact is equal to the 
geometric sum of the impact impulses acting on the system: 

1 0
1

,
n

im
i

i
Q Q S



   

where 1 0,Q Q   the linear momentum of a mechanical system after and before the 
collision. 

Moment-Angular Momentum principle for material system upon impact: 
change in the total angular momentum of a mechanical system about fixed pole A 
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during impact is equal to the geometric sum of the external impact impulses relative 
to the same pole A: 

1 0
1

( ),
n

im
А А А i

i
K K М S



   

where 
1 0
,А АK K   total angular momentum of a mechanical system about fixed pole A 

after and before the collision. 
There are two types of impact. Central impact occurs when the direction of 

motion of the mass centers of the two colliding particles is along a line passing 
through the mass centers of the particles. When the motion of one or both of the 
particles make an angle with the line of impact, the impact is said to be oblique 
impact. 

General equation of central impact:  

1 1 2 2 1 1 2 2 ;x x x xm V m V m U m U       2 1

1 2

,x x

x x

U Uk
V V





 

where 1 2, x xV V   projections of the velocity of the bodies before the impact on 
the x-axis coinciding with the line of impact; 1 2,  x xU U   projections of the velocity 
of the bodies after the impact; 1 2,m m   bodies masses ; K  coefficient of restitution. 

Ostrogradskiy-Carno theorem: 
2 2

1 0 1 1 1 2 2 2
1 1 1( ) ( ) ;
1 2 2x x x x

kТ Т m V U m V U
k

         
 

where 0 1Т Т   change of kinetic energy of two bodies when at impact; 0 1,Т Т   
kinetic energy system before and after impact; 1 1( ),x xV U  2 2( )x xV U   velocity 
change.  

In case of oblique impact the equation  

1 1 2 2 1 1 2 2 ;n n n nm V m V m U m U    2 1

1 2

,n n

n n

U Uk
V V





 

where 1 2, n nV V  and 1 2,  n nU U   projection of body’s velocities on the n axis, passing 
through the mass-centers of these bodies before and after the impact. 
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APPENDIX А 

Output dates for work "OSCILLATIONS OF A MATERIAL POINT" 

In problems, the oscillations of the load D or the system of loads D and E. Find 
equations of motion of load or system D and E. Consider the motion vertically, 
relatively to the Ox axis. Combine the reference with the equilibrium of the load D or 
the system D and E. 

1. Load D (mD  =2 kg) is attached to the beam AB, attached to two identical 
parallel springs, each spring stiffness and resistance coefficient is c =3 N/cm, b = 6 
Ns/cm. The point of attachment of the load is in the middle of the axes of the spring. 
At the time t = 0 to the load D, which is in the rest position, hang the load E (mE = 1 
kg). 

2. At the time t =0 the rod, which connects the loads D (mD = 1 kg) and E (mE = 
2 kg) cut, and the base begins to make a moving by law ξ=1,5 sin18t (cm). Stiffness 
and resistance coefficients of a spring are c1 = 12 N / cm, c2 = 36 N / cm, b1 = b2 = 0. 

3. At the time t =0 to load D (mD = 0,8 kg) connected to load E (mE = 1,2 kg) and 
give the system of loads D and E initial velocity v0 = 0.2 m/s, downward. Coefficients 
of stiffness and resistance is c1 = 10 N / cm, c2 = 4 N / cm, c3 = 6 N /cm, b1 = b2  = 0. 

4. The system loads D and E are attached to the beam AB. The beam connecting 
to system of two parallel springs. Static deformation of two springs with coefficient 
of resistance b = 6 Ns/cm under the combined action of loads D (mD = 0,5 kg) and E 
(= 1,5 kg) is δst = 4 cm. At the time t = 0 the rod, which connects the loads, is cut. 

5. At the time, to load D (mD = 1,6 kg), which attached to a spring with stiffness 
c = 4 N/cm and resistance b = 0 , connected load E (mE = 2,4 kg), and at point B the 
base begins to make motion by the law ξ = 2 sin5t (cm). 

6. Load D has moved without initial velocity on inclined plane () the distance s 
= 0,1 m, at the time t = 0 load D (mD = 4 kg) connects with the non-deformed springs 
which connected in series, and have stiffness and resistance coefficients c1 = 48 N / 
cm, c2 = 24 N / cm, b1 = b2 = 0. 

7. At the time t = 0 load D (mD = 2 kg) added at point A without initial velocity 
to the system non-deformed series-connected springs, which have stiffness and 
resistance coefficients c1 = 12 N / cm, c2 = 6 N / cm, b1 = b2 = 0. At the same time 
base at the point B starts moving along the inclined plane (α = 45o) by the law ξ = 
0,02 sin20t (m). 

8. At the time t = 0 the load D ( Dm 1,5 kg) added to a point N to system of the 
three non-deformed parallel-series connected springs with beam AB, which have 
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coefficients of stiffness and resistance c1 = 4 N / cm, c2 = 6 N / cm, c3 = 15 N / cm, b1 
= b2 = b3=0. At the same time the load B has the velocity of v0= 0,5 m / s in the 
positive direction of reference coordinates X. Given angle α = 450. 

9. The load D (mD=1.2 kg), moved distance S = 0.2 m away without the initial 
velocity on an inclined plane (α = 30o), is connected to a non-deformed spring having 
coefficients of stiffness and resistance с = 4,8 N / сm, b = 0 . At the same time, the 
basis at the point B begins to move along the inclined plane by law 0,03sin12t   
(m). 

10. At the time t = 0 the load D (mD =1 kg) without initial velocity joins the 
system coupled with a rod AB with two identical parallel connected non-deformed 
springs having each coefficients of stiffness and resistance coefficient c = 1.5 N / cm, 
b = 4 Ns/m. Take the angle α = 60o. 

11. Load D (mD = 2.4 kg) is held at point F to the rod AB. The coefficients of 
stiffness and resistance of the system of two parallel fixed springs, connected with the 
rod, с1 = 1 N / sm, с2 = 1,4 N / cm, b = 3 Ns / m. Before the start of the motion, the 
load is extend on a value of λ = 2 cm in the direction of positive reference of the 
coordinate X at a time t = 0 without initial velocity. 

12. At the moment t = 0, the load D (mD = 3 kg) is held in a state in which the 
spring is compressed by a value of 2 cm, released without initial velocity. 
Coefficients of stiffness and spring resistance c = 9 N / cm, b = 0. At the same time, 
the base at point B begins to move according to law 1,2sin8t   (cm). 

13. The load D (mD =1 kg) (in the equilibrium state shown in the drawing) gives 
an initial velocity of vo = 0.5 m / s in the direction of positive reference coordinate X. 
The coefficient of stiffness and spring resistance of three parallel-series connected 
springs c1 = 12 N / cm, c2 = c3 = c = 3 N / cm, b1 = b2 = b3 = 0. 

14. The load D (mD =1.5 kg) from the equilibrium position (shown in the 
drawing), before the start of the motion, is deflected by a value of λ = 2.5 cm in the 
direction of positive reference X coordinates and released at time t = 0, giving the 
load an initial velocity of vo = 0.4 m / s, directed to the right. The coefficients of 
stiffness and spring resistance c1 = 4.4 N / cm, c2 = 2 N / cm, c3 = 8 N / cm, b1 = b2 = 
b3 = 0. 

15. The load D (mD = 1 kg) is held in equilibrium state, as shown in the drawing, 
by a system of series-connected springs, which have coefficients of stiffness and 
resistance c1 = 4 N / cm, c2 = 12 N / cm, b1 = b2 = 0. At the time t = 0, the base at the 
point B starts to move according to the law 1,8sin12t   (cm). 
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Variants 16 – 20.  
Find the equation of the oscillatory motion of the load D in the direction of the 

axis Ox. The rod which connects the springs is weightless. Motion of the block AB, 
which occupies a state of rest in horizontal position, considered translation. Loads D, 
E are not separate from each other in combined motion. 
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16. At the time t = 0, a load D (mD = 20 kg) is placed on the stationary load E     
(mE  = 10 kg), giving the loading system D and E an initial velocity of vo = 0,4 m / s 
in the direction of positive reference X. The coefficient of stiffness and resistance of 
the system bounded by a rod AB of three parallel- series connected springs с1 = 200 N 
/ сm, с2 = 160 N / сm, с3 = 140 N / сm, b1 = b2 = b3 =0. The origin of the reference 
axis Ох is combine with the position of the static equilibrium of the system of loads 
D, Е. 

 
17. The system of loads D and E set on the spring is in a position of static 

equilibrium. At time t = 0, the load E is removed from the load D. The oscillation 
frequency of the loads system D and E is ωo = 20 rad / s, the mass ratio mD / mE = 2 / 
3. The start of the reference axis Ox to combine with the position of the static 
equilibrium of the load D. 

 
18. The load D is set on the AB beam, which connects the system of two 

identical parallel-connected springs. At time t = 0, on the load D (mD = 20 kg) is set to 
the top load E (mE = 10 kg). The static deformation of each of the springs with a 
resistance coefficient 30 3b   Ns m under the action of the load D is st   2 cm. 
The origin of the reference axis Ox to combine with the position of the static 
equilibrium of the loads system D, E. 

 
19. The system of loads D (mD = 15 kg) and E (mE = 25 kg) set on two series-

connected springs which coefficients of stiffness and resistance c1 = 250 N / cm, c2 = 
375 N / cm, b1 = b2 = 0, is in the static equilibrium. In time t = 0, the load E is 
removed from the load D. At the same time, the base at point B begins to move the 
law 0,05sin30t   (m). 

20. At the moment t = 0 the load E is set to the top of the load D, giving the 
system of loads D and E an initial velocity vo = 0.3 m / s in the direction of positive 
reference coordinate X. Oscillation frequencies of load D on the spring of  ωo = 24 
rad / s, the mass ratio mD / mE = 3. Origin the axis Ox combine with the position of 
the static equilibrium of the loads system D and E. 

 
Variants 21 – 25. 
Find the solution of the oscillatory motion of the load D along a smooth inclined 

plane in the direction of the axis Ox. The rod, which connects the springs, is 
weightless. The motion of the AB block, which is in the state of rest perpendicular to 
the axis AB, is consider as translation. 
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21. At the moment t = 0, the load D (mD = 2 kg) is connected at the points A and 
B to the free ends of the system of two non-deformed parallel-connected springs have 
coefficients of stiffness and resistance c1 = 7 N / cm, c2 = 3 N / cm, b1 = b2 = 0. At the 
same time, the load D give an initial velocity of vo = 0.4 m / s in the direction of 
positive reference X. Take the angle α = 45o. 

22. The load D at point A is attached to the spring and held on an inclined plane 
(α = 30o) in the equilibrium. In this case, the static deformation of the spring is st   
2 cm. At the time t = 0, the base at the point B begins to move in accordance with the 
law 0,01sin10t   (m). 

23. At the time t = 0, the load D (mD = 3 kg) is connected to the AB beam 
without initial velocity. Beam AB binds the system of two non-deformed parallel- 
connected springs, which have coefficients of stiffness and resistance c1 = 2 N / cm, 
c2 = 4 N / cm, b1 = b2 = 6 Ns / m. Take the angle α = 60o . 

24. At the time t = 0, the load D (mD =1 kg) is attached at the point A without the 
initial velocity to the system of two non-deformed series longitudinally connected 
springs, which have coefficients of stiffness and resistance c1 = 12 N / cm, c2 = 4 N / 
cm,  0. At the same time the base at the point B starts to move along the inclined 
plane (α = 30o) by law 1,5sin10t   (cm). 

25. Load D (mD = 1,5 kg) is attached to a rod AB, suspended on two identical 
parallel springs. The static deformation of each of the springs with a resistance 
coefficient b = 3 Ns / cm under the action of the load D on the inclined plane (α = 
30o) is  st   4.9 cm. At the time t = 0, the load D, which is in the equilibrium, gives 
an initial velocity of vo = 0.3 m / s in the direction of the negative coordinate X. 

Variants 26-30. Find the equation of oscillatory motion of load D in the 
direction of the axis Ох from the moment of touch to the plate, considering that in 
further motion the load is not separated from the plate. The plate, which is in 
equilibrium at the horizontal position, is weightless. The motion of the plate is 
considered translational. 

26. Load D falls down without the initial velocity, distance h = 0.1 m, load D 
(mD = 50 kg) connects at a time t = 0 to a plate which connects a system of two non-
deformed parallel-connected springs have coefficients of stiffness and resistance c1 = 
600 N / cm, c2 = 400 N / cm, b1 = b2 = 0. 

27. At the time t = 0, load D (mD = 40 kg) is set without initial velocity on a slab 
connecting the system of two identical, in parallel-connected non-deformed springs 
have each stiffness and resistance coefficients c = 130 N / cm, b = 200 Ns / m. 
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28. The load D falls on the slab from a height h = 5 cm without initial velocity. 

The plate fixed on a spring, which static deformation of the applied load is 1st   cm. 
 
29. The plate fixed on two identical parallel springs. At time t = 0, load D (mD = 

200 kg) is set on the plate and suspended to the third spring located above the load. 
The springs have coefficients of stiffness and resistance c1 = c2 = 400 N / cm, c3 = 200 
N / cm, b1 = b2 = 0. At the same time, the load gives an initial velocity of vo = 0.6 m / 
s, in the direction of the positive reference of the coordinate X. At the initial time 
motion, the three-spring system is in equilibrium. 
 

30. At time t = 0, load D (mD = 100 kg) is set without initial velocity on a plate 
fixed to a spring having coefficients of stiffness and resistance b = 0. At the same 
time, the base at point B begins to move in law 0,5sin 20t   (cm). 
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