МЕТОДИКА ОЦЕНКИ ЛОКАЛЬНЫХ ВИДОВ КОРРОЗИИ АУСТЕНИТНО-ФЕРИТНЫХ СТАЛЕЙ

С.В. Нестеренко, канд. техн. наук, доцент

Харьковский национальный университет городского хозяйства имени А.Н. Бекетова 61002 Харьков, вул. Маршала Бажанова, 17, nester.hnamg@gmail.com

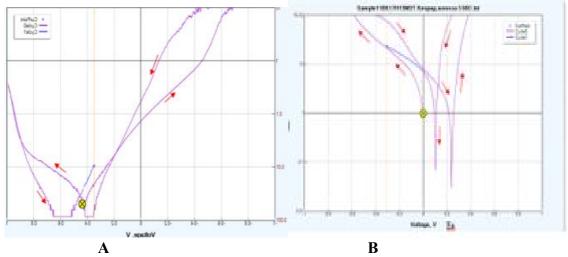

Целью данной работы является разработка методики оценки интенсивности питтингообразования. Суть методики заключается в применении циклической вольтамперометрии для оценки склонности нержавеющих сталей к питтинговой коррозии в стандартной среде ASTM G-48. Типовая циклическая вольтамперограмма исследуемых сталей в 6% растворе хлорида железа при 50 °C приведена на рис.1. Сталь X25H7AM4 не подвергается питтинговой коррозии так, как разность между потенциалом репассивации питтинга ($\phi_{\text{рп}}$) и потенциалом свободной коррозии($\phi_{\text{св.к.}}$) значительно больше 0,05B. Значения потенциалов (табл.1.) были вычислены из циклических вольтамперограмм, пример представлен на рис.1

Таблица 1– Параметры активации металлов в 6% растворе хлорида железа при 50°C. Среда аналогична ASTM G-48.

- r - r			
Марка материала	Фсв.кор (В)	Ф _{рп.по} (В)	$\Delta \phi = \phi_{\text{pmno}} - \phi_{\text{cb.kop(B)}}$
10X17H13M2T	0,23	0,09	-0,14
X25H7AM4	0,38	0,58	0,20

 $\phi_{\text{св.кор.}}$ – потенциал свободной коррозии; $\phi_{\text{рп.по}}$ – потенциал репассивации.

Было обнаружено наличие питтингов на образцах из сталей производства РФ(разность $\Delta \phi = \phi_{\text{рппо}}$, $\phi_{\text{св.кор(B)}}$ значительно меньше 0,05B).

Рис. 1– Циклические вольтамперограммы сталей В) 10X17H13M2T,A) X25H7AM4 в 6% растворе хлорида железа при 50 °C.

Разработанная методика прогнозирования питтингостойкости теплообменного оборудования в хлорид- содержащих средах дает возможность произвести экспресс оценку коррозионной стойкости высоколегированных сталей.