MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

O. M. BEKETOV NATIONAL UNIVERSITY of URBAN ECONOMY in KHARKIV

Methodological guidelines for practical classes, self-dependent and calculator-graphical works on the Subject

THEORETICAL MECHANICS
 PART 2. KINEMATICS

(for the first year full-time students specialty
192 - Construction and Civil Engineer)

Kharkiv
O. M. Beketov NUUE

Methodological Guidelines for practical classes, self-dependent and calculatorgraphical works on the Subject «Theoretical Mechanics» (Part 2. Kinematics) (for the first year full-time students of the specialty 192 - Construction and Civil Engineer) O. M. Beкetov National University of Urban Economy in Kharkiv; com. : V. P. Shpachuk, A. I. Rubanenko, A. O. Garbuz and other. - Kharkiv : O. M. Beketov NUUE, 2019. - 31 p.

Compiler V. P. Shpachuk,

A. I. Rubanenko,
A. O. Garbuz,
T. A. Suprun
R. L. Turenko

Reviewer N. V. Sereda, Ph. D. in Philosophy

Recommended by the department of Theoretical and Structural Mechanics, record N 10 on 25.06 .2019

CONTENTS

KINEMATICS 4
1 Particle motion 5
1.1 Vector method 5
1.2 Coordinate method 5
1.3 Natural method 6
1.4 Special cases 8
2 Kinematics of the rigid body 9
2.1 Translation motion of the rigid body 9
2.2 Rotation motion of the rigid body 10
2.3 Transmission of rotational motion 12
2.4 General plane motion of the rigid body. 12
2.5 Kinematical analysis of plate mechanism 15
3 Compound motion of the point. 23
REFERENCES 27
APPENDIX 28

KINEMATICS

Kinematics is the branch of mechanics, which studies motion as such, without acting forces. Kinematics deals only with geometrical aspect of the motion.

Motion is change in the location or position of an object in the time with respect to other body (reference body).

To study motion of any object we have to introduce at reference system. Reference system is the complex of the coordinate system, which is rigidly connected with the reference body, and the clock, which the time is calculated by.

Material point is the body dimension of which is substantially smaller than Earth radius.

1 Particle motion

The motion of a particle is completely described if the position of the particle is given as a function of the time.

Trajectory (Path) is the line along which particle moves. If path is a straight line, the motion is called rectilinear; if path is a curved line the motion is curvilinear.

Descriptions of particle motion. There are three main methods of the particle motion descriptions:

1. vector, 2. coordinate, 3. natural.

1.1 Vector method

The position of a particle in three-dimensional space is given by its vectorposition $\bar{r}=\bar{r}(t)$ - the law of motion. Vector-position \bar{r} connects the origin of reference, the point \boldsymbol{O}, with a point \boldsymbol{M}, where the particle is situated. Vector-position is determined by its magnitude and direction. The motion is completely described when vector-position is known as a function of the time.
$\bar{V}=\frac{d \bar{r}}{d t}$ is velocity of the particle - vector value, which:

- equals the first derivative from vector-position with respect at time;
- is directed along tangent to the trajectory into particles moving;
- characterizes the variation of the particle position in time.

$$
\bar{a}=\frac{d \bar{V}}{d t}=\frac{d^{2} \bar{r}}{d t^{2}} \text { or }
$$

$\bar{a}=\dot{\bar{V}}=\ddot{\bar{r}}$ is acceleration of the particle - vector value, which:

- equals the first derivative from velocity- with respect at time;
- is directed toward the center of curvature;
- characterizes the variation of the velocity magnitude in time.

1.2 Coordinate method: Rectangular Components

$x=x(t) ; y=y(t) ; z=z(t)-$ the law of motion (equation of particle motion in coordinate form), where x, y, z - coordinates of the particle.

Particle location is defined by the vector-position

$$
\begin{aligned}
& \bar{r}=r_{x} \bar{i}+r_{y} \bar{j}+r_{z} \bar{k}, \\
& \bar{v}=v_{x} \bar{i}+v_{y} \bar{j}+v_{z} \bar{k}-\text { particle velocity }
\end{aligned}
$$

where v_{x}, v_{y}, v_{z}-coordinates components of particle velocity;
$\bar{i}, \bar{j}, \bar{k}$ - orts of coordinates axes.

$$
v=\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}} \text { - magnitude of velocity; }
$$

$v_{x}=\frac{d x}{d t}=\dot{x} ; \quad v_{y}=\frac{d y}{d t}=\dot{y} ; \quad v_{z}=\frac{d z}{d t}=\dot{z}-$ projections of vector-velocity on coordinate axis, represent the first time derivatives of $x=x(t), y=y(t), z=z(t)$, respectively.

$\bar{a}=a_{x} \bar{i}+a_{y} \bar{j}+a_{z} \bar{k}-$ particle's acceleration,
where a_{x}, a_{y}, a_{z} - coordinates components of particle acceleration;
$a_{x}=\dot{v}_{x}=\ddot{x} ; a_{y}=\dot{v}_{y}=\ddot{y} ; a_{z}=\dot{v}_{z}=\ddot{z}$ - projections of vector-acceleration on coordinate axis, represent, respectively, the first time derivatives of $v_{x}=v_{x}(t), v_{y}=$ $v_{y}(t), v_{z}=v_{z}(t)$, or the second time derivatives of the functions $x=x(t), y=y(t), z=$ $z(t)$.

1.3 Natural method

Natural method supposes that motion is completely described if position of particle on its trajectory is given as function of the time.

In a natural method are given characteristics of motion:
a) trajectory of the particle;
b) start and direction of the reference point of movement;
c) $\sigma=\sigma(t)$ is the law of motion (the equation of motion of a particle in its natural form),
where σ - curvilinear coordinate, which is
 counted along the trajectory

Natural coordinate system: the $\boldsymbol{\tau}$ axis is tangent to the trajectory and is positive in the direction of increasing $\boldsymbol{\sigma}$; the normal axis \boldsymbol{n} is perpendicular to the $\boldsymbol{\tau}$ axis
 with its positive sense directed towards the center of curvature;
the bi-normal axis b complements the coordinate system to spatial, that is, perpendicular to the plane $\tau M n(\bar{b}=\bar{\tau} \times \bar{n})$,
where $\bar{\tau}, \bar{n}-$ the orts of the tangent and the normal axis;
$\bar{v}=\bar{v}_{\tau}=v_{\tau} \cdot \bar{\tau}$ - the particle's velocity of; \bar{v}_{τ} - component of the particles velocity which coincides with the tangent axis (the velocity vector);
$v_{\tau}=\dot{\sigma}$ - projections of velocity \bar{v} on the tangent axis; the particle's velocity v has a direction that is always tangent to the trajectory, and a magnitude is determined by taking the time derivative of the function σ.

The tangential component of acceleration
$v=\left|v_{\tau}\right|$ - magnitude of velocity;

$$
\bar{a}=\bar{a}_{\tau}+\bar{a}_{n}=a_{\tau} \cdot \bar{\tau}+a_{n} \cdot \bar{n}-\text { particle acceleration }
$$

where $\bar{a}_{\tau}, \bar{a}_{n}$ - components of the acceleration of the particle to the axes $\boldsymbol{\tau}$ and \boldsymbol{n};
$a_{\tau}=\dot{v}_{\tau}=\ddot{\sigma}-$ the tangential component of acceleration on the τ, is the result of the time rate of change in the magnitude of velocity; This component acts in the positive $\boldsymbol{\sigma}$ direction.
$a_{n}=\frac{v^{2}}{\rho}$ - the normal component of acceleration is the result of the time rate of change in the direction of the velocity. This component is always directed towards the center of curvature of the trajectory, i.e., along the positive \boldsymbol{n} axis; where $\boldsymbol{\rho}-$ radius of curvature of the trajectory at a given point.

The acceleration of the particle is the time rate of change in velocity
$a=\sqrt{a_{\tau}^{2}+a_{n}^{2}}-$ magnitude of acceleration.

The conformity between the natural and coordinate methods:

$$
\begin{gathered}
a_{\tau}=\frac{V_{x} a_{x}+V_{y} a_{y}+V_{z} a_{z}}{V} \\
a_{n}=\sqrt{\frac{\left(V_{x} a_{y}-V_{y} a_{x}\right)^{2}+\left(V_{z} a_{x}-V_{x} a_{z}\right)^{2}+\left(V_{y} a_{z}-V_{z} a_{y}\right)^{2}}{V_{x}^{2}+V_{y}^{2}+V_{z}^{2}}} \\
\rho=\frac{\bar{V}^{2}}{a_{n}}=\frac{V_{x}^{2}+V_{y}^{2}+V_{z}^{2}}{a_{n}}
\end{gathered}
$$

1.4 Special cases

1) Rectilinear (straight-line) motion: $\bar{a}_{n}=0, \bar{a}=\bar{a}_{\tau}$, the radius of curvature is $\rho=\infty$

2) Curvilinear motion: $\quad \bar{a}_{n} \neq 0, \quad \bar{a}=\bar{a}_{\tau}+\bar{a}_{n}$.

Accelerated motion, directions \bar{v} and \bar{a}_{τ} coincide, signs of projections \bar{v} and \bar{a}_{τ} are same.

Decelerated motion (particle is slowing down), directions \bar{v} and \bar{a}_{τ} are opposite, signs of projections \bar{v} and \bar{a}_{τ} are different.
3) Uniform motion: $a_{\tau}=$ const $\neq 0$ (uniformly accelerated motion, if v_{τ} and a_{τ} have the same signs and uniformly decelerated - if have the difference one).

$$
\begin{gathered}
v_{\tau}=a_{\tau} \cdot t+v_{o \tau}, \\
\sigma=a_{\tau} \frac{t^{2}}{2}+v_{o \tau} \cdot t+\sigma_{0}
\end{gathered}
$$

where $\sigma_{0}, v_{o \tau}$ - initial coordinate and particle velocity;
4) Uniform motion: $\bar{a}_{\tau}=0$, in this case $\bar{a}=\bar{a}_{n}$,

$$
\begin{aligned}
& v_{\tau}=v_{o \tau}=\text { const } \\
& \sigma=v_{o \tau} \cdot t+\sigma_{0}
\end{aligned}
$$

Uniform rectilinear motion

Uniform curvilinear motion

2 Kinematics of the rigid body

2.1. Translation motion of the rigid body

Translation is the type of motion, in which every line segment on the body remains parallel to its original direction during the motion.
1)

- the body slides along a straight surface, the trajectory of the points is a straight line ;

2)

- coupling $\operatorname{rod} A B$ when the rods of $O A$ and $N B(O A=N B)$ rotate, the trajectory of the points - the circle.

Low of translation:

$$
i=1,2,3
$$

Theorem: If body moves translationally all the points have at time the same

$$
\begin{aligned}
& \bar{v}_{A}=\bar{v}_{B}=\bar{v}_{C}=\ldots \\
& \bar{a}_{A}=\bar{a}_{B}=\bar{a}_{C}=\ldots
\end{aligned}
$$

velocity and acceleration relative to some reference.
The translational motion of a rigid body can be determined by studying the motion of only one of its points (often it is the center of masses).

2.2 Rotation about a Fixed Axis

A rotation is such motion of a rigid body when one line of the body or of an extension of the body remains fixed. The fixed line is called the axis of rotation. A rotating body has one degree of freedom.

In the figure:

I - fixed plate,
II - a plate, which rigidly connected the body and rotates with it.

The angular position measured from a fixed reference plate I to $I I-\varphi_{z}$ is angle rotation of the body.
$\varphi_{z}=\varphi(t)$ - the law of rotation (equation of the body rotation about fixed axis z). Since motion is about a fixed axis, the direction of $\boldsymbol{d} \varphi$ is always along this axis. Angle φ measured in degrees or radians: $[\varphi]=\operatorname{rad}$.
$\bar{\omega}=\dot{\bar{\varphi}}-$ the vector of angular velocity ω - omega (the time rate of change in the angular position). It's directed along the axis of rotation \boldsymbol{z} in the direction from which the rotation of the body is visible counter clockwise,

$$
\bar{\omega}=\bar{\omega}_{z}=\omega_{z} \cdot \bar{k},
$$

where \bar{k} - ort of axis $z ; \omega_{z}=\dot{\varphi}_{z}$ - projection angular velocity on the axis z; $\omega=\left|\omega_{z}\right|$ - magnitude of angular velocity.

Angular velocity measured in radian per second: $[\omega]=\frac{\mathrm{rad}}{s}=s^{-1}$
$\bar{\varepsilon}=\dot{\bar{\omega}}=\ddot{\bar{\varphi}}$ - the angular acceleration ε (epsilon) measures the time rate of change of the angular velocity. The magnitude of this vector is first derivative from angle of rotation.

Angular acceleration measured in radian per square second: $[\varepsilon]=\frac{\mathrm{rad}}{\mathrm{s}^{2}}=\mathrm{s}^{-2}$.

Accelerated rotation directions $\bar{\omega}$ and $\bar{\varepsilon}$ are the same

Decelerated rotation directions $\bar{\omega}$ and $\bar{\varepsilon}$ are opposite

1) Uniform rotation: $\varepsilon_{z}=$ const $\neq 0$ (uniformly accelerated motion, if ω_{z} and ε_{z} have the same signs and uniformly decelerated -have the different ones).

$$
\begin{gathered}
\omega_{z}=\varepsilon_{z} \cdot t+\omega_{0 z} \\
\varphi_{z}=\varepsilon_{z} \frac{t^{2}}{2}+\omega_{0 z} \cdot t+\varphi_{0 z}
\end{gathered}
$$

where $\varphi_{0 z}, \omega_{0 z}$ - initial angle of rotation and angular velocity.
2) Equable rotation: $\varepsilon_{z}=0$

$$
\begin{aligned}
& \omega_{z}=\omega_{0 z}=\mathrm{const} \\
& \varphi_{z}=\omega_{0 z} \cdot t+\varphi_{0 z}
\end{aligned}
$$

The angle of rotation can be expressed through the number of rotation N of the body for the full period:

$$
\varphi=2 \pi N .
$$

Angular velocity in the technique is often given to the number of rotations per minute: $\omega=\frac{2 \pi n}{60}=\frac{\pi n}{30}$.

Formulas to determine the kinematic values of any point in the body: $\sigma=\varphi \cdot h$ is curvilinear coordinate of point the circle;
h-distance from the point A to the axis of rotation;
$v_{A}=\omega \cdot h$ - magnitude of linear velocity point A, vector $\bar{v}_{A} \perp h$ and directed from any point on the axis of rotation to the point on curvilinear with the angular velocity ω;
$a_{A}^{t g}=\varepsilon \cdot h-$ the tangential component of acceleration point A ; vector $\bar{a}_{A}^{\operatorname{tg}} \perp h$ and has the same direction of curvilinear of the angular acceleration ε;
$a_{A}^{n}=\omega^{2} \cdot h$ - the normal component of acceleration point A, vector \bar{a}_{A}^{n} has the direction of A towards \boldsymbol{O}, the center of the circular trajectory

$$
\bar{a}_{A}=\bar{a}_{A}^{t g}+\bar{a}_{A}^{n} ;
$$

$a_{A}=\sqrt{\left(a_{A}^{t g}\right)^{2}+\left(a_{A}^{n}\right)^{2}}$ - magnitude of acceleration point A.

2.3 Transmission of rotational motion

For gear transmission

$$
\begin{gathered}
v_{A_{1}}=v_{A_{2}}=v_{A} \\
\omega_{1} r_{1}=\omega_{2} r_{2} \\
\frac{\omega_{1}}{\omega_{2}}=\frac{r_{2}}{r_{1}}
\end{gathered}
$$

For belt transmission

$$
\begin{gathered}
a_{\tau_{1}}=a_{\tau_{2}}=a_{\tau A} . \\
\varepsilon_{1} r_{1}=\varepsilon_{2} r_{2} . \\
\frac{\varepsilon_{1}}{\varepsilon_{2}}=\frac{r_{2}}{r_{1}} .
\end{gathered}
$$

2.4 General plane motion of a rigid body

A rigid body executes plane motion when all parts of the body move parallel to planes. It undergoes a combination of translation and rotation. The translation occurs within a reference plane, and the rotation occurs about an axis perpendicular to the reference plane.

Position of the figure at a given time is determined by the coordinates of its arbitrary point A, considered as the pole, and the angle of rotation φ of the figure around the pole.

Equation of plate figure motion:
$x_{A}=f_{1}(t) ; \quad y_{A}=f_{2}(t) ; \quad \varphi=\varphi(t)$, where A - point, chosen as a pole or the base point.

The first two equations characterize the translational motion of the figure, in which all the points of the figure move in the same way as the pole, and the third - the rotational motion around the pole.
Angular velocity and angular acceleration of the rotational movement of the figure are independent of the pole choice.

Theorem on the velocity of points of a plane figure: The linear velocity of any point M of the figure at its plane motion is equal to the geometric sum of the velocity of the pole A and the velocity of the point M in its rotational motion around the pole.

$$
\bar{v}_{M}=\bar{v}_{A}+\bar{v}_{M A} .
$$

where $v_{M A}=\omega \cdot M A$, where ω - angular velocity of plate figure; and velocity $\bar{V}_{M A} \perp$ $M A$.

The Theorem of velocity vectors on the projections: The projections of the two points' velocities onto the line connecting the points are equal:

$$
\operatorname{Pr}_{o j_{A B}}\left(\overline{V_{A}}\right)=\operatorname{Proj} j_{A B}\left(\overline{V_{B}}\right)
$$

or $V_{A} \cos \alpha=V_{B} \cos \beta$
where α i β - angles between \bar{V}_{A} and \bar{V}_{B} and direction segment $A B$.

The plate motion of the body at moment can be considered as a rotational motion around the instantaneous center of rotation, or instantaneous center of zero velocity (ICZV).

The instantaneous center of zero velocity (ICZV) is the point of a plate figure, which velocity at the time is zero.

Determination of the position of the $I C Z V$ with use of the angular velocity of the figure and the velocity of any point of the figure:
1.

In general, the $\boldsymbol{I C Z V}$ lies at the intersection of the perpendiculars put from two points of the plane figure to their velocities.
The angular velocity ω of a plate figure at each instant time is equal to the ratio of the velocity of any point of the figure to its distance from the $\boldsymbol{I C Z V}$:

$$
\omega=\frac{V_{A}}{A P}=\frac{V_{B}}{B P}=\frac{V_{C}}{C P} .
$$

Therefore, the velocity of any point of a plane figure at each time is equal to the product of the angular velocity ω at a distance from the given point to the $\boldsymbol{I C Z V}$:

$$
\begin{array}{ll}
V_{C}=\omega \cdot C P & \left(\bar{V}_{B} \perp B P\right) ; \\
V_{B}=\omega \cdot B P & \left(\bar{V}_{C} \perp C P\right)
\end{array}
$$

2. if $\bar{V}_{A} \| \bar{V}_{B}, \bar{V}_{A} \perp A B$
a)

$$
\omega=\frac{V_{A}}{A P}=\frac{V_{B}}{B P}
$$

b)

$\omega=\frac{V_{A}}{A B+B P}=\frac{V_{B}}{B P}$
3. if $\bar{V}_{A} \| \bar{V}_{B}, \quad \alpha \neq \pi / 2$
$\omega=\frac{V_{A}}{\infty}=0$,
$\bar{V}_{A}=\bar{V}_{B}=\bar{V}_{C}$.

This is a case of instantaneous translation motion.

1. The wheel rolls without sliding on a stationary surface. In this case, the position of $I C Z V$ is at the point of contact of the figure with the surface

$$
\omega=\frac{V_{0}}{O P}, V_{A}=\omega \cdot A P .
$$

Theorem about the points' acceleration of a plane figure:
The acceleration of points of the figure, executing plane motion, defined as the geometric sum of the acceleration pole \boldsymbol{A} in a fixed coordinate system and the acceleration of point \boldsymbol{M} in its rotation around the pole A^{-}:

$$
\bar{a}_{M}=\bar{a}_{A}+\bar{a}_{M A},
$$

or because

$$
\bar{a}_{M A}=\bar{a}_{M A}^{n}+\bar{a}_{M A}^{t g},
$$

$$
\bar{a}_{M}=\bar{a}_{A}+\bar{a}_{M A}^{n}+\bar{a}_{M A}^{t g}, \text { where } \quad a_{M A}^{n}=\omega^{2} \cdot M A, a_{M A}^{t g}=\varepsilon \cdot M A
$$

while $\bar{a}_{M A}^{t g} \perp M A$ and directed by the arrow $\varepsilon, \bar{a}_{M A}^{n}$ directed along the line $M A$ from point M to point A.

2.5 Kinematical analysis of plate mechanism

When solving problems it is necessary to consistently consider the movement of individual parts of the mechanism and calculate each of them (to determine the speed and acceleration of the point, which belongs simultaneously to the considered and incremental crank). Calculation starts with a crank, the movement of which is given. If the crank performs a rotational motion, (it has a fixed point, for example, in the form of a fixed hinge) then any of its points moves in a circle and determine the velocity and acceleration of this point.

Problem 1. The plate mechanism consists of a crank $O A$, a connecting $\operatorname{rod} A B$ with a slider B. Here $O A=20 \mathrm{~cm}, A B=40 \mathrm{~cm}$. The crank $O A$ has at this time the angular velocity $\omega_{O A}=2 \mathrm{rad} / \mathrm{s}$ and the angular acceleration $\varepsilon_{O A}=5 \mathrm{rad} / \mathrm{s}^{2}$. For a given position mechanism it is necessary to determine the velocity and acceleration of the point B , and the angular velocity and acceleration of the connecting $\operatorname{rod} A B$.

Solution:

1. Determine velocity of point B.

At first, consider the crank $O A$, which motion is given.

It performs rotational motion about a stationary point O, so the velocity of point A is determined by the formula
$V_{A}=\omega_{O A} \cdot O A=2 \cdot 20=40(\mathrm{~cm} / \mathrm{s})$.
Vector $\bar{V}_{A} \perp O A$ and has direction of the rod rotation (by "arrow" $\omega_{O A}$).
2) Consider the connecting $\operatorname{rod} A B$. It performs a general plane motion, so at first it is necessary to draw its $I C Z V$.
 The velocity of point A is determined when calculating the $\operatorname{rod} O A$. Point B belongs to a slider so the line of its velocity \bar{V}_{B} is parallel to the direction of slider motion. We draw the $I C Z V$ (point) as the point of intersection of the perpendiculars to the velocity \vec{V}_{A} and velocity of the point B , which is horizontal (directed in the tangent to the trajectory).

Angular velocity of $\operatorname{rod} A B$ equals:

$$
\omega_{A B}=\frac{V_{A}}{A P_{A B}}=\frac{V_{A}}{A B / \cos 45^{\circ}}=\frac{V_{A} \cdot \cos 45^{\circ}}{A B}=\frac{40 \cdot 0,7}{40}=0,7\left(\frac{\mathrm{rad}}{\mathrm{~s}}\right)
$$

and is directed according to how the vector "rotates" around the $\operatorname{ICZV}\left(P_{A B}\right)$.
Velocity of point B

$$
V_{B}=\omega_{A B} \cdot B P_{A B}=0,7 \cdot 40=28(\mathrm{~cm} / \mathrm{s})
$$

and directed in accordance to the "arrow" $\omega_{A B}$.
2. Determine further acceleration of the point B.

1) Consider the crank $O A$. It performs rotational motion; therefore the modules of components of acceleration of point A are determined by formulas:

$$
\begin{aligned}
& a_{A}^{n}=\omega_{O A}^{2} \cdot O A=4 \cdot 20=80\left(\mathrm{~cm} / \mathrm{s}^{2}\right) \\
& a_{A}^{t g}=\varepsilon_{O A} \cdot O A=5 \cdot 20=100\left(\mathrm{~cm} / \mathrm{s}^{2}\right)
\end{aligned}
$$

We show the directions of the components: the vector \bar{a}_{A}^{n} is directed along the rod from point A to the center of rotation O, the vector $\bar{a}_{A}^{t g} \perp O A$ directed in accordance to the "arrow".
2) Consider the connecting rod $A B$. It performs a general plane motion, so the acceleration of point B is determined by the formula:

$$
\bar{a}_{B}=\bar{a}_{A}+\bar{a}_{B A}=\bar{a}_{A}^{n}+\bar{a}_{A}^{\prime g}+\bar{a}_{B A}^{n}+\bar{a}_{B A}^{\prime g}
$$

The component magnitude $\bar{a}_{B A}^{n}$ is calculated using the formula:

$$
a_{B A}^{n}=\omega_{A B}^{2} \cdot B A=0,7^{2} \cdot 40=20\left(\mathrm{~cm} / \mathrm{s}^{2}\right) .
$$

 The vector $\bar{a}_{B A}^{n}$ of directions along the segment $B A$ from point B to pole A. The magnitude of the component $\bar{a}_{B A}^{n} \quad$ cannot be calculated yet,
so $\varepsilon_{A B}$ unknown. In this case, we will depict the vector $\bar{a}_{B A}^{\prime g} \perp B A$ and point in any direction (for example, upwards). Since the trajectory of point B is a straight line, then the vector \bar{a}_{B} must have direction along this line. Let's depict it, for example, to the left of point B.

Choose the axis of the coordinates x, y (for example, x-axis along the rod to the left, axis y in - upwards) and design a vector equation for determining the acceleration to these axes:

$$
\begin{aligned}
x: & a_{B}=a_{A}^{n} \cdot \cos 45^{0}+a_{A}^{t g} \cdot \cos 45^{0}+a_{B A}^{n}, \\
y: & 0=-a_{A}^{n} \cdot \sin 45^{0}+a_{A}^{t g} \cdot \sin 45^{0}+a_{B A}^{t g} .
\end{aligned}
$$

In the resulting system of algebraic equations unknown magnitude are accelerations a_{B} and $a_{B A}^{\text {tg }}$. From the first equation we find acceleration of point B:

$$
a_{B}=80 \cdot 0,7+100 \cdot 0,7+20=146\left(\mathrm{~cm} / \mathrm{s}^{2}\right) .
$$

Since $a_{B}>0$, then, the vector \bar{a}_{B} corresponds to the actual direction of acceleration of point B. From the second equation we find $a_{B A}^{t g}$:

$$
a_{A B}^{t g}=a_{A}^{n} \cdot \sin 45^{0}-a_{A}^{t g} \cdot \sin 45^{0}=56-70=-14\left(\mathrm{~cm} / \mathrm{s}^{2}\right)
$$

The sign "-" -- means that in fact the vector $\bar{a}_{B A}^{t_{8}} \perp B A$ is directed downwards. Angular acceleration

$$
\varepsilon_{A B}=\frac{\left|a_{B A}^{t g}\right|}{B A}=\frac{14}{40} \approx 0,35\left(\frac{\mathrm{rad}}{\mathrm{~s}^{2}}\right)
$$

and directed clockwise (as the real vector $\bar{a}_{B A}^{\text {tg }}$ "rotates" around pole A).

Answer:

$$
\begin{array}{ll}
\omega_{A B}=0,7 \frac{\mathrm{rad}}{\mathrm{~s}} ; & V_{B}=28 \mathrm{~cm} / \mathrm{s} \\
\varepsilon_{A B}=0,35 \frac{\mathrm{rad}}{\mathrm{~s}^{2}} ; & a_{B}=146 \mathrm{~cm} / \mathrm{s}^{2}
\end{array}
$$

Problem 2. The wheel A consists of two rigidly fastened discs. Wheel of radius r rolls without slipping on a stationary surface.

Here $A B=15 \mathrm{~cm}, r=10 \mathrm{~cm}$. The center of wheel A has at this time velocity $V_{A}=$ $28 \mathrm{~cm} / \mathrm{s}$ and acceleration $a_{A}=146 \mathrm{~cm} / \mathrm{s}^{2}$. For a given position of the wheel to determine its angular velocity and acceleration, as well as the velocity and acceleration of point B.

Solution:

1. Determine velocity of point B.

A wheel rolling without slipping on a stationary surface performs a general plane motion. ICZV (point $P_{w h}$) is at the point of contact with a stationary surface. Angular wheel velocity

$$
\omega_{w h}=\frac{V_{A}}{A P_{w h}}=\frac{28}{10}=2,8 \quad\left(\frac{\mathrm{rad}}{\mathrm{~s}}\right.
$$

and directed clockwise (according to the "rotation" of the vector around the IZCV (point $P_{w h}$).

The segment $B P_{w h}$ can be determined from the triangle $A B P_{w h}$ by the law of cosines:

$$
\begin{aligned}
& B P_{w h}=\sqrt{A B^{2}+A P_{w h}^{2}-2 A B \cdot A P_{w h} \cdot \cos 150^{0}}= \\
& =\sqrt{15^{2}+10^{2}-2 \cdot 15 \cdot 10 \cdot(-0,85)}=\sqrt{580} \approx 24 \quad(\mathrm{~cm})
\end{aligned}
$$

So $V_{B}=\omega_{w h} \cdot B P_{w h}=2,8 \cdot 24 \approx 67,2(\mathrm{~cm} / \mathrm{s})$. Vector $\bar{V}_{B} \perp B P_{w h}$ and has direction according to the clockwise $\omega_{w h}$.
2. Determine acceleration point B.

The acceleration of the point B in the wheel, which performs the general plane motion, is determined by the formula:

$$
\bar{a}_{B}=\bar{a}_{A}+\bar{a}_{B A}=\bar{a}_{A}+\bar{a}_{B A}^{n}+\bar{a}_{B A}^{t g} .
$$

Since the trajectory of point B is unknown (it has no restrictions on other bodies), its acceleration will be find in the form of two unknown components, directed along the coordinate axes:

$$
\bar{a}_{B x}+\bar{a}_{B y}=\bar{a}_{A}+\bar{a}_{B A}^{n}+\bar{a}_{B A}^{t g}
$$

Angular acceleration of the rolling wheel is determined by the formula:

$$
\varepsilon_{\text {кol }}=\frac{d \omega_{w h}}{d t}=\frac{d\left(V_{A} / A P_{w h}\right)}{d t}=\frac{1}{A P_{w h}} \frac{d V_{A}}{d t}=\frac{a_{A}^{t g}}{A P_{w h}}=\frac{a_{A}}{A P_{w h}}=\frac{146}{10}=14,6\left(\frac{\mathrm{rad}}{\mathrm{~s}^{2}}\right),
$$

where $\bar{a}_{A}^{t g}=\bar{a}_{A}$, since the trajectory of point B is a straight line.
Direction of $\varepsilon_{w h}$ is counter clockwise (as the vector $\bar{a}_{A}^{\text {g }}$ "rotates" around the $I C Z V$ counter clockwise).

Component magnitudes $\bar{a}_{B A}^{n}$ and $\bar{a}_{B A}^{t g}$ are determined by the formula:

$$
\begin{gathered}
a_{B A}^{n}=\omega_{w h}^{2} \cdot B A=2,8^{2} \cdot 15=117,6\left(\mathrm{~cm} / \mathrm{s}^{2}\right), \\
a_{B A}^{t g}=\varepsilon_{w h} \cdot B A=14,6 \cdot 15=219\left(\mathrm{~cm} / \mathrm{s}^{2}\right) .
\end{gathered}
$$

The vector $\bar{a}_{B A}^{n}$ is directed along the segment $B A$ from point B to pole A, and the vector $\bar{a}_{B A}^{\prime g} \perp B A$ is directed in accordance to the "arrow" $\varepsilon_{w h}$. We construct the $x y$ coordinate axis and take the projection of a vector equation for determining the acceleration \bar{a}_{B} on these axes:

$$
\begin{array}{ll}
x: & a_{B x}=a_{A} \cdot \cos 30^{\circ}+a_{B A}^{t g}=146 \cdot 0,85+219=343,1\left(\mathrm{~cm} / \mathrm{s}^{2}\right) ; \\
y: & a_{B y}=a_{B} \cdot \sin 30^{\circ}-a_{B A}^{t}=146 \cdot 0,5-117,6=-44,6\left(\mathrm{~cm} / \mathrm{s}^{2}\right) .
\end{array}
$$

Acceleration magnitude of point B is determined by the formula

$$
a_{B}=\sqrt{a_{B x}^{2}+a_{B y}^{2}}=\sqrt{(343,1)^{2}+(-44,6)^{2}} \approx 346\left(\mathrm{~cm} / \mathrm{s}^{2}\right) .
$$

Since, $a_{B x}>0, a_{B y} \triangleleft 0$ then, the acceleration component $\bar{a}_{B x}$ of point B is directed towards the positive direction of the axis x, and the component $\bar{a}_{B y}$ - towards the negative direction of the axis y . The vector \bar{a}_{B} is depicted as a diagonal of a rectangle constructed on the components $\bar{a}_{B x}, \bar{a}_{B y}$ as on the sides.

Answer:

$$
\begin{array}{ll}
\omega_{w h}=2,8 \frac{\mathrm{rad}}{\mathrm{~s}} ; & V_{B}=67,2 \mathrm{~cm} / \mathrm{s} \\
\varepsilon_{w h}=14,6 \frac{\mathrm{rad}}{\mathrm{~s}^{2}} ; & a_{B}=346 \mathrm{~cm} / \mathrm{s}^{2}
\end{array}
$$

Problem 3. The plate mechanism consists of the crank $O A$ and two gear wheels I and II, connected with the crank $O A$.

Solution:

1. Determine velocity of point B.

At first, consider the crank OA, which motion is given.

It performs rotational motion around a fixed point O, so the velocity of point A is determined by the formula:
$V_{A}=\omega_{O A} \cdot O A=3 \cdot 30=90(\mathrm{~cm} / \mathrm{s})$.
Vector $\bar{V}_{A} \perp O A$ and directed counter clockwise (by "arrow" $\omega_{O A}$).
2. Consider wheel I, the motion of which is given. Wheel I performs
 rotation motion around a fixed point O. Denote touch point of the wheel I and II as letter D, then its velocity equals

$$
V_{D}=\omega_{\mathrm{I}} \cdot O D=6 \cdot 10=60(\mathrm{~cm} / \mathrm{s})
$$

Vector $\bar{V}_{D} \perp O D$ and directed clockwise the wheel I.
3. Consider wheel II. It performs a general-plane motion. At first, it is necessary to draw the pole of $I C Z V$. To draw the $I C Z V$ we connect
 ends of velocity vectors \bar{V}_{A} and \bar{V}_{D}. Position of $I C Z V$ is at the intersection of this segment with a line passing through points A and D. The angular velocity of the wheel V_{A} is related to velocity V_{D} by ratio:

$$
\omega_{\mathrm{II}}=\frac{V_{A}}{A P_{\mathrm{II}}}=\frac{V_{D}}{D P_{\mathrm{II}}}
$$

Considering, $D P_{\mathrm{II}}=A D-A P_{\mathrm{II}}=\left(O A-r_{\mathrm{I}}\right)-A P_{\mathrm{II}}=20-A P_{\mathrm{II}}$,
the right side of the relation ω_{II} can be considered as an equation with respect to the segment $A P_{\mathrm{II}}$:

$$
\frac{V_{A}}{A P_{\mathrm{II}}}=\frac{V_{D}}{20-A P_{\mathrm{II}}}
$$

Solve this equation and determine $A P_{\mathrm{II}}$:

$$
\begin{gathered}
V_{A} \cdot\left(20-A P_{\mathrm{II}}\right)=V_{D} \cdot A P_{\mathrm{II}} \\
V_{A} \cdot 20=A P_{\mathrm{II}} \cdot\left(V_{A}+V_{D}\right) \\
A P_{\mathrm{II}}=\frac{V_{A} \cdot 20}{V_{A}+V_{D}}=\frac{90 \cdot 20}{90+60}=\frac{1800}{150}=12(\mathrm{~cm})
\end{gathered}
$$

So

$$
\omega_{\mathrm{II}}=\frac{V_{A}}{A P_{\mathrm{II}}}=\frac{90}{12}=7,5(\mathrm{rad} / \mathrm{s})
$$

Angular velocity ω_{II} is directed according to how the vector is \bar{V}_{A} "rotates" about $\operatorname{ICZV}\left(P_{\mathrm{II}}\right)$. Velocity point B is

$$
\begin{aligned}
V_{B}= & \omega_{\mathrm{II}} \cdot B P_{\mathrm{II}}=\omega_{\mathrm{II}} \cdot \sqrt{A B^{2}+A P_{\mathrm{II}}^{2}}=7,5 \cdot \sqrt{20^{2}+12^{2}}=7,5 \cdot \sqrt{544}= \\
& =7,5 \cdot 4 \cdot \sqrt{34} \approx 30 \cdot 5,83 \approx 175(\mathrm{~cm} / \mathrm{s})
\end{aligned}
$$

And is directed according to the "arrow" ω_{II}.
4. Determine acceleration of point B.

1) Consider the crank $O A$. It performs rotation motion,
A therefore the magnitudes of acceleration components of point A are determined by formulas:
\bar{a}_{A}^{n}

$$
\begin{gathered}
a_{A}^{n}=\omega_{O A}^{2} \cdot O A=3^{2} \cdot 30=270\left(\mathrm{~cm} / \mathrm{s}^{2}\right) \\
a_{A}^{t g}=\varepsilon_{O A} \cdot O A=0
\end{gathered}
$$

Vector \bar{a}_{A}^{n} directed along the rod from point A to the center of rotation O.
2) Acceleration of point B to wheel II, which performs a general-plane motion, is determined by the formula:

$$
\bar{a}_{B}=\bar{a}_{A}+\bar{a}_{B A}=\bar{a}_{A}^{n}+\bar{a}_{A}^{t g}+\bar{a}_{B A}^{n}+\bar{a}_{B A}^{t g} .
$$

Since the trajectory of point B is unknown (it has no connections to other bodies), its acceleration will be determine in the form of two unknown components $\bar{a}_{B x}, \bar{a}_{B y}$, directed along the axes of the coordinates x, y :

$$
\bar{a}_{B x}+\bar{a}_{B y}=\bar{a}_{A}^{n}+\bar{a}_{A}^{t g}+\bar{a}_{B A}^{n}+\bar{a}_{B A}^{t g} .
$$

The angular acceleration of the wheel II will be determined using the ratio

$$
\frac{V_{A}}{A P_{\mathrm{II}}}=\frac{V_{D}}{D P_{\mathrm{II}}}=\frac{V_{A}+V_{D}}{A D} .
$$

Then

$$
\begin{aligned}
\varepsilon_{\mathrm{II}} & =\frac{d \omega_{\mathrm{II}}}{d t}=\frac{d\left(\frac{V_{A}+V_{D}}{A D}\right)}{d t}=\frac{1}{A D} \frac{d\left(V_{A}+V_{D}\right)}{d t}=\frac{1}{A D}\left(\frac{d V_{A}}{d t}+\frac{d V_{D}}{d t}\right)= \\
& =\frac{1}{A D}\left(a_{A}^{t g}+a_{D}^{t g}\right)=0 .
\end{aligned}
$$

In this formula $a_{D}^{t g}=\varepsilon_{\mathrm{I}} \cdot O D=\frac{d \omega_{\mathrm{I}}}{d t} \cdot O D=0$, since under the problem $\omega_{\mathrm{I}}=$ const.
Components of magnitudes $\bar{a}_{B A}^{n}$ and $\bar{a}_{B A}^{t g}$ are determined by the formula:

$$
a_{B A}^{n}=\omega_{\mathrm{II}}^{2} \cdot B A=7,5^{2} \cdot 10=56,25 \cdot 10=562,5\left(\mathrm{~cm} / \mathrm{s}^{2}\right)
$$

$$
a_{B A}^{t g}=\varepsilon_{\mathrm{II}} \cdot B A=0
$$

The vector $\bar{a}_{B A}^{n}$ has direction along the segment V_{A} from point B to pole A.

Draw the coordinate axis $x y$ and find the projection of a vector equation for determining the acceleration \bar{a}_{B} on these axes:

$$
\begin{array}{ll}
x: & a_{B x}=a_{B A}^{n}=562,5\left(\mathrm{~cm} / \mathrm{s}^{2}\right) \\
y: & a_{B y}=a_{A}^{n}=270\left(\mathrm{~cm} / \mathrm{s}^{2}\right)
\end{array}
$$

Magnitude of point B acceleration determined by the formula

$$
a_{B}=\sqrt{a_{B x}^{2}+a_{B y}^{2}}=\sqrt{(562,5)^{2}+(270)^{2}} \approx 607\left(\mathrm{~cm} / \mathrm{s}^{2}\right)
$$

Since $\quad a_{B x}>0, a_{B y}>0, \quad$ then components of point B acceleration are directed towards the positive direction of the x and y axes, and the vector \bar{a}_{B} is represented as a diagonal of the rectangle, drawn on
components $a_{B x}, a_{B y}$ as on a sides.
Answer: $\quad \omega_{\text {II }}=7,5 \mathrm{rad} / \mathrm{s} ; \quad V_{B}=67,2 \mathrm{~cm} / \mathrm{ss}$,

$$
\varepsilon_{\mathrm{II}}=0 ; \quad \quad a_{B}=607 \mathrm{~cm} / \mathrm{s}^{2}
$$

3 Compound motion of a point

The compound motion of a point is the motion in which point M takes part in two or more motions simultaneously.

Absolute motion is the motion of point M according to a fixed coordinate system x, y, z.

Relative motion is the motion of point M relative to the moving coordinate system $X_{l} Y_{1} Z_{l}$.

Transport (bulk) motion is the motion of the moving reference with respect to the fixed reference.

Theorem on adding velocities: The absolute velocity of a point equals the geometric sum of velocities in the transport and relative motions:

$$
\bar{v}_{a}=\bar{v}_{e}+\bar{v}_{r}
$$

$\bar{\nu}_{a}$ - absolute velocity; $\overline{v_{e}}$ - transport velocity; $\overline{v_{r}}$ - relative velocity.
Coriolis's theorem on addition accelerations: the absolute acceleration of a point equals the geometric sum of acceleration in the transport motion \bar{a}_{e}, the acceleration in relative motion \bar{a}_{r} and the acceleration of the Coriolis \bar{a}_{c} :

$$
\bar{a}=\bar{a}_{e}+\bar{a}_{r}+\bar{a}_{c} ;
$$

Coriolis's acceleration vector is expressed by the formula

$$
\mathrm{T}_{\bar{a}_{c}}=2\left(\bar{\omega}_{e} \times \bar{v}_{r}\right) .
$$

he
magnitude of the Coriolis's acceleration vector is equal to

$$
a_{c}=2 \omega_{e} V_{r} \sin \left(\bar{\omega}_{e}, \bar{v}_{r}\right),
$$

where ω_{e} - the angular velocity of the transport rotational motion.
Coriolis acceleration is zero if:

1) the transport motion is translation ($\omega_{e}=0$);
2) the relative velocity \bar{v}_{r} at the moment is zero ($v_{r}=0$);
3) the relative velocity vector \bar{v}_{r} at the moment is parallel to the vector of the angular velocity of the transport rotational motion $\left(\sin \left(\bar{\omega}_{e}, \bar{v}_{r}\right)=0\right)$.

To determine the direction of Coriolis's acceleration can be used either the rule of the vector product, or the rule of Zhukovsky. According to Zhukovsky's rule, the direction of the vector is determined in such order:

1) it is necessary to take projection of a vector of relative velocity \bar{V}_{r} on a plane S perpendicular to the axis of transport rotation (perpendicular to the vector $\bar{\omega}_{e}$);
2) get the projection $\bar{V}_{r s}$ and turn in this plane by 90 degrees in the direction of transport rotation (in direction of curve-line arrow ω_{e});
3) 3) the direction of the Coriolis's acceleration \bar{a}_{c} coincides with the direction of the vector $\bar{V}_{r s}^{\prime}$. magnitude $a_{c}=2 \omega_{e} V_{r} \sin \alpha$.

Problem 4. The disk rotates around a vertical diameter with angular acceleration $\varepsilon=2 t\left(\mathrm{rad} / \mathrm{s}^{2}\right)$., the point M moves with a constant acceleration $a=2\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$ along the radius of the $O A$ inclined to the axis of rotation at an angle of 45°. At the time $\mathrm{t}=$ 0 , the angular velocity of the disk and the relative velocity of the point of the disk center are zero, i. e. $\omega_{0}=0, V_{r 0}=0$. Determine the absolute velocity and absolute acceleration of the point M at the moment $t=1 \mathrm{~s}$.

Solution: For a fixed reference system, we take the ground, and for moving - a rotating disk. Transport motion (motion of the disk relative to the ground) is rotational. Angular velocity of the disk

$$
\omega=\int \varepsilon d t=\int 2 t d t=t^{2}+C,
$$

where $C=0$, as $\omega_{0}=0$.
So $\omega=t^{2}$.
For absolute velocity of point M we get:

$$
\bar{V}_{a}=\bar{V}_{e}+\bar{V}_{r} .
$$

The relative velocity is directed along the radius of the OA and equals $V_{r}=2 t$. The transport velocity is directed perpendicularly to the drawing from us in the direction of disk rotation is equal to

$$
V_{e}=\omega \cdot M K=\omega \cdot s \cdot \sin 45^{\circ}
$$

where $s=\left(a \cdot t^{2}\right) / 2$. So $V_{e}=t^{4} / \sqrt{2}$.
Since between the velocity vectors \bar{V}_{e} and \bar{V}_{r} the angle of 90°, then

$$
\bar{V}_{a}=\sqrt{V_{e}^{2}+V_{r}^{2}}=\sqrt{4 t^{2}+t^{3} / 2}
$$

At the moment $t=1 \mathrm{~s}$

$$
V_{a}=\sqrt{4,5} \approx 2,12 \mathrm{~cm} / \mathrm{s} .
$$

Consider that the transport motion is rotational, we have

$$
\bar{a}_{a}=\bar{a}_{r}+\bar{a}_{e}+\bar{a}_{c} .
$$

Relative acceleration is directed along the radius of the $O A$ and equals $a_{r}=a=2(\mathrm{~cm} / \mathrm{s})$. The transport acceleration of the point M consists of two components: rotating and centripetal acceleration, i.e.

$$
\bar{a}_{e}=\bar{a}_{e}^{t g}+\bar{a}_{e}^{c p}
$$

Transportable centripetal acceleration is directed along the $M K$ (from the point M to the point K) and is numerically equal to

$$
a_{e}^{c p}=\omega^{2} \cdot M K=\omega^{2} \cdot s \cdot \sin 45^{0}
$$

or $\quad a_{e}^{c p}=\frac{t^{6} \sqrt{2}}{2} \frac{\mathrm{~cm}}{\mathrm{~s}^{2}}$.
Transport rotational acceleration is directed perpendicularly to the drawing from us in the direction of the "arrow" ε.

$$
a_{e}^{t g}=\varepsilon \cdot M K=2 t \cdot s \cdot \sin 45^{0}=t^{3} \sqrt{2} \frac{\mathrm{~cm}}{\mathrm{~s}^{2}} .
$$

at $t=1 \mathrm{~s}, \quad a_{e}^{c p}=\sqrt{2 / 2} \frac{\mathrm{~cm}}{s^{2}}, \quad a_{e}^{t g}=\sqrt{2} \frac{\mathrm{~cm}}{s^{2}}$.
To determine the Coriolis's acceleration, the conditionally vector $\bar{\omega}$ transferred parallel to itself in the point M. Acceleration \bar{a}_{c} will be directed perpendicularly to the plane $\left(\bar{\omega}, \overline{V_{r}}\right)$ in the direction from which the rotation $\bar{\omega}$ to \bar{V}_{r} a smaller angle has a direction against the clockwise movement, that is, in this case perpendicular to the plane of the
 drawing from the observer. Magnitude

$$
a_{c}=2 \omega \cdot V_{r} \cdot \sin 45^{\circ}=2 t^{3} \sqrt{2} \quad \frac{\mathrm{~cm}}{s^{2}}
$$

At $t=1 s \quad a_{c}=2 \sqrt{2} \frac{\mathrm{~cm}}{\mathrm{~s}^{2}}$.
To determine the numerical value of the absolute acceleration and hence the compilation of vectors $\bar{a}_{r}, \bar{a}_{e}^{c p}, \bar{a}_{e}^{t g}, \bar{a}_{c}$, we make three mutually perpendicular axes X_{l}, Y_{1}, Z_{l}. If we take projections of all components of absolute acceleration on these coordinate axes, we obtain the projections of absolute acceleration of the point M
$a_{a x_{1}}=-a_{e}^{t g}-a_{c}=-\sqrt{2}-2 \sqrt{2}=-3 \sqrt{2}$,
$a_{a y_{1}}=-a_{e}^{c p}+a_{r} \cdot \cos 45^{\circ}=-\frac{\sqrt{2}}{2}+\frac{2 \sqrt{2}}{2}=\frac{\sqrt{2}}{2}$,
$a_{a z_{1}}=a_{r} \cdot \cos 45^{\circ}=\frac{2 \sqrt{2}}{2}=\sqrt{2}$.
We construct a vector of absolute acceleration taking into account certain projections on the axis. By the magnitude of the absolute acceleration, the point M will

X_{1} be:

$$
a_{a}=\sqrt{a_{a x_{1}}^{2}+a_{a y_{1}}^{2}+a_{a z_{1}}^{2}}=\sqrt{18+\frac{1}{2}+2}=\sqrt{20,5}=4,5 \frac{\mathrm{~cm}}{\mathrm{~s}^{2}} .
$$

Answer: the absolute velocity of the point $M V_{a}=2,12 \mathrm{~cm} / \mathrm{s}$; the absolute acceleration of the point $M a_{a}=4,5 \mathrm{~cm} / \mathrm{s}^{2}$.

REFERENCES

1. Теоретична механіка : підручник / I. В. Кузьо, В. П. Шпачук, Н. М. Ванькович та ін. - Харків : Фоліо, 2017. - 780 с.
2. Шпачук В. П. Теоретична механіка. Кінематика: конспект лекцій (для студентів-бакалаврів денної і заочної форм навчання за спеціальностями 192 Будівництво та цивільна інженерія, 185 - Нафтогазова інженерія та технології, 141 - Електроенергетика, електротехніка та електромеханіка, 263 - Цивільна безпека, 275 - Транспортні технології (за видами)) / В. П. Шпачук, О. I. Рубаненко, А. О. Гарбуз; Харків. нац. ун-т міськ. госп-ва ім. О. М. Бекетова. Харків : ХНУМГ ім. О. М. Бекетова, 2018.- 63 с.
3. Методичні рекомендації для практичних занять, виконання контрольних і розрахунково-графічних завдань, самостійної роботи з навчальної дисципліни «Теоретична механіка». Розділ «Кінематика» (для студентів-бакалаврів денної і заочної форм навчання за спеціальностями 192 - Будівництво та цивільна інженерія», 185 - Нафтогазова інженерія та технології, 141 Електроенергетика, електротехніка та електромеханіка, 263 - Цивільна безпека, 275 - Транспортні технології (за видами)) / Харків. нац. ун-т міськ. госп-ва ім. О. М. Бекетова; уклад. : В. П. Шпачук, О. І. Рубаненко, А. О. Гарбуз. - Харків: ХНУМГ ім. О. М. Бекетова, 2018. - 41 с.
4. Теоретична механіка : навч.-метод. посібник і завдання для контрольних і самостійних робіт / за заг. ред. В. П. Шпачука. - Харків: ХНУМГ, 2015. - 146 c.
5. Павловський М. А. Теоретична механіка : Підручник / М. А. Павловський. - Київ : Техніка, 2002. - 512 с.

APPENDIX

Output dates for work

"Kinematical analysis of plate mechanism"
Determine for a given position of the mechanism velocity and acceleration of points B and C, as well as angular velocity and angular acceleration of the link, which belongs to the point C. Schemes of mechanisms are shown in the following pages, and the required size and kinematic parameters are presented in the table, where $\omega_{O A}, \varepsilon_{O A}$ - angular velocity and angular acceleration of the crank $O A$ for a given position of the mechanism; ω_{I} - the angular velocity of the wheel I; V_{A}, a_{A} - velocity and acceleration of point A. Rolling of wheels is carried out without slipping. The method of solving problems is considered in section 2.5.

Numberofvariant	Dimensions, cm				$\begin{gathered} \omega_{O A}, \\ \mathrm{rad} / \mathrm{s} \end{gathered}$	$\begin{gathered} \omega_{\mathrm{I}} \\ \mathrm{rad} / \mathrm{s} \end{gathered}$	$\begin{gathered} \varepsilon_{O A}, \\ \mathrm{rad} / \mathrm{s}^{2} \end{gathered}$	$\begin{gathered} v_{A}, \\ \mathrm{~cm} / \mathrm{s} \end{gathered}$	$\begin{gathered} a_{A} \\ \mathrm{~cm} / \mathrm{s}^{2} \end{gathered}$
	OA	r	$A B$	$A C$					
1	40	15	-	8	2	-	2	-	-
2	30	15	-	8	3	-	2	-	-
3	-	50	-	-	-	-	-	50	100
4	35	-	-	45	4	-	8	-	-
5	25	-	-	20	1	-	1	-	-
6	40	15	-	6	1	1	0	-	-
7	35	-	75	60	5	-	10	-	-
8	-	-	20	10	-	-	-	40	20
9	-	-	45	30	-	-	-	20	10
10	25	-	80	20	1	-	2	-	-
11	-	-	30	15	-	-	-	10	0
12	-	-	30	20	-	-	-	20	20
13	25	-	55	40	2	-	4	-	-
14	45	15	-	8	3	12	0	-	-
15	40	15	-	8	1	-	1	-	-
16	55	20	-	-	2	-	5	-	-
17	-	30	-	10	-	-	-	80	50
18	10	-	10	5	2	-	6	-	-
19	20	15	-	10	1	2,5	0	-	-
20	-	-	20	6	-	-	-	10	15
21	30	-	60	15	3	-	8	-	-
22	35	-	60	40	4	-	10	-	-
23	-	-	60	20	-	-	-	5	10
24	25	-	35	15	2	-	3	-	-
25	20	-	70	20	1	-	2	-	-
26	20	15	-	10	2	1,2	0	-	-
27	-	15	-	5	-	-	-	60	30
28	20	-	50	25	1	-	1	-	-
29	12	-	35	15	4	-	6	-	-
30	40	-	-	20	5	-	10	-	-

11	12
15	16
17	18
	20

21	22
23	24
25	26
27	28
29	30

Методичні рекомендації до практичних занять, самостійної та розрахунково-графічних робіт з навчальної дисципліни

«ТЕОРЕТИЧНА МЕХАНІКА»

(Частина 2 Кінематика)
(для студентів-бакалаврів 1 курсу денної форми навчання за спеціальністю 192 - Промислове та цивільне будівництво)
(Англ. мовою)

Укладачі: ШПАЧУК Володимир Петрович
РУБАНЕНКО Олександр Ігорович
ГАРБУЗ Алла Олегівна
СУПРУН Тетяна Олександрівна
ТУРЕНКО Рімма Леонардівна

Відповідальний за випуск H. В. Середа
За авторською редакиісю
Комп’ютерне верстання А. О. Гарбуз

План 2019, поз. 172 M
Підп. до друку 09.07.2019. Формат $60 \times 84 / 16$
Друк на ризографі. Ум. друк. арк. 1,1
Тираж 50 пр. Зам. №
Видавець і виготовлювач:
Харківський національний університет міського господарства імені О. М. Бекетова, вул. Маршала Бажанова, 17, Харків, 61002.
Електронна адреса: rectorat@kname.edu.ua
Свідоцтво суб'єкта видавничої справи:
ДК № 5328 від 11.04.2017.

