ОСОБЕННОСТИ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ХИМИЧЕСКОГО ТРАВЛЕНИЯ БЕРИЛЛИЕВОЙ БРОНЗЫ

В.И. Ларин¹, д.х.н., проф., Л.М. Егорова², к.х.н., доц.

1— НИИ химии при Харьковском национальном университете им. В. Н. Каразина 2—Харьковский национальный автомобильно-дорожный университет 61002, Харьков, ул. Ярослава Мудрого, 25 lilyaegorova@ukr.net

Медные сплавы (латуни, бериллиевые бронзы) являются технически важными сплавами в машиностроительной, электронной, авиационной и других отраслях промышленности. В связи с этим исследование процессов химического растворения сплавов меди в растворах различного состава имеют очень большое значение в технологиях производства изделий точной механики, оптики, радиоэлектроники и других смежных областях, где необходимо создание тонких и сверхтонких поверхностных структур, технология прецизионного травления, нанесения рисунка, совмещение слоев и др.

Проведено эксперимент по растворению сплава БрБ2 в растворах различного состава при высокой скорости вращения ВДЭ (вращающийся дисковый электрод, ω =74 об·с⁻¹), что позволяет имитировать гидродинамические условия струйного травления и снять диффузионные ограничения по отведению продуктов растворения медной составляющей в объем раствора. Выбор состава травильных растворов был обусловлен их практическим использованием в процессах травления бериллиевой бронзы.

Полученные результаты показывают, что растворение бериллиевой бронзы в растворах $FeCl_3$ значительно выше, чем в других электролитах, что связано с высокой окислительной способностью ионов Fe^{3+} . Поэтому за основной раствор был выбран раствор $FeCl_3$. В качестве добавок были выбраны KNO_3 , $Fe(NO_3)_3$, $Cu(NO_3)_2$, и хлоридные добавки вводили в раствор в виде HCl и NH_4Cl .

Определена селективность растворения компонентов сплава БрБ2 и модификация поверхности сплава при химическом травлении в хлоридных растворах, что представлено в табл.1. Рассчитанные значения коэффициентов селективности бериллия и меди имеют наиболее близкие значения в растворе состава: 0,5 М FeCl₃.

Таблица 1–Результаты определения содержания ионов меди (II) и бериллия в травильных растворах (время травления бериллиевой бронзы 20 мин.; 25 °C)

содерж	Составы растворов, моль/л		
ионов, г/л	0,5 FeCl ₃ + 1,5 KNO ₃ + 0,5 HCl	0,5 FeCl ₃ + 1,5 KNO ₃	0,5 FeCl ₃
коэффициенты селективности компонентов сплава			
$Z_{ m Be}$	0,6	0,5	0,95
Z_{Cu}	1,7	2,04	1,06

Методом электронно-зондового анализа были исследованы поверхность электродов из сплава БрБ2 после травления, плотных пассивирующих слоев на поверхности электрода не наблюдается.

В качестве травильного раствора, обеспечивающего высокоскоростное, равномерное травление сплава БрБ2 предложен состав -0.5 M FeCl₃.