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1 DYNAMICS of POINT

Dynamics studies the mechanical motion of material objects (material point,
system of material points, solids) under the action of the forces applied.

1.1 Axioms of Dynamics ( Newton’s lows of motion):

First Law (of inertia): A point isolated from other bodies remains at rest or
continues to move in straight line with a constant velocity if there is no any force
acting on it.

Second Law (basic): A free point under the acting of any other force is
accelerated; the acceleration is in the direction of the force and is directly
proportional to the force and inversely proportional to the mass of the point:
ma =F.

Third Law (law of action and reaction) For any action there is always an
equal and opposite reaction or, the mutual actions of any two bodies are always
equal and oppositely directed. F1, = —F,

Forth Law (Principle of superposition): The resulting acceleration caused by
two or more forces is geometrical sum of the accelerations, which would be caused
by each force separately: a = a; + a, + -+ + a,.

1.2 Differential forms of free point equation of motion

The basic equation of dynamics: ma = ) F, can be written as a differential

equation:
Vector form:
d’F = av -
: =F m—=F
dt dt
where m is mass of the point, 7 is vector-position, which is the function of the time.
Coordinate form (in axis projections):

n n
mx=3Fy; my=XFy; mi=3%F;,
i1 i1 i=1

m

n n n
where ¥=a ; y=a,; Z=a, — projections of accelerations; > F,., > F,, > F;, -
i=l1 i=l1 i=1
algebraic projections of all forces on coordinate axis, acted on point.
Differential equations of a free point motion in projections to natural coordinate

system t,n, b (natural form):



V2

dv n n n
. :ZFZ'T; m_:zﬁ;'n; O:ZFiba
a5 P =l i=1

where v_ — velocity projection on tangent; p — radius of trajectory curvature at

m

n n n

given point; Y F;., > F;,,, > Fj — algebraic projections of all forces to a natural
i=1 i=1 i=1

coordinate axis. This equations are used when a point is moving in a circle.

1.3 The two problems of dynamics

In the first type (straightforward problem) — the acceleration, motion and mass
are given and the corresponding forces, acting on the point must be found. Solution is
reduced to finding the point acceleration.

In the second type (inverse problem) — the applied forces and mass and initial
conditions are given and the resulting motion is to be found. Solution is connected
with the integration of differential equations of motion. The general solution of these
equations defines the coordinates of a point as a function of time. Constants of
integration, when differential equations are integrated, are determined by the initial
conditions.

Initial conditions - the value of the coordinates of the point and its first
derivatives in time (i. e. projections of the velocity vector to the coordinate axis) at

some fixed time point (if 7= 0): x‘t:O =X0, Y,_o =Y0> Z|,_9 = 205 )é‘tzo =Vox
Mico = VOya Z‘t:O =V -

Problem. The material point with mass m moves in a straight line in the
direction of the axis under the action of a constant force F . Find the law of point
motion at initial conditions

x‘t:O = %o M F
L i

; = O
X ‘ =0 VO . X
Solution:
1)  adifferential equation of a material point motion:

mx =F,or x=—;
m

2)  after integrating the differential equation we get:



. F Ft?
Xx=—t+Cy; xX=——+Cit+C,,

m m 2
where C;, C, — constant of integrations;

3)  determine constant of integrations with the initial conditions:
F

V():;‘O'FCI = Cl:VO;
FO

x0=——+C1-0+C2 = CZZ‘XO;
m 2

4)  law of motion we get :

2
Ft
m 2

1.4 Vibrations of the material point

Mechanical vibration is the periodic motion of a point displaced from a position
of equilibrium. Elastic restoring force, resistance force and external periodic force
can act to the material point. The point movement directed at a straight line, which
coincides with the action line of the given forces. There are three types of vibration,
free, damped and forced oscillations depending on the combination of these forces.

1.4.1 Free Vibration

Restoring force is a force that gives rise to an equilibrium in a physical system.
The restoring force magnitude is proportional to the point deviation from the
equilibrium position and directed to this position:

Free vibration occurs when the motion is maintained by gravitational or elastic
restoring forces.

@] F. M F =c-MO,
1 < ®-
(£, =0)

where c is proportional coefficient.

The type of the restoring force is the elastic force or the spring's stiffness,
through which the elastic properties of the springs are modeled. In linear problems,
the force of elasticity corresponds to Hooke's law

F,=c-4,
where ¢ - the spring stiffness, indicating which force should be applied to the end of
the spring for its deformation per unit length; A - strain of the spring (the difference
between the length of the spring in this state (stretched or compressed) and
undeformed).

Consider the vertical oscillation of the load m, which is suspended to the spring
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of stiffness ¢ and carries translation motion. In this case load can be considered a
material point of mass m. Define the equation of a point motion:
1) let's draw the point in an arbitrary position on the calculation scheme.

For this, we gradually denote three
characteristic levels in the scheme:

1 — free end of non-deformed spring (in this
position F,; =0);

2 — the static equilibrium position of the point,
which motion is studied (this position is lower
than level 1). The distance between levels 1
(non-deformed springs) and 2 (static equilibrium
points) is called static strain of the spring and
denoted 6. In equilibrium position of the

point, ZFkx:O or P-F,=0.

k=1

The last equality with the deformation 1 =4, of the spring get the form
P-c-6,=0.
3 — an arbitrary point position during oscillations.
2 ) in an arbitrary position we shall show the acting forces on the material point,
considering it free. It will gravity force P of the point and the spring's elasticity F;;

3 ) choose a reference system. To start the reference system in the position of the
point equilibrium (level 2), and the x-axis should be directed towards the growth of
the numbers 1, 2, 3.

4 ) we write a differential equation of motion of a point.

ma=P+F,.
On the x-axis mx=P—F,;=P—c(5, + x)
mx=P—c-6,;—cx=—cx
mx +cx=0.
Differential equation of free vibration:

.. 2
X+wyx=0,
c . .
Where a)g = — 1is circular frequency, rad/s.
m

General solution:



x=C,-cosayt +C, -sinwyt
where C;, C, — constant of integrations, determined by the initial conditions.
x=—C,-@,-smay+C, -, cosmy .
The initial conditions:

=X,, x‘ =V,.

x‘ =0

t=0
Substitute
x,=C, -cos0+C, -sin0,
{VO =—C, -, -sin0+C, - @, - cosO.
Where constants of the integration are:
C=x, C= &
@,
Substituting the constants of the integration into expression, we obtain the law
of motion:
vV, .
X=X, COSWyf +—-SIna,t .
W,
This equation is called the equation of free vibration of the material point. It can
be presented in the form.
; ‘ Equation of free vibration
L x = Asin(@y +,)

o | |
Va Penod of time (7) -
x = Csin(w,g + ¢) \
/ /r'

Amplitude of vibration is the maximum
displacement of the point from its equilibrium

sind |\

w,t

( \\ / position:
\\/ A=JC*+ 2.

Phase angle 1s ¢, = arctgi.
¢,
From formula (8) parameter 4 is the amplitude of vibration, the argument

@,t + @, 1s the phase of vibration, and the value ¢, is the initial phase. The
parameter @,, as the coefficient of time ¢ in the formula of the trigonometric

function, is called the circular frequency (or natural frequency). The circular
frequency determines the number of oscillations for a time interval of 2@ seconds and
is measured in rad /s (or 1 /s).

Period is the time required to complete one cycle:



m
TO:—2ﬂ. T=2n |[—.
@, W,

The frequency f is defined as the number of cycles completed per unit of time,
which is reciprocal of the period, and is measured in hertz (Hz):
r=l_ o
T 2rn
The mechanical system, considered in the figure, is conservative. According to
(8), the body (material point) execute a harmonic vibration motion. The circular

frequency @, and period T, don’t depend on the initial conditions and are determined
by the parameters of the system (m, c¢). The amplitude 4 and the initial phase ¢, of

free oscillations depend on the initial conditions.

Springs, which connect the body with the base, can form a system of parallel
and series-connected elastic elements. In the case, shown in the figure, the output
mechanical schemes need to be reduced into equivalent one elastic element in free-
body diagram, with equivalent a stiffness c,.

/—%—LL f—LLL<4 An equivalent spring stiffness in the

< free-body diagram with a parallel
C1
or
(o)

< c1 < c connection of the elastic elements
§ § 2 will have a stiffness

Ce :C] +C2-

1

/—%—LL An equivalent spring stiffness
in the free-body diagram with a
series-connected elastic elements

will have a stiffness

§C
éCz C,=cp-cyl(c;+¢y)

When mixed connected three or more elastic elements are successively reduced
by two elastic elements will remain until there is one of equivalence stiffness c, left.

1.4.2 Viscous Damped Vibration

When body is moving in a substance liquid and it’s under the acting damping
9



force (viscous friction, such as water, oil, or air). The body moves slowly of through
this substance, the resistance force to motion is directly proportional to the body’s
velocity and has directional to the opposite velocity: R =—bV , where b is called the
coefficient of viscous damping and has units of Ns/m. The viscous properties of
elastic bodies are created using résistance forces. Vibrations occurring under the
action of the restoring force and the resistance force are damped.

The mechanical system modeling in this case the vibrations of the load (material
point) has the same form as in §1.4.1, only the resistance force is added (from the
figure we assume that the point moves to the positive direction of the x-axis).
Symbols in the figures are the same.

The differential equation of a material point motion will get the form

ma=P+F,+R
or mx=P—c(0,+x)—bx
or mx+bx+cx=0.

Let’s divide all the summands into m and introduce the notation

? w§=%,2h:%,

where h — coefficient of damping vibration.
So differential equation damped vibration

< gets the form
_________________ X +2hx+wix=0.
I ! The character of the load movement depends
Oy on the ratio # and w,.
0 Wn_g; _________ 2 The equation of the load vibration x(z) and the
= X first derivative in time X(¢) in case of light damped
X0 [ ¢ S 3 (underdamped) (h < ®,)
V.
VJ‘\ N
X

has the form

10



— * . * _ . *
x=e ™ (C1 cos wyt + C, sin a)ot)z A-e s1n(a)0t + 9, ),
. _ % . % _ % . % %
x=—he ™ (C] cos wyt + C, sin a)ot)+ e May, (— C,sinw,t + C, cos a)ot),

where C,,C, — constants of integration, which are determined by the initial conditions

x‘z:O = %o, x‘z:O = VO :
C] = xO, Cz :(VO +th)/COZ,
2 *
C X @ *
A=4C] +C3 = x5+(V0 +:12x0) s @y =arctg—L =arctg—"—0—; @, =05 —h* .

The mechanical system is called dissipative according to the figure, and the

relation (13) is called the equation of damped vibrations. Therefore, the amplitude

* over time decreases by exponential law to zero. The magnitude

of vibrations Ae ™"
a); is a damped natural frequency of vibrations and is connected with a period of

damped vibration T, by a formula

* 271'
TO = * .
@y

Heavy damped System. When (h > w, ), the general solution can be written as
X = Cleplt + Czepzt ,

where p1=—h++h? —a)g ; Py =—h—+lh* —a)g ;

This equation describes the aperiodic damped motion. The coordinate of the
load is reduced in #— 0 monotonously, and the load approaches the static
equilibrium position.

Critical damping: h = @, . The law of the load movement will be as

x=e_ht(C1 +C, -t)

The considered motion is also aperiodic damped (x — 0 if t — o). Motion
corresponding to this solution is no vibrating.

1.4.3 Damped Free Vibrations

All vibrations are damped to some degree by forces due to dry friction, fluid
friction, or internal friction.

11



With viscous damping due to fluid friction,

$ 3 ma = z F
: 3
i 1? mi = P — c(6g + x) — bx
,_ff_j £ 4 mxX +bx+cx =0
T 13 |
wibien || () g]j Differential equation Damped Free Vibrations
o .e . 2
= X+2hx+wyx=0,
| | ] 2 C b
where Wy = —, 2h =,
m m
h — damped coefficient.
Solutions:

* light damping: (h < @)
_—ht * . * ) —ht - *
x=e (C1 coswyt + C, sin a)ot)— A-e s1n(a)0t + goo)

A=C} +C] = \/xg +(V0 +sz J

@y
= arctgC1 = aret M
\ £ gDO g CZ g VO + th
T wy =~Jog —h* - damped frequency.

e Critical damping: h=w,
(x > 0 mpu ¢t — ) double roots, no vibratory motion.
o Heavy damping: (h> o)
X = Cleplt + Czepzt ,

where p=—h + 4 h? —a)g ; Py =—h —h? —a)g ; negative

roots, no vibratory motion.

1.4.4 Undamped Forced Vibrations

Vibrations which occur under the action of restoring force and periodic force,
which varies over time, are called forced vibration. These vibrations arise in the case
of direct action on the point of exciting force (force excitation of oscillations), when

12



moving the point according to the periodic support displacement of a system
(kinematic excitation oscillations), as well as the mutual displacement of masses,
which constitute a mechanical system connected with spring base.

Forced Vibrations

A force Q(t) which changes in time according to a given law is called exciting

force. Let's consider a simpler important case where force varies according to a

harmonious law

where H — amplitude of exciting force; @

=H-sinw /¢,
Q f

I the forcing frequency.

The mechanical system modeling in this case the vibrations of the load (material
point) has the same form as in §1.4.1, only the exciting force is added (in the figure
the exciting force directed to the positive direction of the x-axis). Symbols in the

figures are the same.

The differential equation of a material point
motion will get the form

ma =P+ F ,+Q
or mX=mg—c(6,+x)+Hsinw,t,
or m)'é+cx:Hsina)ft.

Let’s divide all the summands into m and
introduce the notation

c H

a)g =—,h, =—

m / m

So differential equation of forced vibration
gets the form

¥+ awix= h sinw,t.

This equation (19) is a linear nonhomogeneous second-order differential equation.
The general solution consists of x=x;+x,, where x; is a complementary solution, and

X, 1s a particular solution.

The general solution is therefore the sum of two sine functions having different
frequencies. In determining the partial solution let’s consider three cases:

13



O, FQ); O, RO); O =0:
1) o, #w, (frequency of exciting force and circular frequency are different).

In this case, the partial solution has the form

h
Xn = —fsin o ot
2 02 — 2 S/
U
and the equation of vibration of the load x(z) and the first derivative in time x(¢) have
the form
| ho
x=C cosoyt + C, syt + ———sinw,t ,
Wy — @
- : hy -,
x==C -, -sinoyi+C, -0, cosoil +———=Cosa,t.
@ — @ |
where C,,C, — constants of integration, which are determined by the initial

conditions and in the case x‘tzoz Xy )'c‘tzoz V, are

C, = x,, C2=V0— hfza)fz :
®, o, (a)o - f)

Equation (20) is the equation of forced vibrations. The law of motions of the
load with forced vibrations is biharmonic (two-frequency ones) — there is an overlay
of free (own) oscillations of the conservative mechanical system (the first two
additions in formula (20)) to the forced vibrations with a frequency of pereodic force
(the last addition in formula (20)). The feature of such vibrations is that their
oscillations are also excited under zero initial conditions. In real systems, their own

vibrations due to the resistance of the movement quickly fade out and there are purely

forced oscillations. The circular frequency of purely forced vibrations @, from

S
system parameters and initial conditions doesn’t depend, but it’s determined by the
parameters of exciting force. Amplitude of purely forced vibrations

A ;= % also doesn’t depend on the initial conditions but it’s determined by

W, — O
the parameters of the exciting force (H, @ f) and mechanical system (m, c).
2) o, = o, (frequency of exciting force and own frequency are close).
Supposing the initial conditions are zero (x,=0,V,=0). Then, considering
a)f/a)o ~1, but o —a); #0 1 o, + o, 20,, from equation (20) we get

14



h, : : h, . O~
x~———(Sinw-sinoyi)~2-———-sin(—
@ — @O | @ — @O

This movement is called a beating: oscillatory motion that occurs with

a)O
"1)-Ccos®,t.

frequency @ r exciting force and amplitude which is periodic (with frequency
(©, —@,)/2) time function.
3) o, =, (frequency of exciting force and own frequency are coincide). In

this case, the partial solution has the form
X, =———COS®,!
20,

and the equation of vibration of the load x(?)

. h
x=C,-cosamyt+C, -sinwyt ———t-cosw,t .

f
20,
, . . . . h 7 't .
It’s easy to notice the amplitude of forced oscillations 2 increases directly
)
/

proportionally to time and with #—oco unlimited increases. The phenomenon of
unlimited growth of the amplitude of forced oscillations is resonance, and equality
o, = o, 1S a condition of resonance. In practical constructions, the phenomenon of

resonance takes place as the reason for their destruction.
Periodic Support Displacement

Periodic Support oscillation movement takes place when the base at the point of
attachment starts oscillation movement due to the law late

§ = ag - sinwgt,
where a. — the amplitude of base movement, ey~ its circular frequency.
The mechanical system modeling in this case the vibrations of the load (material

point) has the same form as in §1.4.1, only periodic support displacement & is added
(considering in the figure the displacement directed to the positive direction of the x-
axis). Symbols in the figures are the same.
The differential equation of a material point motion will get the form
ma=P+F,

15



% or mX=mg—c(0,+x-5&),
Y8 or mi+cx=c-a,-sinwt.
To divide all the summand into m and
introduce the notation
c c-a
S a)g =—,h, = :
----------------- 1 m m
S, So differential equation of excited vibration
___________ ° 5 gets the form
. 2. .
X+ayx=h sino,t.
X
---------- 3 Consequently, the properties of forced
vibrations in the kinematic excitation will be the

same as 1n force.

1.4.5 Examples of solving research problems
vibration motion of a material point

Problem 1. Determine the equation of the vibration motion of the load D along
a smooth inclined plane in the direction of the x-axis, which coincides with the axis
of two series of connected springs.
Given. The system of D (m, =20
kg) and E (m; =10 kg) put on
springs is in the position of static
equilibrium. In time =0, the load
E is take off from the load D. At the
same time, the load D adds an
initial velocity V, =x,=0,1 m /s

at
positive direction reference x coordinates. The stiffness of the springs are equal ¢, =

c; =400 N/cm. Angle a = 300,

Solution. Convert the given mechanical system to the free-body diagram with
one spring element (see the methodology of § 1.4.1) and represent it in the figure,
where 1,2,3 are determined by the free end of the undeformed spring respectively, the
position of the static balance of the load D and its arbitrary position during the
vibrations, point A — the position of the load D at the moment of oscillation, 5SZD

static deformation of the spring under the action of the load D, D, I_’D,]V ,Fel the

weight of the load, the normal surface reaction and the spring strength of the spring,
accordingly.

16



In this scheme, in the position of the static equilibrium of the load D, the spring

strength Fd does not balance the weight of the load P,, but only its component
P,, =P, -sina in the direction of the axis Ox, which coincides with the axle of the
spring.
We find an equivalent stiffness ¢ (show § 1.4.1):
¢ -c, 400-400

c= = =200 N/cm =2-10* N/m.
¢, +c, 400+400

We write a differential equation of the point's motion:
mpX=hF, —F,=F,sina—-c(, +x)=F,sina—-cd, —cx=—cx,
and convert it into a standard form
mpyxX+cx=0
or

. C
X+—x=0,
mp

denoted a)g == ,
mp
so ¥+awjx=0.

The received
equation has the form of
the differential equation of
free vibrations. It solution
— function x(¢), and it first
derivative in time x(¢) has

form
x=C,-cosapt +C, sy,
x=—C,-@,-smay+C, -, cosmy .
To determine the constant of integration we take the initial conditions (the

coordinate of point A (see free-body diagram) and the projection of the initial
velocity V, =V ,= 0,1 m/s):

X| =0 = 5SfDE

o 5stD = 5stE > X| = VO
Substitute them in expression x(¢) 1 x(¢)

{50," =(C, -cos0+C, -sin0,
E

Vy=-C, @, -sin0+C, -®, -cosO.
So the constant of integration will be

17



4
C=08y,, G=—"
o
Substituting them into function x(#), we obtain the law of weight motion in a
general form
4
X =0y -COS@ +—=-sinay.
@,
Calculate the values of constant parameters:
the value of static strain

m.g-sina 10-10-0,5

o, =—= ~ . =0,25-107 m,
E c 2-10
2-10*
the value own frequency W, = ¢ Y =+/1000 31,6 — rad
mD
V, 0,1

~0,32-107 m.

w, 31,
Law of motion:
x=0,25-10"-cos31,6t +0,32-107 -sin31,6t (m).
Checking: If 1=0 we get x| _ =0,25-10" m, which coincides with the value
of the earlier defined initial conditionx,,.
Answ: Weight performs free vibration according to the law
x=0,25-107-c0s31,6t+0,32-107-sin31,6t (m), with a circular frequency

d . :
w,= 31,6 i, period T,= 0,2 s and amplitude 4=+C}+C; = 0,41 107 m.
S

Diagram ratio coordinate x in time ¢

05 a%» CIM
04 |
03
02 |
01

O .
0,1 {
0,2 -
0,3 -
0,4 -
0,5 -

Problem 2. Find the equation of the vibration motion of the load D in the direction
of the horizontal axis x, considering it as material point. The bar that connects the
spring and damper is weightless. The bar is vertical position in a state of rest, motion
considered as translational.

18



Condition of the Problem. Mass of load mp = 4 kg. Stiffness of two springs

c1 =2 N/cm, ¢; = 3 N/cm, damped coefficient 5 =16 Ns/m.
Before moving, the load is rejected

C2 D ¢ on the length A=3 cm i the
\/—I N \ ____»X direction of the negative reference
— b a4 coordinates x in time ¢ =0, giving

the load an initial velocity V, =0,6

m/s, directed to left.
Solution. Convert the original mechanical system into a free-body diagram
with one elastic element (see § 1.4.1) and give it into figure, where levels 1,2,3 show
the free end of the non-deformed spring, the position of the static equilibrium of the

load D (which for a horizontal spring coincides with level 1; in the case 5, =0) and
its arbitrary position during vibrations respectively. Point A — position of load D at

the moment of start vibration, V|, — initial velocity vector, P,N, Fel,ﬁ — the force of

gravity of the load, the normal reaction of the surface, the elastic force of the spring
and the resistance force in respectively

A Determine equivalent stiffness c:
Ai 0 ;( c=c +c,=2+3=5N/cm=
— — 51,2 13 . 2
VYO H—XHI‘N ._5'10. N/l’l’l. ) )
L Wright a differential equation of
R I, the point's motion:
AN N . .
! mpX =—F, — R=—cx—bx,
ST 1 /
P

and convert it into a standard form:
. b . ¢
X+—x+—x=0.
mp mp
2 C b .. . 2
Noted wyj=—>,2h=—, so X+2hx+w;x=0.
The resulting equation has the form of the differential equation of free
vibrations considering of damped vibration. We calculate the values of circular

L / _ s 102 d
frequency of free vibrations: =+125=11,2 &

and damped coefficient: h= @.

2m 2.4 S
Comparing these parameters, we have /<@, a case of light damped vibration.

In this case, the function x(¢) and its first derivative in time x(¢#) have the form
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x=e" -(Cl cos wyt + C, sin a);t) ,

x=—h-e"-(C -cosamyt+C, sinwt)+e™ w, (~C,-sinwyt+C, - cosayt).

To determine the constants of integration we take the initial conditions (the
coordinate of point A (see free-body diagram) and the projection of the initial
velocity):

=2, i_ =V,
t=0
and substitute them for function x(¢) 1 x(¢)
~A=¢"-(C,-cos0+C,-sin0),
~V,==h-e"-(C,-cos0+C, -sin0)+e" - @, - (~C, -sin0 + C, - cos 0).

So constants of integration

y

C =21, C2=M-

@,
in a general form

- s Vo+hd . .
x=—e""| A-coswyt +—>——-sinwyt |.
a)O

o =Jor - =125 —4 =21 =11 B9
S
v, +*hl _0,6+2-0,03 0,66 ~0,06 m.
@, 11 11
So equation of motion is:
x=-e""-(0,03-cos11t+0,06-sin11t) (m).

Checking: at time =0 get x‘,=o =—0,03 m, which coincides with the value of

the initial conditionx,,.

Answ: the load performs damped vibration according to the law
-2t

x=—€e""-(0,03-cos11t+0,06-sin11t) (m), with damped natural frequency w,= 11
rad/s and period T, = 0,58 s. The diagram ratio the coordinate x of time ¢ is

0,04 4 X, M
0,03
0,02
0,01

0
-0,01
-0,02
-0,03
-0,04
-0,05
-0,06
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Problem 3. Find the equation of the vibration motion the load D in the direction
of the x-axis from the time it touches the plate, considered, the load from the plate
isn’t separated with further motion. The plate, which is horizontal position in a state
of rest, is weightless. Plate and bases motion are considered translationally.

Condition of the Problem. Come down
without initial velocity distance /4 =0,2 m,
load D (m =20 kg) connecting with plate

D

at time ¢ =0, which connects the system of
two  non-deformed  parallel-connected
springs. Springs have coefficients of
stiffness and viscous damping c¢; = 100
N/em, ¢; = 200 N/em, b, =b, =0. At the
same time, the basis begins to move by law
¢ =a, -sinw;t=0,5-sin30z (cm).

C1

Y . c X __

Solution: First, consider the auxiliary problem of the free fall of the material
point (load) from the height # = 4,4 to the time of contact with the plate.

A4 0 Free-body diagram this problem shown in the figure.
Differential equation motion is: m, X =P, or m,X=m,g , or
F_ X = g . By integrating both parts of the last equation in time,
A P we get
X x=gt+C,
{x—gt2/2+C]t+C2.

If initial conditions are zero, so the constants of integration are zero. Writing
functions x,x at the final point 4 the segment 4,4, we have a system algebraic

V,=gr,
h=gr’/2,

where, excluding the time of motion on the segment of the fall 7, we get the formula
for the point velocity at the time of contact with the plate
V,=+2gh=2-10-0,2 =2 (m/s).
Consider the basic problem of the material point variation (load).
Convert the original mechanical system into a free-body diagram with one elastic
element (show § 1.4.1) and give it into figure, where levels 1, 2, 3 determine the free
end of the non-deformed spring, the position of the static equilibrium of the load D
21
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(which for a horizontal spring coincides with level 1; in the case 0, =0) and its

arbitrary position during vibrations respectively. Point A is the position of the load at
the time of touching the plate, &, is static strain of the spring under the action of the

load, P,F, - the force of gravity the load and the elastic force of the spring
respectively, & is the direction of kinematic excitation at the point of fixing the spring

to the moving support. Determine equivalent stiffness c:

¢=c, +c, =100+200 =300 N/cm=3-10" N/m.

Write differential equation point motion:
l_An ---------------- 1 ijé=P_Fel=P_c(5Sl+x_§)=
Vo Ié‘sz =P—coy—cx+c=—cx+cagsinw,t,
Ul i S -2 and convert it to standard form:
x Ay myX+cx =ca, sinw t
e D — Y i
11 03 . C cags
or X+—x=—=>sinwf,
gﬁ mp mp
C c-a
noted a)g=—, h, = s,
m, ° m
v x )'c'+a)02x:hf SutoRs

The got equation has the form differential equation of kinematic oscillations.
Its solution — function x(¢), and its derivative in time x(¢) are

h
x=C, -cosoyt +C, -sma)ot+ﬁ-sma)ft,
Wy — O *
: : h -,
x==C -, -sinoyi+C, - @, cosoil +————Cosa,t.
Wy — O *

For determination constants of integration C;,C, write initial conditions

(coordinate of point A (show free body diagram) and projection its initial velocity
Vo=V ,=2m/s):
-0

X‘ st? x‘z:O = VO

t=0 -
and substitute them into the equations x(z) 1 x(¢)
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h
-0, =C,-cos0+C, -sin0+ zf > -sin 0,

@y — @y
: hy - @,
Vyo=-C, -, -sin0+C,-®, -cos0+——=-cos0.
W, — Wy
So constants of integration C;,C, are
1 hy -0,
C==6,, G=—(U———7).
o, W, — @

Substituting them in a functionx(¢), we get the equations of motion load in
general form

h PRIor )
x=-3, -cosayt +—-(Vy ———L) -sinayt +

o, W, — 0 W, — O

Calculate the value of constants:

g-mp 10 20—067 102 m,

the value of static strain J, =

4
the value of circular frequency o, = / 1/ 310 =38,7 rad/s,
m

c-a, 3-10“-0,5-10‘2

h = = :795_9
T m, 20 s’
h
5 S 5 = Z)S _ 7)5 :1,25.10—2m’
@, — @ 3-10 _30 1500-900
20
1 h, -o )
— (V- 'Z)— (2- 7’3 30 )= 1 (2-0,375)=4,2-10"m.
@, oy —o, 38,7 3-10 _30° 38,7
20

Then the load equation is:
x=-0,67-107-c0s38,7t+4,2-107 -sin38,7t +1,25-107 - sin30t (m).
Checking: If =0 we get x|_, =—0, 67-107 m, that coincides with the value
of the earlier defined initial coordinate x,.
Answ. The load has kinematics oscillations by law
x=-0,67-107-c0s38,7t+4,2-107 -sin38,7t +1,25-107 -sin30t (M), with free

circular frequency w,= 38,7 rad/s and exciting frequency @ =30 rad/s. The

respective periods are 7,= 0,16 s and T =021 s. The diagram of ratio the

coordinate x of time ¢ is
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0,06 AX. M
0,04 1

0,02 -

-0,02 4

0,04 -

-0,06 -

Measures of particle system motion: total linear momentum, total angular

1.5 The Main Principles of Dynamics

momentum and total kinetic energy of the system.

Measure of particle
motion

Measure of
particle motion

Measure of
particle system
motion

Effect of forces

General
principle

Linear momentum q’ =my — &L Total vector of Force-Linear

B m Q = Z q; external forces momentum
(vector, | kg -— |) k=1 principle

s

Angular momentum Z’ —Fxmy |~ noo Total moment of | Moment-

[ 2 o L,=) rxq, |external forces Angular
(vector, | kg -—|) k=1 about the center | momentum

i S 0 principle
Kinetic energy m> "y Total work done | Work-Energy
(scalar, [ J ]) T="—" T = k“k | by external and | principle

2 o 2 internal forces

A particle linear momentum is a vector value, which is equal to the

multiplication of its mass and its vector velocity

O =mv.

1.5.1 A particle linear momentum principle

Linear momentum direction is the same as that of the velocity.

Elementary linear impulse of the force F is the multiplication of force and
elementary time defined as dS = Fdt.
Total linear impulse of the force of time period 7 is the vector
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5= [F.
0

The projection of the /inear impulse on the coordinate axis:

T T T
S, =[F.dt; S, =[F,dt; S, =[F,d.
0 0 0

Force-linear momentum principle for a particle

Differential form. The resultant of all forces acting on a particle equals the first
derivative of the linear momentum in time.
do _d(mv)
dt dt

R.

The projection of this principle on the coordinate axis:

d(mv,) , d@mv,) d(mv.)
——>=R; ——=R; ———=R,_.
dt dt g dt
Integral form. Change the linear momentum of a material point over a period of
time 7 =1 —1, is equal to the impulse of force resultant over the same period of
time:
mv, —mvy =S,
where V),V — velocity of the point in time ty, and t; respectively.
In the projections of this principle on the coordinate axis:

mvy, —mvy, =Sy, mvy, —mvy, =S,; mv, —mvy, =S

z

1.5.2 The Work-Energy principle

Kinetic energy of the material point

is scalar value equals a half of product
mass of point on the square of its velocity:

T:lmV%
2

Elementary work d'A of the force
F on elementary displacement

(infinitely small) of the force point application dr is a scalar value:
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d'A=F -dr = Fdrcos(F,dr).

If under the applied force F the material point moves from position M o to

M |, then the work of force F on the trajectory M oM 1s equal to

A= j dA= j F-dr = j Foos (F,dr )d.
MM, MM, MM,
Formulas for determining the elementary and total work of force in an analytical
form:

d'A = F.dx +Fdy+ F.dz;

A= J( Fdx + Fdy + F.dz).
MM,

The work of constant force F moving along a straight-line S is defined by the
formula
F

A s,

A=FScos(F, S)=F-S-cosy.
The wunit of work i1s the Joule (J).

Dimension of work [A ]= N-m=]. Mo M,
Work of a weight. (P = mg): 74
A = Ph, W My (9.%9)

where h=z,-2z; - the vertical lh

displacement from the initial and final
points position. Notice that the work done
by gravity depends only on the vertical o
movement of the object.

Work of a spring force the elongation of the spring from a position x; to a

v

. c
position x 5 : A= E(xl2 —x3).

Consider spring force is exerted to a horizontal force F, = (—cx) that is
proportional to its deflection in the x direction independent on how a body moves.

t t c
A=f F-vdt=—fcxvxdt=——(x12—x22)
0 0 2

Work of a friction force. Fr. = fN; A = —Fp.d cos@. Note that for the friction
orce (Fsy X d <0 -alwa s) and the velocity of the object is always reduced!
f 3%
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The work applied by the force F is zero if:
s = 0: displacement equal to zero,
cos 90" = 0: force perpendicular to displacement.

The Work-Energy principle

Differential form. The differential of the kinetic energy of a material point
equals the elementary work of forces applied to a point

dT =d(mv* /2)=d'4
Integral form. The change in the point's kinetic energy KE equals the work A4 of
applied resultant of external forces to a point: difference of the particle’s final and
initial kinetic energy, respectively, equals the sum of the work done by all the forces
acting on the particle as the particle moves from point 1 to point 2.

2 2
mv, mvj
2 2

=4

b

where v; and veare the velocities of the particle before and after the application of

force, m is the point's mass, A= ZAI. is the algebraic sum of the all forces work
i=1
applied to a point on the trajectory.

1.5.3. Moment-Angular momentum principle
Angular momentum of a material point about the center O is vector product of
vector-position, the start of which is at the point O, on the linear momentum this p01nt
Ky=My(Q)=7rxQ =7 xmv.

Angular momentum of a material
point about axis Oz:
K =M_(Q)=tmvh.

Moment-Angular momentum principle for the point: the derivative in time
from the total angular momentum about the point O equals the total moment My(R)
of external forces acting on the point about the same fixed point O.

dK,

o _i1,®).
L= My(R)

In the projections of this principle on the coordinate axis:
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d[{x_n _.dK}’_n _.d[{z_n Fd
oS IR == M (B =S ML)

So the derivative in time from the total angular momentum about the fixed axis
equals the total moment Mo, (R) of external forces acting on the point about the same
fixed axis O.

1.6 D’Alambert’s principle for the point

Inertial force of material point D is equal to the product of the mass of a
point on the magnitude of its acceleration and is directed oppositely to the
acceleration point vector

@ =-ma; ®=ma. o M a
—_— lfp——

If the point moves on the curvature trajectory, the force of inertia can be given
as the sum of two components:

D-B +@,,
— VZ
where @, =-ma,; O, =m—;
p
dv
D =—-ma.; P, =m—.
T T T dt

D’Alambert’s principle for the constrained material point: when the material
point is moving, the active forces and reactions of constraints, and the force of inertia
conventionally applied of the material point, this system represent a balance of
forces

F+R+® =0,
where F' — is total vector of active forces; R — is total vector of external reactions of
constraints; @ — inertial force of point.
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2DYNAMICS OF MECHANICAL SYSTEM
AND RIGID BODY

Mechanical system (material system) is a set of material points, the position
and motion of each depend on the position and motion of the other.

The forces acting on the mechanical system are divided into external and
internal.

External forces F ¢ are the forces of interaction of a mechanical system points
with bodies which do not belong to this system.

Internal forces F' are the forces of interaction between points belonging to
mechanical system.

Internal forces properties:
1) the resultant vector of the internal forces of the system is zero: F' =0.
2) the resultant moment of the internal forces of the system about any point is

ZEer0: MO(Fi) =0.

The mass of the mechanical system is equal to the sum of the masses of all
points of the system:

The center of mass is the point at which all of the mass in a system is
concentrated. The center of mass of a mechanical system is a geometric point which
vector-position is determined by expression:

n
Zmi
i=1

n
Zm
i=1

Coordinates of the center of mass is determined by expression:

I

i
r, = .
i

n n n
m;Xx; Zmiyi 2. mz;
xc:z=’11 > Ve :lzi > Zc:lz,i
m; Zmi 2m;
i=1 i=1 i=1

The center of mass is a geometric (not material) point by definition. The center
of gravity of the system coincides with the center of mass.
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2.1 Mass-Center motion of system principle

Principle: Mass-center of mechanical system moves as point acted on by force.
Mass of the point is equal to mass of the system. The force is equal to the total vector
of external forces applied to the system.

Ma, =F°.

Differential equations of the center of mass motion in the projections on the axis

of the Cartesian coordinate system:

n n n
Mic =Y Fy; Mjc :ZFi;Q Mzo =3 Fy.
i=1 i=1 i=1

These equations are differential equations of the translational motion of a
absolutely rigid body.

Internal forces do not enter into these equations and do not directly affect the
motion of the center of mass of the mechanical system. In a changing system, internal
forces cause motion of the system points; change their relative position, without
changing the position of the center of mass.

Internal forces are cause of external forces which make the center of mass move.
For example, in vehicles (tram, trolley, car, etc.), the internal forces of the engine
influence their motion through the friction forces between the driving wheels and the
support surface (rails, track).

The consequences of the theorem (principle of conservation of motion of the
center of mass):

1) if F¢=0, then a, =0 i v, =const — the center of mass of the system
moves uniformly and rectilinearly or is at rest.

—_— n . . .
2)if Ff =Y F; =0, then a, =X.=0 and v =X, =const — the projection of
i=1

the velocity of the center of mass on the axis x is constant.

2.2 Force-Linear momentum principle for a mechanical system

The total linear momentum of a mechanical system is a vector equal to the
geometric sum of the /linear momentum of all material points of the system.

Q is total linear momentum of the mechanical system
_ n
0= my;.
i=1

The principle linear momentum of a mechanical system is equal to the product
of the mass of the system on the velocity vector of its center of mass:
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0=M-v,

Force-momentum principle for a mechanical system. Differential form. The total
external force on a mechanical system equals the derivative of time of the principle
linear momentum of the mechanical system.

49 _ g
dt

The scalar view of equation is
e, de z sz 4

dQ,
=X _ F~ 7 ;
dt El dt Z ’y dt Z

Integral form. The principle linear 1mpulse of force actmg on a mechanical
system equals the corresponding change in linear momentum of the system of time
tl — to =7

raY raY oe
O -0y=5",
where Q) and Q, — the linear momentum of the system at finite ¢; and initial ¢,

moments of time;

F°dt — The total linear impulse of external forces in time #, —f, = 7.

O'—z'ﬂ

Two Corollary of the Force-momentum principle for mechanical system
(principle of conservation of linear momentum):

—e
1) when the total vector of external forces is zero ) F, =0, then

dg
=0; Const .
4l O = Cons

If the total external force on the mechanical system during a time interval equals
zero than the principle linear momentum of the system is unchanged during the time
interval.
do,

dt
If the projection on an axis of the total external force on the mechanical system

2) ZFkx =0, then ===0->V_ =0—> Q_=const.

during a time interval equals zero than the projection on the axis of the principle
linear-momentum of the system is unchanged during the time interval.
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2.3 Principle of angular impulse and momentum

The angular momentum of a particle of mass m about the point O of the inertial
reference is given by the vector multiplication

K =M,(§)=Fxmv.

The total angular momentum about point O fixed in an inertial reference is
the vector sum of the angular momenta of the points of the mechanical system

n n n
KO = ZKOX :Zrk XQK = Zrk Xmlcl/lc :
i=1 i=1 i=1

The total angular momentum about axis Oz is the sum of the angular momenta
of the points of the mechanical system about given axis:

[?OszlT+Ky]_'+Kzl€ or K,=>K,,.

Principle: The fotal moment M (Oe) of external forces acting on a mechanical
system about a point O fixed in an inertial reference equals the first derivative on the

time of the total angular momentum relative to the point O.

—_ n —_— R pu—
where M§ = > My (F°) is the total moment M, of external forces about point O.
i=1
Vector equation in projections on the Cartesian coordinate system:
dK, & — dK, » _ dK. & —
=>M _(F°); Y=S"M (F°); Z=NM_(F°).
" E} «(F7) 7 E} YY) 7 E} (F£°)

Principle of conservation of angular momentum:

: —(e) . .
1) if the total moment of external forces M, = 0 acting on the mechanical
system about a point O has no component in any direction, the total angular

momentum about the point O remains constant: M =0, then K, = const .
2) if the total moment of external forces acting on a the mechanical system about

an axis x M,(Ce) = 0 equals zero during finite time interval, the total angular
momentum about the axis remains constant during this time interval.

n fr—
> M_(F)=0, then K, = const .
i=1
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2.3.1 The differential equation of the rigid body rotation about the axis Oz:

do I =
[ —= E M _(F),
z dl' = Z( 1 )
where /. — moment of inertia of the rigid body about axis z; @ — angular velocity

body about axis z, M _(F.°) — moment of external forces about the axis Oz.

2.3.2 Moments of inertia of a rigid body (mechanical system)

Moment of inertia about axis (the second moment) is the sum of production
mass of points on its squared distances from the axis:

I = Zn:ml. hl.2 .
i=l

Moment of inertia of rigid body:
I =lim> hAm = [ hdm
=1

n—o0
= (m)

where h;,(h,) — distance from axis of body’s point mass Am;(dm); x,y, z —
coordinates of body’s point.

Axial moments of body inertia:
I = j (y* +2°)dm; I, = j (x*+2)dm; I = j (y* +x%)dm .
(m) (m) (m)
Polar moment of inertia /, (about the pole O) and planar 7,/ . ,I . (about

xoy?~ xoz >~ yoz
the plate) moment of inertia:
l,= j rdm; I, = j Zdm; I, = j ydm; 1, = j x’dm,
(m) (m) (m) (m)
where r — distance the point from the pole O.
Polar moment of inertia equals a half of the sum of inertia of axis moments and
the sum inertia of planar moments:

I,=1_+1_ +1 :ll+1 +1/
0 xoy xoz yoz 2 X y z

The product of inertia of a plane area are value, which expressed by formulas:
I, = j xydm; I = szdm; I, = jyzdm.
(m) (m) (m)

Products of inertia may be positive, negative, or zero, depending on the
position of the xy axes with respect to the area. If the product of inertia of an area is
zero with respect to any pair of axes this axis x, y called the centroidal axis in point
O. If this point coincide with mas-center of the body, then coordinate axis are main
centroidal axis of inertia.
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Radius of gyration p_ of the body about axis z is the value, which equals the
distance from the axis to the material point. Which value is determined by

expression:
— 2 _ |
I =mp.;, p.= 4

Parallel-axis theorem for moments of inertia: The moment of inertia of an
area with respect to any axis in its plane is equal to the moment of inertia with
respect to a parallel centroidal axis plus the product of the area and the square of the
distance between the two axes.

I =1 + MR,
where z; — arbitrary axis; z — the axis passing through the mass-center of C of the
body parallel to the axis z;.

Z A 2y

Moment of some elements inertia
Uniform rod b4 T
t 2

I =MPP/12; I =MI*/3,

: C
where M — mass of body. /
Rectangular area L b .
I, =Mb*/12; 1. =Ma’/12. | _
M, 5 a “>
- C
e =@ +b), |
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Hollow cylinder:

I, = %M(Rz +7?).

Thin ring:

(r—>R): I.=MR’.
Cylinder (circular disk)
(r=0): I, =MR’ /2.

2.4 The Work-Energy principle for mechanical system

Kinetic energy of mechanical system is a scalar value, which equals the sum

of kinetic energy material points and has units of joules (J) and Nm.

n m.v.2

T — z 171 ,
izl 2

where m; — mass of the point, v; — velocity of the point.

Koenig's Theorem: The kinetic energy of a system is equal to the sum of the
kinetic energy of the center of mass of the system and the kinetic energy of the
system in its relative motion with respect to the coordinate system, which moves

translationally with the center of mass:

Mvcz, N i mivrzi
2 i1 2

where m; — mass of the point of the system; v,; — relative point velocity about mass-

T =

b

center; M — mass of mechanical system; v, — velocity of mass-center of system. The
kinetic energy of a rigid body determined by the formula:

: Mv? -
for translation motion T = 2c ; (gpu—

S

for rotation about a fixed axis \ o
1
2

-

for general plane motion TN
2 _
M 1 7
T = VC + _IC a)2 . J ¢
2 2
77 777
where M — mass of body, v. — velocity of mass-center of system; /,,/, — moment

of inertia about axis z (axis of rotation) or axis z, which pass through mass-center; o
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— angular velocity of body.
The work-energy principle for mechanical system:

—differential form: the differential kinetic energy of the mechanical system is
equal to the sum of elementary works of external and internal forces applied to the
points of the system:

n n .
dT =X d'A] + Y. d'A;;
i=1 i=1
— integral form: the change in the kinetic energy of the mechanical system on a
certain displacement is equal to the sum of the work of external and internal forces on
the same displacement:

n n .
I -Ty= ZAl'e + ZA;»
i=l i=1
where T and T, — the kinetic energy of the system at the end and the start of the

way; > AS — sum of works of external forces; 3" 4/ — sum of works of internal
forces.

The work of the force applied to a rigid body rotating about a fixed axis z is
equal to the product of the moment of force relative to a given axis by the angle of
rotation of the body:

¢
d'4=M (F)dg; A=[M_ (F)dg,
0

where M _ (F) — moment of force about axis; dg,p — elementary and real angle of
rotation of the body.

If (M_=const) weget A=M (F)o.

Elementary work of forces applied to a free-moving rigid body is equal to
the sum of the work of the principal vector F of the mechanical system on the
elementary displacement d7, of the pole O and the work of the principal moment
M o Oof this system of forces with the respect to the pole on the elementary rotation

movement:

d'A=F -diy+M,-dp.
Power N 1is a physical quantity, which characterizes the velocity of work.
N=F-V=F-V=M. o,
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where ¥ — velocity of the point, F_ — projection of force on tangent axis, M (F) -

moment of force about axis of rotation , @ — angular velocity of body. Units of
power is Watt (W) (IW =1N xm/s=1J / s).

2.5 D’Alambert’s principle for mechanical system

D’Alambert’s principle for mechanical system: At any time, the sum of
resultants of active and reactive forces acting on the system and inertial force is zero.
At any time, the sum of principle moments of active, external reactive and inertial
forces acting on the moving system about any point O is zero:

SE+S R+ =0, S F)+Y M,(R)+ > M(@)=0.
i=1 i=l i=l =1 i=1 i=1

The forces of inertia of the body are given:
- if translation motion to resultants %)

force of inertia @C:
Pe =-Mac, T7777777 777

which applied to mass-center C;
- in rotation about fixed axis passing through the mass-center of the body — to

principle moment M

M"=-1%; ®,=-Ma,

cs
- in general plane motion to the principal vector of inertial forces @C applied to the

mass-center and the principal moment of inertial forces M c’” :

®.=-Ma.; M =-I_E,

. =—
where M — mass of the body; a. -

acceleration of the mass-center; € —
angular acceleration; /., /[, — moments

q\%
T)
&

eli—
Z of inertia rotating body about fixed axis
z and axis z., which pass through mass-
77 77777 center C.
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3 ELEMENTS OF ANALYTICAL MECHANICS
3.1 Classification of constraints

There are free and non-free mechanical systems. A mechanical system is called
free if the movement of its points is unrestricted by any bodies (constrains). If the
movement of the mechanical system is restricted by the constrains, then it is called
non-free.

Classification of Constraints. The restrictions which constraints put on a
mechanical system are expressed analytically in the relations (equations or
inequalities) between the time, coordinates, and velocities of the points belonging to
the mechanical system.

Classification of Constraints:

Geometric (finite) are constraints, which do not include point velocities of
systems:

f(t,x;,y;,2z;)=0, (i=1,..n).

Kinematic (differential) are such constraints which include the velocities of
system points:

S, x;,y;,z;,%;,9;,2;)=0, (i=1,...n).

Holonomic (integrated) constraints can be expressed as a function of the
coordinates and time. Non-holonomic (non-integrated): constraint relations which
are not holonomic.

Conservative: total mechanical energy of the system is conserved while
performing the constrained motion. Constraint forces do not do any work.
Dissipative: constraint forces do work and total mechanical energy is not conserved.

Scleronomic: constraint relations do not explicitly depend on time,

Rheonomic: constraint relations depend explicitly on time,

Bilateral (restraining): at any point on the constraint surface both the forward
and backward motions are possible. Constraint relations are not in the form of
inequalities but are in the form of equations:

f(x,y,2,x,9,2)=0

Unilateral (non-restraining): at some points no forward motion is possible.
Constraint relations are expressed in the form of inequalities:

f(x,y,z,x,v,2,t) <0.

3.2 Virtual work principle

Virtual displacement. The displacement is called virtual (infinitesimal)
displacement of a system, which is allowed by the system's constraints in this time
(in this system position).
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Ideal constraints are those which the virtual work done by the constraint
forces along the virtual displacement must be zero:

ii-ézzo
i=1

Principle of virtual work. The condition for static equilibrium is that the virtual
work done by all the applied forces should vanish, provided the virtual work done by
all the constraint forces escape.

Zn5Af :iﬁi-&i =0.
i=1 i=1

Examples of ideal constraints: ideally smooth surface; ideal joints (bearing),
rods, etc.

The principle of virtual work states that in equilibrium the virtual work of the
forces applied to a system is zero. This means the virtual work of the constraint
forces must be zero as well.

scalar form Z FSS,cos(F,,88,)=0;

analytical form Z(F ox,+ F,0y+F.0z)=0.

3.3 Generalized coordinate, velocity and generalized force

Generalized coordinates ¢, ¢,,...q; called such independent parameters,

when the task of which can individually determine the position of all points of the
system. Such parameters can be Cartesian coordinates, angles, distances, etc. The
number S of such independent parameters are called the number of degrees of
freedom of the mechanical system.

Time derivatives of generalized coordinates, that are ¢, ¢,,...g; , magnitudes,
are called generalized system velocities.

Let's calculate the work of the points of the active forces system E applied to
the virtual displacement of the system:

SA= ZF ST, = Z(ZF o )5q, ZQ .5q,,
i=1 k=l
WAL o ay—"+F %)

where 0= E_:Z(an_+ i

), i=1,2, ... S.
k=1 qi k=1 aqi aqi aqi
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Values Q,, 0,,...0, , which are multipliers in the virtual displacements of
generalized coordinates in the formula of the active forces work on the virtual
displacement of the system are called generalized forces.

To calculate the generalized force Q. (i=1,2, ... S), it is enough to give a virtual
displacement of the coordinate ¢, and to determine the work 64, of active forces on
the displacements of the system points, which are caused only by a change of the
coordinate ¢, .

We get Q. =64, /dq,, (i=1,2,...5).

If the active forces are potential then the generalized forces will be equal to the
partial derivative of the potential energy U (q; q> ..., ¢s) in the generalized
coordinates:

oU

T

3.4 Dynamics Equations of the System

General equation. In the motion of a system obeying a holonomic two-sided
ideal constraints, the sum of the active and inertial forces on any virtual displacement
of the system must be zero:

ZEc 04, +Z®k 0¢,=0
k=1 k=1
or 0+0"=0 (i=12, ..,9),
where 5,{ — inertial force of the point; Ql.i" — generalized force of inertia; 0q, —

virtual displacement of the point.
Lagrange’s Equations of the second kind is the following:

d (a_Tj T (=12, 5),

dt oq; ) 0q,
where T — kinetic energy of the system, presented as a function of generalized
coordinates, generalized velocities and time; 8_?’) 2— — partial derivatives of kinetic
q;, 04,

energy on generalized velocities and coordinates.

3.5 Impact

Impact occurs when two bodies collide with each other during a very short
period of time, causing relatively large (impulsive) forces to be exerted between the

bodies.
40



Impact — the phenomenon at which the velocities of body points in a very small
(close to zero) time interval change to a final value.

Impact forces are the forces at which an impact occurs. Impact forces operate
for a very short period of time and reach very large values.

In impact theory, the momentum are considered (not as impact forces) but as a
measure of interaction.

Impact impulse — a vector, which i1 determined by the formula

5 = [ Fa,
0
where 7— time of impact.

Force-Linear momentum principle for material point upon impact (general
equation of impact theory of material point): the change in the linear momentum of a
material point during impact is equal to the geometric sum of the impact impulses
acting on the point:

m(@-7)=Y5",
i=l

where U, V - the velocities of the point after and before the collision.
Coefficient of restitution in impact:

()
k_(m,

where (U ;), (Vn’) — the magnitudes of the normal components of the relative contact

0 <k<]

point velocity of bodies after and before impact, respectively.

Physical meaning of two limits:

1) k=1 — Elastic Impact (the bodies after the impact have different velocities);

2) k= 0 — Plastic Impact (after collision both particles couple or stick together
and move with a common velocity).

Force-Linear momentum principle for material system upon impact: the
change in the linear momentum of a mechanical system during impact is equal to the
geometric sum of the impact impulses acting on the system:

Ql - QO = Ziil’la
i=1

where Q,Q) — the linear momentum of a mechanical system after and before the

collision.
Moment-Angular Momentum principle for material system upon impact:
change in the total angular momentum of a mechanical system about fixed pole 4
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during impact is equal to the geometric sum of the external impact impulses relative
to the same pole 4:
[{Al _ KAO — ZMA (Sl-lm),
i=1

where K 4 K 4, — total angular momentum of a mechanical system about fixed pole 4

after and before the collision.

There are two types of impact. Central impact occurs when the direction of
motion of the mass centers of the two colliding particles is along a line passing
through the mass centers of the particles. When the motion of one or both of the
particles make an angle with the line of impact, the impact is said to be oblique
impact.

General equation of central impact:
+mV, =mU, +mU,; k :M»

Vie =V,

where V, , V,. — projections of the velocity of the bodies before the impact on

m\V,

Ix

the x-axis coinciding with the line of impact; U, , U, - projections of the velocity

Ix?
of the bodies after the impact; m ,m, — bodies masses ; K — coefficient of restitution.
Ostrogradskiy-Carno theorem:
1-k(1 1
I'-T,= E(Em' V- le)2 +§m2(V2x - sz)zj;
where T, —T, — change of kinetic energy of two bodies when at impact; 7,7, —
kinetic energy system before and after impact; (V,,-U,,), (V,.,—-U,, ) — velocity
change.
In case of oblique impact the equation
u, -U
2n; k — 2n ln ,
Vi =Va

where V,,, V,, and U, , U, - projection of body’s velocities on the n axis, passing

m\V,

In

+m,V, =mU, +m,U

through the mass-centers of these bodies before and after the impact.
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APPENDIX A
Output dates for work "OSCILLATIONS OF A MATERIAL POINT"

In problems, the oscillations of the load D or the system of loads D and E. Find
equations of motion of load or system D and E. Consider the motion vertically,
relatively to the Ox axis. Combine the reference with the equilibrium of the load D or
the system D and E.

1. Load D (mp =2 kg) is attached to the beam 4B, attached to two identical
parallel springs, each spring stiffness and resistance coefficient is ¢ =3 N/cm, b = 6
Ns/cm. The point of attachment of the load is in the middle of the axes of the spring.
At the time ¢ = 0 to the load D, which is in the rest position, hang the load E (mg = 1

kg).

2. At the time ¢ =0 the rod, which connects the loads D (mp =1 kg) and E (mg =
2 kg) cut, and the base begins to make a moving by law £=1,5 sinl8t (cm). Stiffness
and resistance coefficients of a spring are ¢; =12 N/cm, c; =36 N/ cm, by =b, =0.

3. At the time ¢ =0 to load D (mp = 0,8 kg) connected to load E (mg = 1,2 kg) and
give the system of loads D and E 1nitial velocity vy = 0.2 m/s, downward. Coefficients
of stiffness and resistance is¢; = 10 N/cm,c; =4 N/cm,c3=6 N /cm, b; = b, = 0.

4. The system loads D and E are attached to the beam 4B. The beam connecting
to system of two parallel springs. Static deformation of two springs with coefficient
of resistance b = 6 Ns/cm under the combined action of loads D (mp = 0,5 kg) and £
(= 1,5 kg) 1s o, =4 cm. At the time ¢ = 0 the rod, which connects the loads, is cut.

5. At the time, to load D (mp = 1,6 kg), which attached to a spring with stiffness
¢ =4 N/cm and resistance b = 0 , connected load E (mg = 2,4 kg), and at point B the
base begins to make motion by the law ¢ = 2 sin5¢ (cm).

6. Load D has moved without initial velocity on inclined plane () the distance s
= 0,1 m, at the time ¢ = 0 load D (mp = 4 kg) connects with the non-deformed springs
which connected in series, and have stiffness and resistance coefficients ¢; = 48 N /
cm,c; =24 N/cm, b; = b,=0.

7. At the time ¢ = 0 load D (mp = 2 kg) added at point 4 without initial velocity
to the system non-deformed series-connected springs, which have stiffness and
resistance coefficients ¢; = 12 N/ cm, ¢c; = 6 N/ cm, b; = b, = 0. At the same time
base at the point B starts moving along the inclined plane (o0 = 45°) by the law & =
0,02 sin20t (m).

8. At the time ¢ = 0 the load D (mp =1,5 kg) added to a point N to system of the

three non-deformed parallel-series connected springs with beam AB, which have
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coefficients of stiffness and resistance ¢; =4 N/cm,c; =6 N/cm, c3 =15 N/ cm, b,
= b, = b3;=0. At the same time the load B has the velocity of vo= 0,5 m / s in the
positive direction of reference coordinates X. Given angle o = 45°.

9. The load D (mp=1.2 kg), moved distance S = 0.2 m away without the initial
velocity on an inclined plane (o = 30°), is connected to a non-deformed spring having
coefficients of stiffness and resistance ¢ = 4,8 N/ cm, b = 0 . At the same time, the
basis at the point B begins to move along the inclined plane by law & =0,03sin12¢
(m).

10. At the time ¢ = 0 the load D (mp =1 kg) without initial velocity joins the
system coupled with a rod AB with two identical parallel connected non-deformed

springs having each coefficients of stiffness and resistance coefficient ¢ = 1.5 N/ cm,
b =4 Ns/m. Take the angle o = 60°.

11. Load D (mp = 2.4 kg) is held at point F' to the rod AB. The coefficients of
stiffness and resistance of the system of two parallel fixed springs, connected with the
rod, c;=1N/sm,c; =14 N/cm, b =3 Ns/m. Before the start of the motion, the
load is extend on a value of 4 = 2 cm in the direction of positive reference of the
coordinate X at a time t = 0 without initial velocity.

12. At the moment ¢ = 0, the load D (mp = 3 kg) is held in a state in which the
spring is compressed by a value of 2 cm, released without initial velocity.
Coefficients of stiffness and spring resistance ¢ =9 N/ cm, b = (. At the same time,
the base at point B begins to move according to law & =1,2sin8¢ (cm).

13. The load D (mp =1 kg) (in the equilibrium state shown in the drawing) gives
an initial velocity of v, = 0.5 m /s in the direction of positive reference coordinate X.
The coefficient of stiffness and spring resistance of three parallel-series connected
springsc; =12 N/cm,c; =c;=c=3N/cm, b, = b, = b;=0.

14. The load D (mp =1.5 kg) from the equilibrium position (shown in the
drawing), before the start of the motion, is deflected by a value of 1 = 2.5 c¢m in the
direction of positive reference X coordinates and released at time ¢ = 0, giving the
load an initial velocity of v, = 0.4 m / s, directed to the right. The coefficients of
stiffness and spring resistance ¢; =44 N/cm,c; =2 N/cm,c;=8 N/cm, b; = b, =
b3 =0.

15. The load D (mp =1 kg) is held in equilibrium state, as shown in the drawing,
by a system of series-connected springs, which have coefficients of stiffness and
resistance ¢; =4 N/cm, c, =12 N/ cm, b; = b, = 0. At the time ¢ = 0, the base at the
point B starts to move according to the law & =1,8sin12¢ (cm).
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Variants 16 — 20.

Find the equation of the oscillatory motion of the load D in the direction of the
axis Ox. The rod which connects the springs is weightless. Motion of the block AB,
which occupies a state of rest in horizontal position, considered translation. Loads D,
E are not separate from each other in combined motion.
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16. At the time ¢ = 0, a load D (mp = 20 kg) is placed on the stationary load £
(mg = 10 kg), giving the loading system D and E an initial velocity of v, = 0,4 m /s
in the direction of positive reference X. The coefficient of stiffness and resistance of
the system bounded by a rod 4B of three parallel- series connected springs ¢; = 200 N
/cem, ¢y =160 N/ cm, c; =140 N/ cm, b; = b, = b; =0. The origin of the reference
axis Ox is combine with the position of the static equilibrium of the system of loads
D, E.

17. The system of loads D and E set on the spring is in a position of static
equilibrium. At time ¢ = 0, the load £ is removed from the load D. The oscillation
frequency of the loads system D and E is w, = 20 rad / s, the mass ratio mp /mg =2/
3. The start of the reference axis Ox to combine with the position of the static
equilibrium of the load D.

18. The load D is set on the 4B beam, which connects the system of two
identical parallel-connected springs. At time ¢ = 0, on the load D (mp = 20 kg) is set to
the top load E (mg = 10 kg). The static deformation of each of the springs with a

resistance coefficient 5=30+/3 Ns m under the action of the load D is o, =2 cm.

The origin of the reference axis Ox to combine with the position of the static
equilibrium of the loads system D, E.

19. The system of loads D (mp = 15 kg) and E (mg = 25 kg) set on two series-
connected springs which coefficients of stiffness and resistance ¢; = 250 N/ cm, ¢, =
375 N/ cm, by = b, = 0, 1s in the static equilibrium. In time ¢ = 0, the load £ is
removed from the load D. At the same time, the base at point B begins to move the
law & =0,05sin30¢ (m).

20. At the moment ¢ = 0 the load E is set to the top of the load D, giving the
system of loads D and E an initial velocity v, = 0.3 m /s in the direction of positive
reference coordinate X. Oscillation frequencies of load D on the spring of w, = 24
rad / s, the mass ratio mp / mg = 3. Origin the axis Ox combine with the position of
the static equilibrium of the loads system D and E.

Variants 21 — 25.

Find the solution of the oscillatory motion of the load D along a smooth inclined
plane in the direction of the axis Ox. The rod, which connects the springs, is
weightless. The motion of the 4B block, which is in the state of rest perpendicular to
the axis AB, is consider as translation.
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21. At the moment ¢ = 0, the load D (mp = 2 kg) is connected at the points 4 and
B to the free ends of the system of two non-deformed parallel-connected springs have
coefficients of stiffness and resistance ¢; =7 N/cm, c; =3 N/cm, b; = b, = 0. At the
same time, the load D give an initial velocity of v, = 0.4 m /s in the direction of
positive reference X. Take the angle a = 45°.

22. The load D at point A is attached to the spring and held on an inclined plane

(a = 30°) in the equilibrium. In this case, the static deformation of the spring is &, =

2 cm. At the time ¢ = 0, the base at the point B begins to move in accordance with the
law & =0,01sin10z (m).

23. At the time ¢ = 0, the load D (mp = 3 kg) is connected to the AB beam
without initial velocity. Beam AB binds the system of two non-deformed parallel-

connected springs, which have coefficients of stiffness and resistance ¢; =2 N / cm,
c;=4N/cm,b; = b, =6 Ns/m. Take the angle a = 60° .

24. At the time ¢ = 0, the load D (mp =1 kg) is attached at the point A without the
initial velocity to the system of two non-deformed series longitudinally connected
springs, which have coefficients of stiffness and resistance c; =12 N/ cm, c; =4 N/
cm, 0. At the same time the base at the point B starts to move along the inclined

plane (a = 30°) by law £ =1,5sin10z (cm).

25. Load D (mp = 1,5 kg) is attached to a rod AB, suspended on two identical
parallel springs. The static deformation of each of the springs with a resistance
coefficient » = 3 Ns / ¢m under the action of the load D on the inclined plane (o =
30% is &, = 4.9 cm. At the time ¢ = 0, the load D, which is in the equilibrium, gives

an initial velocity of v, = 0.3 m /s in the direction of the negative coordinate X.

Variants 26-30. Find the equation of oscillatory motion of load D in the
direction of the axis Ox from the moment of touch to the plate, considering that in
further motion the load is not separated from the plate. The plate, which is in
equilibrium at the horizontal position, is weightless. The motion of the plate is
considered translational.

26. Load D falls down without the initial velocity, distance # = 0.1 m, load D
(mp = 50 kg) connects at a time ¢ = 0 to a plate which connects a system of two non-

deformed parallel-connected springs have coefficients of stiffness and resistance ¢, =
600 N/cm,c,=400 N/cm, b; = b, = 0.

27. At the time ¢ = 0, load D (mp = 40 kg) 1s set without initial velocity on a slab
connecting the system of two identical, in parallel-connected non-deformed springs
have each stiffness and resistance coefficients ¢ = 130 N/ cm, b =200 Ns / m.
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28. The load D falls on the slab from a height 2 = 5 ¢m without initial velocity.
The plate fixed on a spring, which static deformation of the applied load is 5, =1 cm.

29. The plate fixed on two identical parallel springs. At time ¢ = 0, load D (mp =
200 kg) is set on the plate and suspended to the third spring located above the load.
The springs have coefficients of stiffness and resistance ¢; = ¢, =400 N/ cm, c; =200
N/cm, b; = b, = 0. At the same time, the load gives an initial velocity of v, = 0.6 m /
s, in the direction of the positive reference of the coordinate X. At the initial time
motion, the three-spring system is in equilibrium.

30. At time ¢ = 0, load D (mp = 100 kg) is set without initial velocity on a plate

fixed to a spring having coefficients of stiffness and resistance b = 0. At the same
time, the base at point B begins to move in law & =0,5sin 20z (cm).
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