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KINEMATICS

Kinematics 1s the branch of mechanics, which studies motion as such, without
acting forces. Kinematics deals only with geometrical aspect of the motion.

Motion is change in the location or position of an object in the time with respect
to other body (reference body).

To study motion of any object we have to introduce at reference system.
Reference system is the complex of the coordinate system, which is rigidly connected

with the reference body, and the clock, which the time is calculated by.

©-
the object

reference
body

Material point 1s the body dimension of which is substantially smaller than
Earth radius.

1 Particle motion

The motion of a particle is completely described if the position of the particle
is given as a function of the time.

Trajectory (Path) is the line along which particle moves. If path is a straight
line, the motion is called rectilinear; if path is a curved line the motion is
curvilinear.

Descriptions of particle motion. There are three main methods of the particle
motion descriptions:

1. vector, 2. coordinate, 3. natural.
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1.1 Vector method

The position of a particle in three-dimensional space is given by its vector-
position 7 = i(t) - the law of motion. Vector-position r connects the origin of
reference, the point O, with a point M, where the particle is situated. Vector-position

is determined by its magnitude and direction. The motion is completely described
when vector-position is known as a function of the time.

V= o is velocity of the particle - vector value, which:

- equals the first derivative from vector-position with respect at time;

-1s directed along tangent to the trajectory into particles moving;
- characterizes the variation of the particle position in time.

_ dV _dr
a=——=—-3o0r
dt dt
a=V =7 is acceleration of the particle - vector value, which:
~ - equals the first derivative from
——aM = velocity- with respect at time;
)\N - is directed toward the center of
P \\\ curvature; . o
L] — - characterizes the variation of the
0 a velocity magnitude in time.

1.2 Coordinate method: Rectangular Components

x =x(t); y=y(t); z=2z(t) — the law of motion (equation of particle motion in
coordinate form), where x, y, z — coordinates of the particle.
Particle location is defined by the vector-position

r=ri+rj+rk,
V= vxlT +Vy]_' +Vv_k - particle velocity
where V.,V V., - coordinates components of particle velocity;

i, ],k - orts of coordinates axes.

= \/v)% + v2 + v? — magnitude of velocity;
dx . _dy . dz

vV, =—=X; VvV, =—=Yy, VvV, =—=Z — projections of vector-velocity on
dt Yoodt Codt

X

coordinate axis, represent the first time derivatives of x = x(t), y = y(t), z = z(1),
respectively .
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o)
a=a.i+ ay]_' +a_k —particle’s acceleration,
where a,,a,,a, — coordinates components of particle acceleration;
N =X, a,=v,=j, a, =v, =Z - projections of vector-acceleration on
coordinate axis, represent, respectively, the first time derivatives of v, = v (1), v, =
Vi(t), v. = v.(t), or the second time derivatives of the functions x = x(2), y = y(t), z =

z(1).

=V

a X

1.3 Natural method
Natural method supposes that motion is completely described if position of
particle on its trajectory is given as function of the time.
In a natural method are given characteristics of motion:
a) trajectory of the particle;
b) start and direction of the reference point of movement;
c) o=o(t) is the law of motion (the equation of motion of a particle in its

natural form),
where o — curvilinear coordinate, which is

/\M counted along the trajectory
M

o O—
Natural coordinate system: the t axis is tangent to the trajectory and is positive

in the direction of increasing a; the normal axis n is perpendicular to the T axis
with its positive sense directed

towards the center of curvature,

the  bi-normal axis b -
complements the coordinate system to
spatial, that is, perpendicular to the
plane ™™n (b =7 xn),

where 7,7 — the orts of the
tangent and the normal axis;
v =v, =v, -7 — the particle’s velocity of; v, — component of the particles

velocity which coincides with the tangent axis (the velocity vector);




v, =06 —projections of velocity V on the tangent axis; the particle’s velocity v

has a direction that is always tangent to the trajectory, and a magnitude is determined
by taking the time derivative of the function 6.

The tangential component of acceleration
V= ‘ v, ‘ — magnitude of velocity;
a=a,+a,=a, T +a,  n —particle acceleration,
where a, ,a, —components of the acceleration of the particle to the axes 7 and n;

a, =V, =0 - the tangential component of acceleration on the 7, is the result of
the time rate of change in the magnitude of velocity; This component acts in the

positive ¢ direction.

2
a, = Y_ _ the normal component of acceleration is the result of the time rate of

Jo,

change in the direction of the velocity. This component is always directed towards
the center of curvature of the trajectory, i.e., along the positive n axis; where p —
radius of curvature of the trajectory at a given point.

The acceleration of the particle is a ; — V_
the time rate of change in velocity ‘

a= \/afz +a,% — magnitude of a_

acceleration.

The conformity between the natural and coordinate methods:
Ve +Via,+V.a,
T 1% >

a

(Vyay, - Vyax)2 +(V.a, - anz)2 +(Vya, - Vzay)2
a, = ;
" VIV 4V

vV HVy

p =
al’l al’l



1.4 Special cases

1) Rectilinear (straight-line) motion: a, =0, a =a,, the radius of curvature is
P =0

a=da 174

T

Accelerated motion, directions Vv Decelerated motion (particle is

and C_ZT Coincide) Signs of SlOWing dOW}’l), directions 12 and

projections v and @, are same. a; are opposite, signs of
projections Vv and a4, are
different.

3) Uniform motion: a, = const #0 (uniformly accelerated motion , if v_ and a,
have the same signs and uniformly decelerated — if have the difference one).
Ve=a; t+v,.,
f2
G=a13+ Vor 'L+ 00,

where o, v,, —initial coordinate and particle velocity;
4) Uniform motion: a, =0, in this case d = a,,

V. =V, = COnst,

o=V, 't+0y,

Q
Il
-

Uniform rectilinear motion Uniform curvilinear motion



2 Kinematics of the rigid body
2.1. Translation motion of the rigid body

Translation is the type of motion, in which every line segment on the body
remains parallel to its original direction during the motion.

1) 5 — the body slides along a straight
A ‘lA %2 surface, the trajectory of the points is a
1 Ao . . .
TSI straight line ;
t1 t
2) Az B1 — coupling rod 4B when the rods of

0OA and NB (OA = NB) rotate,
the trajectory of the points - the circle.

32

Low of translation:

i=1,2,3

Theorem: If body moves translationally all the points have at time t the same

Q| <
NN
o
Q| <
o W
o
Q| <

N

a

velocity and acceleration relative to some reference.

The translational motion of a rigid body can be determined by studying the
motion of only one of its points (often it is the center of masses).

2.2 Rotation about a Fixed Axis
A rotation 1s such motion of a rigid body when one line of the body or of an
extension of the body remains fixed. The fixed line is called the axis of rotation. A
rotating body has one degree of freedom.



In the figure:

I — fixed plate,

Il — a plate, which rigidly connected
the body and rotates with it.

The angular position measured from
a fixed reference plate / to I1 — ¢, 1s angle
rotation of the body.

@, = @(t) — the law of rotation (equation of the body rotation about fixed axis
z). Since motion is about a fixed axis, the direction of d¢ is always along this axis.
Angle ¢ measured in degrees or radians: [@] = rad.

@ =@ — the vector of angular velocity « — omega (the time rate of change in
the angular position). It’s directed along the axis of rotation z in the direction from
which the rotation of the body is visible counter clockwise,

O=0, =0, k,

where k& — ort of axis z; @, = ¢, — projection angular velocity on the axis z;

W= ‘ o, ‘ — magnitude of angular velocity.

: : d _
Angular velocity measured in radian per second: [a) ] -4 _

s

g=0w =@ — the angular acceleration ¢ (epsilon) measures the time rate of
change of the angular velocity. The magnitude of this vector is first derivative from
angle of rotation.

: . : rad  _
Angular acceleration measured in radian per square second: [8 ] =—5=5 ?
s
% W
g
Accelerated rotation Decelerated rotation
directions @ and € are the same directions @ and & are opposite
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Constant Angular Acceleration

1) Uniform rotation: &, = const #0 (uniformly accelerated motion, if o,
and ¢ have the same signs and uniformly decelerated —have the different ones).
®; =& 1+
;2
2 :8z?+a)02 "1+ Qo
where ¢,,,®,, — initial angle of rotation and angular velocity.
2) Equable rotation: ¢, =0

W, = 0y, = const

@, =00z L+ Q.

The angle of rotation can be expressed through the number of rotation N of the body
for the full period:

@ =27nN.
Angular velocity in the technique is often given to the number of rotations per
) 2 1w on
minute: O =——=——.
60 30
Formulas to determine the kinematic values of any point in the body:
o=@ -h is curvilinear coordinate of z -

point the circle;

h — distance from the point A to the axis
of rotation;

v, = o - h — magnitude of linear velocity

point A, vector v, L h and directed from

any point on the axis of rotation to the
point on curvilinear with the angular
velocity o ;

Cl}j =&-h- the tangential component of

acceleration point A; vector @ L h

and has the same direction of curvilinear
of the angular acceleration ¢ ;

a’, = @ -h — the normal component of

acceleration point A, vector 5/’; has the

direction of 4 towards O, the center of
the circular trajectory

— __ =g |, —n,
a,=da, +61A,

a,= \/ (a®)* +(a")’ — magnitude of acceleration point 4.
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2.3 Transmission of rotational motion

For gear transmission For belt transmission
Vg =V =Va a, =4, =d; 4.
W11 = W15 eih =&,
el f_0n
Wy N & - i '

2.4 General plane motion of a rigid body

A rigid body executes plane motion when all parts of the body move parallel
to planes. It undergoes a combination of translation and rotation. The translation
occurs within a reference plane, and the rotation occurs about an axis perpendicular
to the reference plane.

Position of the figure at a given time is determined by the coordinates of its
arbitrary point A, considered as the pole, and the angle of rotation ¢ of the figure
around the pole.

Equation of plate figure motion:
x4=H0; ya=L00; e=0(),
where 4 — point, chosen as a pole or the
base point.

The first  two equations
characterize the translational motion of
the figure, in which all the points of the
figure move in the same way as the pole,
and the third - the rotational motion
around the pole.

Angular velocity and angular acceleration of the rotational movement of the

7]

Vi

0]

figure are independent of the pole choice.

Theorem on the velocity of points of a plane figure: The linear velocity of any
point M of the figure at its plane motion is equal to the geometric sum of the velocity
of the pole A and the velocity of the point M in its rotational motion around the pole.

12



where V=@ MA,
where ® — angular velocity of

plate figure; and velocity V. L
MA.

The Theorem of velocity vectors on the projections: The projections of the two
points’ velocities onto the line connecting the points are equal:

Proj, (V) =Proj,,(V,)
or V, cosa =V,cos
where o 1 f — angles between

V.and Vs and direction segment AB.

The plate motion of the body at moment can be considered as a rotational
motion around the instantancous center of rotation, or instantancous center of zero
velocity (ICZV).

The instantaneous center of zero velocity (/CZV) is the point of a plate figure,
which velocity at the time is zero.
Determination of the position of the /CZV with use of the angular velocity of the
figure and the velocity of any point of the figure:
1. _ In general, the ICZV lies at the
S VA intersection of the perpendiculars put from

two points of the plane figure to their
velocities.
The angular velocity @ of a plate figure at
each instant time is equal to the ratio of the
velocity of any point of the figure to its
distance from the ICZV
oV Vs _Ve
AP BP CP
Therefore, the velocity of any point of a plane figure at each time is equal to
the product of the angular velocity @ at a distance from the given point to the ICZV:

13



Ve=w-CP (V, LBP);
Vy=w-BP (Vo LCP)
2.if V|V, V4 L AB

P (ICZV)

VA VB _ VA _VB
Q) = = w = =
AP BP AB+BP BP
3.1f VA 1737 azmnl?2
a):ﬂ:O,
o0
V,=V,=V.

P(ICZWV\—
This is a case of instantaneous translation motion.

1. The wheel rolls without sliding on a
stationary surface. In this case, the position
of ICZV 1is at the point of contact of the
figure with the surface

a):ﬁ, Vy=w-AP.
0)

P(ICZV)

Theorem about the points’ acceleration of a plane figure:
The acceleration of points of the figure, executing plane motion, defined as the
geometric sum of the acceleration pole A in a fixed coordinate system and the

acceleration of point M in its rotation around the pole A~
EM - CTA + JMA )
or because

— —-n —Ig
amqa =Aama +AaAm4,

14



- - —-n —tg

am =a4+aus+am, where a), =’ -MA, af,=¢-MA,

while a@,%, L MA and directed by the

arrow ¢, a,, directed along the line
MA from point M to point 4.

2.5 Kinematical analysis of plate mechanism

When solving problems it is necessary to consistently consider the movement of
individual parts of the mechanism and calculate each of them (to determine the speed
and acceleration of the point, which belongs simultaneously to the considered and
incremental crank). Calculation starts with a crank, the movement of which is given.
If the crank performs a rotational motion, (it has a fixed point, for example, in the
form of a fixed hinge) then any of its points moves in a circle and determine the
velocity and acceleration of this point.

Problem 1. The plate mechanism consists of a crank OA, a connecting rod AB
with a slider B. Here O4 = 20 cm, AB = 40 cm. The crank OA has at this time the
angular velocity wo, = 2 rad/s and the angular acceleration &0, = 5 rad/s>. For a given
position mechanism it is necessary to determine the velocity and acceleration of the

point B, and the angular velocity and acceleration of the connecting rod AB.

e

Solution:

1. Determine velocity of point B.
At first, consider the crank OA4, which motion is given.

15



It performs rotational motion about a stationary
point O, so the velocity of point 4 is determined by
the formula
V,=wy -04=2-20=40 (cm/s).

Vector ¥, L. OA and has direction of the rod
rotation (by "arrow" @, ).

2) Consider the connecting rod AB. It performs a general plane motion,

so at first it is necessary to draw its ICZV.
The velocity of point A is determined when
calculating the rod OA. Point B belongs to a
slider so the line of its velocity 7 is

parallel to the direction of slider motion. We
draw the ICZV (point) as the point of
intersection of the perpendiculars to the

velocity VA and velocity of the point B,

which is horizontal (directed in the tangent

to the trajectory).

Angular velocity of rod AB equals:
V, _ v, _VA-cos450_40-0,7_07 rad
AP, AB/cos45’ AB 40 ’

AB
and is directed according to how the vector "rotates" around the ICZV (P 45).

Wyp =
S

Velocity of point B
Vg =w, 5 -BP,z =0,7-40=28 (cm/s)
and directed in accordance to the "arrow" @ 45 .
2. Determine further acceleration of the point B.

1) Consider the crank OA. It performs rotational motion; therefore the modules

of components of acceleration of point 4 are determined by formulas:
a’ =), -0OA=4-20=80 (cm/s’),
a®=g,,-04=5-20=100 (cm/s").

We show the directions of the components: the

vector a, is directed along the rod from point 4 to the

center of rotation O, the vector @ 1 OA directed in

accordance to the "arrow".

16



2) Consider the connecting rod AB. It performs a general plane motion, so the

acceleration of point B is determined by the formula:

a,=a,+a,, =a,+a; +a,, +a,,
The component magnitude a,, is calculated using the formula:

al, =, -BA=0,7"-40=20 (cr/s’).

n

y The vector a,, of
A

directions along the

- ae segment BA from point
ar, a, L B4 B to pole A. The
p  Mmagnitude of  the

componenta,, cannot

e

be calculated yet,

so &, unknown. In this case, we will depict the vector a5, L BA and point in any
direction (for example, upwards). Since the trajectory of point B is a straight line,
then the vector a, must have direction along this line. Let's depict it, for example, to

the left of point B.

Choose the axis of the coordinates x, y (for example, x-axis along the rod to the
left, axis y in - upwards) and design a vector equation for determining the
acceleration to these axes:

x:  a,=a’-cos45’ +a” -cos45’ +a},,
y:  0=-a’,-sin45" +a® -sin45° + a¥,.
In the resulting system of algebraic equations unknown magnitude are
accelerations a and a%,. From the first equation we find acceleration of point B:
ap =80-0,7+100-0,7 +20 =146 (cn/s°).
Since az >0, then, the vector a, corresponds to the actual direction of acceleration

of point B. From the second equation we find a¥,:
a’, =a" -sin45° —a® -sin45° =56 -70 =—14 (cn/s’).
The sign "-" -- means that in fact the vector a¥, 1 B4 is directed downwards.

Angular acceleration

g

ag| 14 rad
£,=1—=—=035 | —
B4 40 (sz)

17



A
o— > B and directed clockwise (as the real

Eap 7 vector a5, "rotates" around pole A).
'AB
rad
Answer: ®,,=07 —; V,=28 cm/s;
S
rad
€, =035 —; a, =146 cm/s’.

S

Problem 2. The wheel 4 consists of two rigidly fastened discs. Wheel of radius
r rolls without slipping on a stationary surface.
Here AB = 15 cm, r = 10 cm. The center
of wheel A has at this time velocity V, =
28 cm/s and acceleration a, =146 cn/s’.

For a given position of the wheel to
determine its angular velocity and
acceleration, as well as the velocity and
acceleration of point B.

Solution:
1. Determine velocity of point B.

A wheel rolling without
slipping on a stationary surface
performs a general plane
motion. ICZV (point P,;) is at
the point of contact with a
stationary  surface. = Angular
wheel velocity

— v, —28=2,8 (rad

a)wh = — A
AP, 10

S

and directed clockwise (according to the "rotation" of the vector around the IZCV
(point P,).

The segment BP,; can be determined from the triangle ABP,;, by the law of
cosines:

BP,, =\|AB* + AP?, =2 AB- AP, -cos150° =
= /15 +10% =2-15-10-(=0,85) =~/580 ~ 24 (cm),

18



SoV,=w,,  BP, =2,8-24~67,2 (cm/s). Vector ¥/, L BP,, and has direction
according to the clockwise @, .

2. Determine acceleration point 5.
The acceleration of the point B in the wheel, which performs the general plane
motion, is determined by the formula:
a,=a,+a,, =a,+a,,+a,,.
Since the trajectory of point B is unknown (it has no restrictions on other
bodies), its acceleration will be find in the form of two unknown components,
directed along the coordinate axes:

— - = —n —tg
Ag + 0y, =0, + g, +ay,

Angular acceleration of the rolling wheel is determined by the formula:

. _do, _d0,/4p,) _ 1 4V, & _ a, _146_146(mdj
o dt dt AP, dt AP, AP, 10 st )

where a1 = a. , since the trajectory of point B is a straight line.
Direction of ¢,, is counter clockwise (as the vector @ "rotates" around the
ICZV counter clockwise).
Y Component magnitudes a,, and a,, are
‘ determined by the formula:
ar, =, -BA=2,8-15=117,6 (cm/s’),
a% =¢, -BA=14,6-15=219 (cm/s%).

V. A oSS TSI T T

Swh Pwh(IC

The vector a,, is directed along the segment B4 from point B to pole 4, and the

vector a, 1 BA is directed in accordance to the "arrow" &,;,. We construct the xy

coordinate axis and take the projection of a vector equation for determining the
acceleration a, on these axes:

X: a, =a,-cos30 +a% =146-0,85+219=343,1 (cm/s’);

y: a, =a,-sin30° —a, =146-0,5-117,6 =—44,6 (cm/s’).

Acceleration magnitude of point B is determined by the formula
a, = \/ai +a’ =\(343,1)" +(-44,6)’ ~346 (c/s’).
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Since, a, >0, a, , <0 then, the acceleration component a, of point B is
directed towards the positive direction of the axis x, and the component a,, — towards

the negative direction of the axis y. The vector a, is depicted as a diagonal of a

rectangle constructed on the components a,,, a,, as on the sides.

Answer:

., =2,8 @; V,=67,2 cm/s;
S

rad 5

£, =146 —; a;=346 cm/s".
S

Problem 3. The plate mechanism consists of the crank OA and two gear wheels
I and II, connected with the crank OA.

Here O4A = 30 cm , 1 = 10 cm. Crank OA
rotates about axis O and has angular velocity in
this moment ®,, =3 rad/s and angular

B accelerationg,, =0. Wheel I rotates about axis
O with constant angular velocity o, =6 rad/s.
For a given position of the mechanism to
determine the velocity and acceleration of the
oo point B, and the angular velocity and
O I acceleration of wheel II.
r, A
1
g
@ |
Solution:
1. Determine velocity of point B.

At first, consider the crank OA, which motion is given.

It performs rotational motion around a fixed

V4 A . . . . .
point O, so the velocity of point A is determined
B oy by the formula:
V,=wp4-04=3-30=90 (cn/s).
Vector ¥, 1 O4 and directed counter
A clockwise (by “arrow” w, ).

20



2. Consider wheel I, the motion of which is given. Wheel I performs
— rotation motion around a fixed point O. Denote

P & touch point of the wheel I and II as letter D, then its
velocity equals
Vy=w;-OD=6-10=60 (cm/s).
Vector ¥, L OD and directed clockwise the
o wheel L.

3. Consider wheel II. It performs a general-plane motion. At first, it is necessary
to draw the pole of ICZV. To draw the /ICZV we connect
ends of velocity vectors ¥, and V.
Position of /CZV is at the intersection of
this segment with a line passing through
points 4 and D. The angular velocity of
the wheel V', is related to velocity V,

by ratio:
Va4 _Vp
AR DPy

g

Vb
Considering, DPy; = AD — APy = (04 —r;) — APy =20 - AP,
the right side of the relation w{ can be considered as an equation with respect to the
segment A Py;:
Ve _  Vp
AR, 20-4B,
Solve this equation and determine APy;:
V,-Q20—APy) =V, - APy,
V,-20=4P; -V, +Vp),
Vy-2090-20 1800

APy = = = =12 (cm).
Vy+Vy, 90+60 150
So
V
o =—4 =%=7,5 (rad/s).
APy 12

Angular velocity oy, is directed according to how the vector is ¥, “rotates” about
ICZV (Py). Velocity point B is

V,=w, BP, =@, | AB> + AP> =7,5-/20> +12* =7,5-/544 =

=7,5-4-4/34~30-5,83~175 (cm/s)
And is directed according to the "arrow" wy;.
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4. Determine acceleration of point B.
1) Consider the crank OA. It performs rotation motion,
| therefore the magnitudes of acceleration components of point 4
are determined by formulas:

a’ a'=w},-04=3"-30=270 (cm/s°),
a®=¢g,,-0O4=0.
Vector a, directed along the rod from point 4 to the center of
rotation O.

2) Acceleration of point B to wheel 1I, which performs a general-plane motion,

is determined by the formula:

= —  _ —n |, —Ig | =n —1g
aB—aA+ClBA—aA+ClA +aBA+aBA‘

Since the trajectory of point B is unknown (it has no connections to other
bodies), its acceleration will be determine in the form of two unknown components
gy, dpy,, directed along the axes of the coordinates x, y:

Ay, + 0y, =0, + 0 + 0y, +ag,.
The angular acceleration of the wheel 11 will be determined using the ratio
Ve Vp Vyi+Vp
AP, DP;,  AD

Then

V,+V,
. _doy _ AD ) _ 1 d(VA+VD): L (dv,  dv,
T dt AD  dt AD\ dt  dt
=ﬁ<ai§+a’§)=0.
do,

d -OD =0, since under the problem w; = const .
t

In this formula 4 =&, -OD =

Components of magnitudes @,, and @5, are determined by the formula:
al, = -BA=7,5-10=56,25-10= 562,5 (cn/s°),
as, =¢g,-BA=0.
The vector a,, has direction along

the segment V; from point B to pole 4.
Draw the coordinate axis xy and find

the projection of a vector equation for

determining the acceleration ap on these

axes.
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x: a, =al, =562,5 (cm/s’);
v agz =a, =270 (cm/s”).
Magnitude of point B acceleration determined by the formula
ap :\/azx +a’ =4(562,5)% +(270)% ~ 607 (cov/s?).

B By
o a, Since age >0,ap, >0, then
HBV“ ! components of point B acceleration are
) : directed towards the positive direction of the
i x and y axes, and the vector a, is represented

B~ —>—> as a diagonal of the rectangle, drawn on

components dp,,dp, as ona sides.
Answer: o, =175 rad/ls; V,=67,2 cms,
en =0; ag =607 cm/s’.

3 Compound motion of a point

The compound motion of a point is the motion in which point M takes part in
two or more motions simultaneously.

Absolute motion is the motion of
point M according to a fixed 7

coordinate system x, y,z. v Y

Relative motion is the motion of
point M relative to the moving X

coordinate system X;Y;Z;. / r— .
I

Xi
Transport (bulk) motion is the motion of the moving reference with respect to

the fixed reference.
Theorem on adding velocities: The absolute velocity of a point equals the

geometric sum of velocities in the transport and relative motions:
V,=V,+V,,
v, —absolute velocity; v, — transport velocity; v — relative velocity.
Coriolis's theorem on addition accelerations: the absolute acceleration of a

point equals the geometric sum of acceleration in the transport motiond,, the
acceleration in relative motion @, and the acceleration of the Coriolis . :
a=a,+ad +a;
Coriolis’s acceleration vector is expressed by the formula
Tz, =2(w, xv)).
he
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magnitude of the Coriolis’s acceleration vector is equal to
A
a, =20V, sm(w,,v,),

where @, — the angular velocity of the transport rotational motion.

Coriolis acceleration is zero if:
1) the transport motion is translation (@, = 0);

2) the relative velocity V, at the moment is zero (v, =0);

3) the relative velocity vector V, at the moment is parallel to the vector of

A
the angular velocity of the transport rotational motion (sin(@,,v, ) =0).

To determine the direction of Coriolis’s acceleration can be used either the rule
of the vector product, or the rule of Zhukovsky. According to Zhukovsky's rule, the
direction of the vector is determined in such order:

1) it is necessary to take projection of a vector of relative velocity TZ on a
plane S perpendicular to the axis of transport rotation (perpendicular to the
vector @, );

2) get the projection ¥ and turn in this plane by 90 degrees in the direction of

transport rotation (in direction of curve-line 78 |
arrow ,); N e
3) 3) the direction of the Coriolis’s 2 S
acceleration a, coincides with the direction .
50 >

of the vector V.

magnitude a, = 20V, sina .

Problem 4. The disk rotates around a vertical diameter with angular acceleration
¢ = 2t (rad/s?)., the point M moves with a constant acceleration a = 2 (cm/s’) along
the radius of the O4 inclined to the axis of rotation at an angle of 45°. At the time t =
0, the angular velocity of the disk and the relative velocity of the point of the disk
center are zero, 1. €. wo = 0, V,y = 0. Determine the absolute velocity and absolute
acceleration of the point M at the moment /=1 s.
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Solution: For a fixed reference system,
we take the ground, and for moving — a
rotating disk. Transport motion (motion of the
disk relative to the ground) is rotational.
Angular velocity of the disk

w=Iedt=I2tdt=t2+C,

where C =0, as wo = 0.

So w="r.

For absolute velocity of point M we get:

A

The relative velocity is directed along the
radius of the OA and equals V,= 2t¢. The
transport velocity is directed perpendicularly
to the drawing from us in the direction of disk
rotation is equal to

V,=w-MK=w-s-sin45°,

where s = (@'’ )/2. So V, =t* /2.

Since between the velocity vectors 7, and 7, the angle of 90, then

V= V2 V2 =4+ /2
At the moment ¢ =17s
V, =45 ~2]2 cs.
Consider that the transport motion is rotational, we have
a,=a,+a,+a,.

Relative acceleration is directed along the radius of the OA and equals
a.=a=2 (cm / s). The transport acceleration of the point M consists of two

components: rotating and centripetal acceleration, i.e.
= _ g | =
a,=a’+a,

Transportable centripetal acceleration is directed along the MK (from the point
M to the point K) and is numerically equal to

a? =0’ MK =" -s-sin45°
o °v2 cm
or a= —
2 s
Transport rotational acceleration is directed perpendicularly to the drawing
from us in the direction of the “arrow” e.

25



a® =g MK =2t-5-sin45" =2 .
S

e

. cm cm
atr=1s, a”=+2/2-"F, a®*=2">.
S S

To determine the Coriolis’s
acceleration, the conditionally vector
o transferred parallel to itself in the
point M. Acceleration a, will be

directed perpendicularly to the plane
(@,V.) in the direction from which

the rotation @ to V. a smaller angle

has a direction against the clockwise
movement, that 1is, in this case
perpendicular to the plane of the
drawing  from  the  observer.
Magnitude

a =20V -sinds’ =202
S

At t=1s a =22
S

To determine the numerical value of the absolute acceleration and hence the
compilation of vectors a.,a,” ,c_letg ,a. , we make three mutually perpendicular axes X,

Y;, Z;. If we take projections of all components of absolute acceleration on these
coordinate axes, we obtain the projections of absolute acceleration of the point M

aaX| = _a;g - ac = _\/5 - 2\/— = _3\/5 > zl 1
| 2 22 2 STAa

a, =—a’ +a, -cos45’ = —£ + —\/7 = i, a2 ‘

v 2 2 2 . L ) # “"75

2+/2 o Ak
Ao, =ar’cos450:i=\/§. """ 7
2 aarz1
We construct a vector of absolute o >

acceleration taking into account certain M- agy, Vi

projections on the axis. By the magnitude of
the absolute acceleration, the point M will

X
be:

1
a,=\a, +a’, +a., = ,/18+5+2 =20,5=4,5"2
S

Answer: the absolute velocity of the point M V, = 2,12 cm / s; the absolute
acceleration of the point M a, = 4,5 cm / s°.
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APPENDIX

Output dates for work

“Kinematical analysis of plate mechanism”

Determine for a given position of the mechanism velocity and acceleration of points B
and C, as well as angular velocity and angular acceleration of the link, which belongs to the
point C. Schemes of mechanisms are shown in the following pages, and the required size
and kinematic parameters are presented in the table, where w,, €, - angular velocity and

angular acceleration of the crank OA4 for a given position of the mechanism; ;- the angular
velocity of the wheel I ; V' ,,a , - velocity and acceleration of point 4. Rolling of wheels is
carried out without slipping. The method of solving problems is considered in section 2.5.

Number Dimensions , cm Doy | O, | Eogs | Vy» ay,
of 04 r AB AC | rad/s | rad/s | rad/s® | cm/s | cm/s®

variant
1 40 15 - 8 2 - 2 - -
2 30 15 - 8 3 - 2 - -
3 i 50 - : - - - 50 | 100
4 35 - - 45 4 - 8 - -
5 25 - - 20 1 - 1 - -
6 40 15 - 6 1 1 0 - -
7 35 - 75 60 5 - 10 - -
8 - - 20 10 - - - 40 20
9 - - 45 30 - - - 20 10
10 25 - 80 20 1 - 2 - -
11 - - 30 15 - - - 10 0
12 - - 30 20 - - - 20 20
13 25 - 55 40 2 - 4 - -
14 45 15 - 8 3 12 0 - -
15 40 15 - 8 1 - 1 - -
16 55 20 - - 2 - 5 - -
17 - 30 - 10 - - - 80 50
18 10 - 10 5 2 - 6 - -
19 20 15 - 10 1 2,5 0 - -
20 - - 20 6 - - - 10 15
21 30 - 60 15 3 - 8 - -
22 35 - 60 40 4 - 10 - -
23 - - 60 20 - - - 5 10
24 25 - 35 15 2 - 3 - -
25 20 - 70 20 1 - 2 - -
26 20 15 - 10 2 1,2 0 - -
27 - 15 - 5 i - i 60 | 30
28 20 - 50 25 1 - 1 - -
29 12 - 35 15 4 - 6 - -
30 40 - - 20 5 - 10 - -
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