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KINEMATICS 

Kinematics is the branch of mechanics, which studies motion as such, without 
acting forces. Kinematics deals only with geometrical aspect of the motion.  

Motion is change in the location or position of an object in the time with respect 
to other body (reference body).  

To study motion of any object we have to introduce at reference system. 

Reference system is the complex of the coordinate system, which is rigidly connected 

with the reference body, and the clock, which the time is calculated by. 

 
Material point is the body dimension of which is substantially smaller than 

Earth radius. 

1 Particle motion 

The motion of a particle is completely described if the position of the particle 
is given as a function of the time. 

Trajectory (Path) is the line along which particle moves. If path is a straight 
line, the motion is called rectilinear; if path is a curved line the motion is 
curvilinear.  

Descriptions of particle motion. There are three main methods of the particle 
motion descriptions: 

1. vector, 2.  coordinate, 3.  natural. 

the object 

reference 
body 

clock 

z 
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1.1 Vector method  

The position of a particle in three-dimensional space is given by its vector-
position )(trr   - the law of motion. Vector-position r  connects the origin of 
reference, the point О, with a point M, where the particle is situated. Vector-position 
is determined by its magnitude and direction. The motion is completely described 
when vector-position is known as a function of the time. 

dt
rdV   is velocity of the particle  - vector value, which: 

- equals the first derivative from vector-position with respect at time; 
- is directed along tangent to the trajectory into particles moving; 
- characterizes the variation of the particle position in time. 

2

2

dt
rd

dt
Vdа   or 

rVа    is acceleration of the particle - vector value, which: 

 

-  equals the first derivative from 
velocity- with respect at time; 

- is directed toward the center of 
curvature;  

- characterizes the variation of the 
velocity magnitude in time. 

 
1.2 Coordinate method: Rectangular Components 

x х t ( );  у у t ( );  z z t ( )  – the law of motion (equation of particle motion in 
coordinate form), where х, у, z – coordinates of the particle. 

Particle location is defined by the vector-position 
krjrirr zyx  , 

kji zyx    -  particle velocity  

where zyx  ,,  - coordinates components of particle velocity; 

kji ,,  - orts of coordinates axes. 

     x y z
2 2 2  – magnitude of velocity; 

x
dx
dt

x  ;   у
dу
dt

у  ;  z
dz
dt

z    – projections of vector-velocity on 

coordinate axis, represent the first time derivatives of x = x(t), y = y(t), z = z(t), 
respectively . 

 
O 

 
M 
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kajaiaa zyx   – particle’s acceleration, 

where zух ааа ,,  – coordinates components of particle acceleration; 
а xx х  ;  а уу у  ;  а zz z    - projections of vector-acceleration on 

coordinate axis, represent, respectively, the first time derivatives of vx = vx(t), vy = 
vy(t), vz = vz(t), or the second time derivatives of the functions x = x(t), y = y(t), z = 
z(t). 

 
1.3 Natural method 

Natural method supposes that motion is completely described if position of 
particle on its trajectory is given as function of the time. 

In a natural method are given characteristics of motion: 
a) trajectory of the particle; 
b) start and direction of the reference point of movement; 
c)   ( )t  is the law of motion (the equation of motion of a particle in its 

natural form),  

 

where  – curvilinear coordinate, which is 
counted along the trajectory 

Natural coordinate system: the τ axis is tangent to the trajectory and is positive 
in the direction of increasing σ; the normal axis n is perpendicular to the τ axis 

 

with its positive sense directed 
towards the center of curvature;   

the bi-normal axis b - 
complements the coordinate system to 
spatial, that is, perpendicular to the 
plane Мn ( nb  ),  

where n,  – the orts of the 
tangent and the normal axis; 

    – the particle’s velocity of;   – component of the particles 
velocity which coincides with the tangent axis (the velocity vector); 

М О 
σ(t) 

+ 

 

 

M 
O 

+ 

- 
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    – projections of  velocity   on the tangent axis; the particle’s velocity v 
has a direction that is always tangent to the trajectory, and a magnitude is determined 
by taking the time derivative of the function σ. 

The tangential component of acceleration  

   – magnitude of velocity; 

naаааа nn    – particle acceleration, 

where nаа ,  – components of the acceleration of the particle to the axes τ and n; 
  a  – the tangential component of acceleration on the τ, is the result of 

the time rate of change in the magnitude of velocity; This component acts in the 
positive σ direction. 

2

па 


   the normal component of acceleration is the result of the time rate of 

change in the direction of the velocity. This component is always directed towards 

the center of curvature of the trajectory, i.e., along the positive n axis; where ρ – 

radius of curvature of the trajectory at a given point. 

The acceleration of the particle is 
the time rate of change in velocity  

 
22
naaa    – magnitude of 

acceleration. 

The conformity between the natural and coordinate methods: 

;
V

aVaVaV
а zzyyхx 

  

;
)()()(

222

222

zyx

yzzyzxxzxyyx
n VVV

aVaVaVaVaVaV
а




  

.
2222

n

zyx

n a
VVV

a
V 

  

 

  

M 

 

 

 
τ 

n 
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1.4 Special cases 

1) Rectilinear (straight-line) motion: 0nа , аа  , the radius of curvature is 
    
 

 
2) Curvilinear motion:  0nа ,    nааа   . 

  
Accelerated motion, directions   
and а  coincide, signs of 
projections   and а  are same. 

Decelerated motion (particle is 
slowing down), directions   and 
а  are opposite, signs of 

projections   and а  are 
different. 

3) Uniform motion: а const   0  (uniformly accelerated motion , if   and а  
have the same signs and uniformly decelerated – if have the difference one). 

     а t o , 

      а t to

2

02
, 

where   0 , o  – initial coordinate and particle velocity; 

4) Uniform motion: 0а , in this case nаа  , 
       o const,  
        o t 0 , 
 

 
 

 
Uniform rectilinear motion Uniform curvilinear motion 

  

М 
 

ρ → ∞ 

 

 М  

 

 М 

 М 

 

М  

n 
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2 Kinematics of the rigid body 

2.1. Translation motion of the rigid body 

Translation is the type of motion, in which every line segment on the body 
remains parallel to its original direction during the motion. 

– the body slides along a straight 
surface, the trajectory of the points is a 
straight line ; 

 

– coupling rod AB when the rods of 
OA and NB (OA = NB) rotate,  
the trajectory of the points - the circle. 

Low of translation: 

       i=1,2,3 

 
Theorem: If body moves translationally all the points have at time t the same 

velocity and acceleration relative to some reference.  

The translational motion of a rigid body can be determined by studying the 
motion of only one of its points (often it is the center of masses). 

 

2.2 Rotation about a Fixed Axis 
A rotation is such motion of a rigid body when one line of the body or of an 

extension of the body remains fixed. The fixed line is called the axis of rotation. A 
rotating body has one degree of freedom. 

 

 
... СВА   
... СВА ааа  

 

1) 

t1 t2 

В1 В2 
А1 А2 

2) 

О 

А1 

А2 

В2 

В1 

N 

  

 

А 

В 
 

 С 
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In the figure: 
I – fixed plate, 
II – a plate, which rigidly connected 

the body and rotates with it. 
The angular position measured from 

a fixed reference plate І to ІІ – φz is  angle 
rotation of the body. 

 z t ( )  – the law of rotation (equation of the body rotation about fixed axis 
z). Since motion is about a fixed axis, the direction of dφ is always along this axis. 
Angle φ measured in degrees or radians: [φ] = rad. 

   – the vector of angular velocity ω – omega (the time rate of change in 
the angular position). It’s directed along the axis of rotation z in the direction from 
which the rotation of the body is visible counter clockwise,  

kzz   ,  

where k  – ort of axis z;  z z   – projection angular velocity on the axis z; 
  z  – magnitude of angular velocity. 

Angular velocity measured in radian per second:   1 rad s
s

    

    – the angular acceleration ε (epsilon) measures the time rate of 
change of the angular velocity. The magnitude of this vector is first derivative from 
angle of rotation. 

Angular acceleration measured in radian per square second:   2
2 .rad s

s
    

 

  
Accelerated rotation 

directions and   are the same  
Decelerated rotation 

directions and   are opposite 
 

z 

ω 
ε 

 
 

ω 

 

 

ε 

B 

A 

φz 
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Constant Angular Acceleration 
 

1) Uniform rotation: z const  0 (uniformly accelerated motion, if z  
and z  have the same signs and uniformly decelerated –have the different ones). 

  z z zt   0 , 

   z z z z
t t   

2

0 02  
where zz , 00   – initial angle of rotation and angular velocity. 

2) Equable rotation: 0z  
 z z const 0  

.  00 zzz t    
The angle of rotation can be expressed through the number of rotation N of the body 
for the full period: 

  2 N .  
Angular velocity in the technique is often given to the number of rotations per 

minute: .
30
  

60
2 nn    

Formulas to determine the kinematic values of any point in the body: 
   h  is curvilinear coordinate of 
point the circle; 
h – distance from the point A to the axis 
of rotation;  
 А h   – magnitude of linear velocity 
point А, vector hА   and directed from 
any point on the axis of rotation to the 
point on curvilinear with the angular 
velocity  ;  

tg
Aa h  – the tangential component of 

acceleration point А; vector tg
Аа h  

and has the same direction of curvilinear 
of the angular acceleration  ; 

2n
Аa h   – the normal component of 

acceleration point А, vector n
Аа  has the 

direction of A towards O, the center of 
the circular trajectory 

 

tg n
А А Аа а а  ; 

2 2( ) ( )tg n
А А Аa a a   – magnitude of acceleration point А. 

 

A2 

A1 

φ 

0 
h 

σ 

А 

ω 

O ε 

h 
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2.3 Transmission of rotational motion 

 
For gear transmission 

ААА  
21

 
 .2211 rr    

 .
1

2

2

1
r
r



  

For belt transmission  
Аааа  

21
. 

 2211 rr   . 

 


1

2

2

1


r
r

.  

 
2.4 General plane motion of a rigid body 

 
A rigid body executes plane motion when all parts of the body move parallel 

to planes. It undergoes a combination of translation and rotation. The translation 
occurs within a reference plane, and the rotation occurs about an axis perpendicular 
to the reference plane.  

Position of the figure at a given time is determined by the coordinates of its 
arbitrary point A, considered as the pole, and the angle of rotation φ of the figure 
around the pole. 

 

Equation of plate figure motion: 
х f tА  1( );     у f tА  2 ( );     )(t  , 
where А – point, chosen as a pole or the 
base point. 
 The first two equations 
characterize the translational motion of 
the figure, in which all the points of the 
figure move in the same way as the pole, 
and the third - the rotational motion 
around the pole. 

Angular velocity and angular acceleration of the rotational movement of the 
figure are independent of the pole choice. 

Theorem on the velocity of points of a plane figure: The linear velocity of any 
point M of the figure at its plane motion is equal to the geometric sum of the velocity 
of the pole A and the velocity of the point M in its rotational motion around the pole. 

у 

х O xA 

уA 

А 

В 

φ 
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МААМ   . 

where МА МА, 
where   – angular velocity of 
plate figure; and velocity МАV  
МА. 

 
 
The Theorem of velocity vectors on the projections: The projections of the two 
points’ velocities onto the line connecting the points are equal: 
 
Pr ( ) Pr ( )AB A AB Boj V oj V  
or cos cosA BV V   
where  і  – angles between 

andA BV V  and  direction segment АВ. 

 
 

The plate motion of the body at moment can be considered as a rotational 
motion around the instantaneous center of rotation, or instantaneous center of zero 
velocity (ICZV). 

 
The instantaneous center of zero velocity (ICZV) is the point of a plate figure, 

which velocity at the time is zero. 
Determination of the position of the ICZV with use of the angular velocity of the 

figure and the velocity of any point of the figure: 
1.  

 

In general, the ICZV lies at the 
intersection of the perpendiculars put from 
two points of the plane figure to their 
velocities. 
The angular velocity   of a plate figure at 

each instant time is equal to the ratio of the 
velocity of any point of the figure to its 
distance from the ICZV: 

CP
V

BP
V

AP
V CBА  . 

Therefore, the velocity of any point of a plane figure at each time is equal to 
the product of the angular velocity    at a distance from the given point to the ICZV: 

 

А 

 
 

М 

А 

 

В 
α α 

β 

A 

B 

C 

P (ICZV) 

ω 
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         )(   
 );(    

СРVBPV
ВРVCPV

СB

ВC








 

2. if  АВVVV ABA ,  

а) 

 

b) 

BP
V

AP
V BA    




V
AB BP

V
BP

A B  

3. if  ,BA VV     / 2  

 0,АV  


 

.CBA VVV    
This is a case of instantaneous translation motion. 

 

 

1. The wheel rolls without sliding on a 
stationary surface. In this case, the position 
of ICZV is at the point of contact of the 
figure with the surface 

   .  ,0 APV
OP
V

A    

 
Theorem about the points’ acceleration of a plane figure:  
The acceleration of points of the figure, executing plane motion, defined as the 
geometric sum of the acceleration pole A in a fixed coordinate system and the 
acceleration of point M in its rotation around the pole A : 

,МААМ ааа   
or because  

,  
n tg

МА МА МАа а а   

 

Р (ICZV) В А 

ω 

 
С А 

α  

 
B 

ω 

Р ( ICZV ) 

А 
 O 

 

(ICZV) 

P (ICZV)→ 
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  ,  
n tg

М А МА МАа а а а   where  2 ,  ,n tg
МА МАа МА а МА      

 
while tg

МАа МА  and directed by the 
arrow  , n

МАа  directed along the line 
MA from point M to point A. 

 
 

2.5 Kinematical analysis of plate mechanism 
 

When solving problems it is necessary to consistently consider the movement of 

individual parts of the mechanism and calculate each of them (to determine the speed 

and acceleration of the point, which belongs simultaneously to the considered and 

incremental crank). Calculation starts with a crank, the movement of which is given. 

If the crank performs a rotational motion, (it has a fixed point, for example, in the 

form of a fixed hinge) then any of its points moves in a circle and determine the 

velocity and acceleration of this point. 

Problem 1. The plate mechanism consists of a crank OA, a connecting rod AB 

with a slider B. Here OA = 20 cm, AB = 40 cm. The crank OA has at this time the 

angular velocity ωOA = 2 rad/s and the angular acceleration εOA = 5 rad/s2. For a given 

position mechanism it is necessary to determine the velocity and acceleration of the 

point B, and the angular velocity and acceleration of the connecting rod AB. 

 
 
 
 
 

Solution: 

1. Determine velocity of point B.  
At first, consider the crank OA, which motion is given. 

  

A 

 0А
 

0А
 

450 

 О 

B 

A 

M 
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It performs rotational motion about a stationary 
point O, so the velocity of point A is determined by 
the formula 

40202  OAV OAA   (сm/s).  
 Vector OAVA   and has direction of the rod 
rotation (by "arrow" OA ). 

 2) Consider the connecting rod AB. It performs a general plane motion,   
 so at first it is necessary to draw its ICZV. 

The velocity of point A is determined when 
calculating the rod OA. Point B belongs to a 
slider so the line of its velocity BV  is 
parallel to the direction of slider motion. We 
draw the ICZV (point) as the point of 
intersection of the perpendiculars to the 
velocity AV


 and velocity of the point B, 

which is horizontal (directed in the tangent 
to the trajectory). 

Angular velocity of rod AB equals: 
0

0

cos45 40 0,7 0,7 
/ cos45 40 s

A A A
АВ

AB

V V V rad
AP AB AB

          
 

 

and is directed according to how the vector "rotates" around the ICZV ( АВР ). 
Velocity of point B  

28407,0  АВAВВ ВРV   (сm/s) 
and directed in accordance to the "arrow" AВ  . 

2. Determine further acceleration of the point В. 

 1) Consider the crank OA. It performs rotational motion; therefore the modules 

of components of acceleration of point A are determined by formulas:  

 

 

 

 

 

 

     2 4 20 80n
А ОАа ОА      (сm/s2), 

     5 20 100tg
А ОАа ОА      (сm/s2). 

We show the directions of the components: the 

vector n
Аа  is directed along the rod from point A to the 

center of rotation O, the vector tg
Аа ОА  directed in 

accordance to the "arrow". 

0А
 

450 
О 

A 

 

 

450 

РАВ (ICZV) 

АВ
 

В  

450 

 

 

0А
 

450 

О 

A 

 



17 
 

2) Consider the connecting rod AB. It performs a general plane motion, so the 

acceleration of point B is determined by the formula: 
n tg n tg

В А ВА А А ВА ВАа а а а а а а       

The component magnitude n
ВАа  is calculated using the formula: 

2 20,7 40 20n
ВА АВа ВА      (сm/s2). 

The vector n
ВАа  of 

directions along the 
segment BA from point 
B to pole A. The 
magnitude of the 
component n

ВАа  cannot 
be calculated yet,  

so АВ  unknown. In this case, we will depict the vector tg
ВАа ВА   and point in any 

direction (for example, upwards). Since the trajectory of point B is a straight line, 
then the vector Ва  must have direction along this line. Let's depict it, for example, to 
the left of point B. 

Choose the axis of the coordinates x, y (for example, x-axis along the rod to the 
left, axis y in - upwards) and design a vector equation for determining the 
acceleration to these axes: 

х: 0 0cos45 cos45n tg n
В А А ВАа а а а     , 

у: 0 00 sin 45 sin 45n tg tg
А А ВАа а а      . 

In the resulting system of algebraic equations unknown magnitude are 

accelerations Ba   and tg
BAa . From the first equation we find acceleration of point B: 

146207,01007,080 Ва  (сm/s2). 
Since 0Ва , then, the vector Ba  corresponds to the actual direction of acceleration 
of point B. From the second equation we find tg

BAa : 
0 0sin 45 sin 45 56 70 14tg n tg

АB А Аа а а         (сm/s2). 
The sign "-" -- means that in fact the vector tg

ВАа ВА   is directed downwards. 
Angular acceleration 

2

14 rad0,35  
40 s

tg
ВА

АВ

а
ВА

      
 

 

450 

450 

 

 

  
A 

В х 

у 
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and directed clockwise (as the real 
vector tg

BAa  "rotates" around pole A).   

Answer:  rad0,7  ;          28   сm/s;
sАВ BV    

    2
2

rad0,35  ;          146  сm/s
sАВ Bа   . 

Problem 2. The wheel A consists of two rigidly fastened discs. Wheel of radius 
r rolls without slipping on a stationary surface. 

Here АВ = 15 сm, r = 10 сm. The center 
of wheel A has at this time velocity VA = 
28 cm/s and acceleration 146Aa   cm/s2. 
For a given position of the wheel to 
determine its angular velocity and 
acceleration, as well as the velocity and 
acceleration of point B. 

Solution:  
1. Determine velocity of point B. 

 
 
 
 
 
 
 

 A wheel rolling without 
slipping on a stationary surface 
performs a general plane 
motion. ICZV (point Pwh) is at 
the point of contact with a 
stationary surface. Angular 
wheel velocity  

28 rad2,8  
10 s

A
wh

wh

V
AP

      
 

 
and directed clockwise (according to the "rotation" of the vector around the IZCV 
(point Pwh). 

The segment BPwh can be determined from the triangle ABPwh by the law of 
cosines: 

2 2 02 cos150wh wh whВР АВ АР АВ АР       

 2 215 10 2 15 10 ( 0,85) 580 24            (сm), 

В 

А 

300 

r 
  

 АВ
 

A 

В 

В 

А 

300 

w

h

VA 

VВ 

Рwh(ICZV) 
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So 2,8 24 67,2B wh whV ВР      (сm/s). Vector B whV BP  and has direction 
according to the clockwise wh . 

2. Determine acceleration point B.  
The acceleration of the point B in the wheel, which performs the general plane 

motion, is determined by the formula: 
n tg

В А ВА А ВА ВАа а а а а а     . 
Since the trajectory of point B is unknown (it has no restrictions on other 

bodies), its acceleration will be find in the form of two unknown components, 
directed along the coordinate axes: 

n tg
Вх Ву А ВА ВАа а а а а     

Angular acceleration of the rolling wheel is determined by the formula: 

2
( / ) 1 146 14,6 ,

10
        

tg
wh A wh A A А

кол
wh wh wh

d d V AP dV а а rad
dt dt АР dt АР АР s
          

   

where 
tg
A Aa a , since the trajectory of point B is a straight line. 

Direction of wh  is counter clockwise (as the vector tg
Аа  "rotates" around the 

ICZV counter clockwise). 
 
 
 
 
 
 
 

Component magnitudes n
BAa  and tg

BAa  are 
determined by the formula: 

2 22,8 15 117,6n
ВА whа ВА     (сm/s2), 

14,6 15 219tg
ВА whа ВА      (сm/s2). 

 

The vector n
BAa  is directed along the segment BA from point B to pole A, and the 

vector tg
ВАа ВА  is directed in accordance to the "arrow" εwh. We construct the xy 

coordinate axis and take the projection of a vector equation for determining the 
acceleration Ва   on these axes: 

х: 0cos30 146 0,85 219 343,1tg
Вх А ВАа а а        (сm/s2); 

у: 0sin30 146 0,5 117,6 44,6tg
Ву В ВАа а а         (сm/s2). 

Acceleration magnitude of point В is determined by the formula 

  2 2 2 2 (343,1) ( 44,6) 346
Вх ВуВа а а       (сm/s2). 

В 

А 
300 

wh 

 

Рwh(ICZV) 

   

 

х 

у 
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Since, 0,  0Вх Вуа а   then, the acceleration component Вxа  of point B is 
directed towards the positive direction of the axis x, and the component Вyа  – towards 
the negative direction of the axis y. The vector Ba  is depicted as a diagonal of a 
rectangle constructed on the components ,  Вх Вyа а  as on the sides. 

 
 
 
 
 

 Answer: 
rad2,8  ;       67,2  сm/s;
swh BV    

2
2

rad14,6  ;       346  сm/s
swh Bа   . 

 
 

 
Problem 3. The plate mechanism consists of the crank OA and two gear wheels 

І and ІІ, connected with the crank OA.  

 
 
 
 
 
 
 
 

Here ОА = 30 сm , rІ = 10 сm. Crank ОА 
rotates about axis О and has angular velocity in 
this moment 3  rad/sОА   and angular 
acceleration 0ОА . Wheel І rotates about axis 
О with constant angular velocity І 6  rad/s  . 
For a given position of the mechanism to 
determine the velocity and acceleration of the 
point B, and the angular velocity and 
acceleration of wheel II. 

Solution:  

1. Determine velocity of point B.  

At first, consider the crank OA, which motion is given. 

 
 
 
 
 

It performs rotational motion around a fixed 
point O, so the velocity of point A is determined 
by the formula:  
 90303  OAV OAA   (сm/s). 
 Vector OAVA   and directed counter 
clockwise (by “arrow” OA ). 

В 
А 

 0А 

О 
 І 

ІІ 

І 
r1 

В 
А 

0А О 

VА 

  

 

В 

х 

у 
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2. Consider wheel І, the motion of which is given. Wheel І performs  
 rotation motion around a fixed point О. Denote  

touch point of the wheel I and II as letter D, then its 
velocity equals  

60106   ODVD   (сm/s). 
Vector ODVD   and directed clockwise the 

wheel І. 

3. Consider wheel ІІ. It performs a general-plane motion. At first, it is necessary 
to draw the pole of ICZV. To draw the ICZV we connect  
 
 
 
 
 
 
 
 

ends of velocity vectors AV  and DV . 
Position of ICZV is at the intersection of 
this segment with a line passing through 
points A and D. The angular velocity of 
the wheel AV  is related to velocity DV  
by ratio: 


 

DP
V

AP
V DA . 

Considering,   APAPrOAAPADDP 20)( ,  
the right side of the relation   can be considered as an equation with respect to the 
segment А P : 

 


АP
V

AP
V DA

20
. 

Solve this equation and determine АР : 
      APVAPV DA )20( , 
    )(20 DAA VVAPV   , 

   12
150

1800
6090
209020










DA

A

VV
V

AP  (сm). 

So  

5,7
12
90




 AP
VA   /rad s . 

Angular velocity   is directed according to how the vector is AV  “rotates” about 
ICZV (РІІ). Velocity point В is  

 

2 2 2 27,5 20 12 7,5 544

     7,5 4 34 30 5,83 175 cm/s
BV ВР АВ АР              

     
 

And is directed according to the "arrow"  . 

D 

О 
І 

VD 

РІІ (ICZV) 

D 

B 

ІІ 

VA 

VB 

VD 

А 
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4. Determine acceleration of point B. 
 1) Consider the crank ОА.  It performs rotation motion,  
 
 
 
 
 
 

therefore the magnitudes of acceleration components of point A 
are determined by formulas:  
 2 23 30 270n

А ОАа ОА      (сm/s2), 
0tg

А ОАа ОА   . 
Vector n

Aa  directed along the rod from point A to the center of 
rotation O. 

2) Acceleration of point В to wheel II, which performs a general-plane motion, 

is determined by the formula: 
n tg n tg

В А ВА А А ВА ВАа а а а а а а      . 

Since the trajectory of point B is unknown (it has no connections to other 
bodies), its acceleration will be determine in the form of two unknown components

ВуВх аа  , , directed along the axes of the coordinates x, y:  
n tg n tg

Вх Ву А А ВА ВАа а а а а а     . 
The angular acceleration of the wheel II will be determined using the ratio  

AD
VV

DP
V

AP
V DADA 




. 

Then 

 

 

1 1

1     0.

A D

A D A D

tg tg
A D

V Vd d V Vd dV dVAD
dt dt AD dt AD dt dt

a а
AD

 


 
           

 

  

 

In this formula 0tg
D

da OD OD
dt
 

     , since under the problem const . 

Components of magnitudes n
BAa  and tg

BAa  are determined by the formula: 
2 27,5 10 56,25 10n

ВАа ВА        562,5 (сm/s2), 
 
 
 
 
 
 
 

0tg
ВАа ВА    . 

The vector n
BAa  has direction along 

the segment VA from point B to pole A. 
 Draw the coordinate axis xy and find 
the projection of a vector equation for 
determining the acceleration Ва  on these 
axes: 

А 

 O 

 

x 

y 

A B 

 

 

ω ІІ 
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х: 562,5n
Вх ВАа а   (сm/s2); 

у: 270n
Ву Аа а   (сm/s2). 

Magnitude of point В acceleration determined by the formula 
  6072705562 2222  )(),( ВуВхВ ааа  (сm/s2). 

 
 
 
 
 
 

 Since 0 ,0  ВуВх аа , then 
components of point B acceleration are 
directed towards the positive direction of the 
x and y axes, and the vector Ba  is represented 
as a diagonal of the rectangle, drawn on 

 components ВуВх аа  ,  as on a sides.  
Answer: 7,5  rad/s;       67,2  сm/s;BV    cm/s,  

  607                    ;0  Bа  cm/s2. 
 

3 Compound motion of a point 

The compound motion of a point is the motion in which point M takes part in 
two or more motions simultaneously. 

Absolute motion is the motion of 
point M according to a fixed 
coordinate system х у z, , .  

Relative motion is the motion of 
point M relative to the moving 
coordinate system X1Y1Z1. 

 
Transport (bulk) motion is the motion of the moving reference with respect to 

the fixed reference. 
Theorem on adding velocities: The absolute velocity of a point equals the 

geometric sum of velocities in the transport and relative motions: 
rеа   , 

а  – absolute velocity; е  – transport velocity; r  – relative velocity. 
Coriolis's theorem on addition accelerations: the absolute acceleration of a 

point equals the geometric sum of acceleration in the transport motion еа , the 

acceleration in relative motion rа  and the acceleration of the Coriolis ca : 
;cre aaaa   

Coriolis’s acceleration vector is expressed by the formula 
T

he 

В х 

у 

 

 

2( ).с е rа v 

X1 
1

Y1 
1

Z1 
1

z 
1 y 

1

x 
1

M 
1
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magnitude of the Coriolis’s acceleration vector is equal to 

),,sin(2


 rеrес Vа   
where е  – the angular velocity of the transport rotational motion. 
Coriolis acceleration is zero if: 
1) the transport motion is translation (е  0 ); 
2) the relative velocity r  at the moment is zero (r  0 ); 
3) the relative velocity vector r  at the moment is parallel to the vector of 

the angular velocity of the transport rotational motion 0),(sin( 


rе  ). 

To determine the direction of Coriolis’s acceleration can be used either the rule 
of the vector product, or the rule of Zhukovsky. According to Zhukovsky's rule, the 
direction of the vector is determined in such order: 

1) it is necessary to take projection of a vector of relative velocity rV  on a 
plane S perpendicular to the axis of transport rotation (perpendicular to the 
vector е ); 
2) get the projection rsV  and turn in this plane by 90 degrees in the direction of 

transport rotation (in direction of curve-line 
arrow е ); 

3) 3) the direction of the Coriolis’s 
acceleration са  coincides with the direction 
of the vector rsV  . 

In magnitude  sinrес V2а   .  

 
 
Problem 4. The disk rotates around a vertical diameter with angular acceleration 
t2 (rad/s2)., the point M moves with a constant acceleration а = 2 (cm/s2) along 

the radius of the OA inclined to the axis of rotation at an angle of 45°. At the time t = 
0, the angular velocity of the disk and the relative velocity of the point of the disk 
center are zero, i. e. ω0 = 0, Vr0 = 0. Determine the absolute velocity and absolute 
acceleration of the point M at the moment t = 1 s. 

S 

 

 

900 

α 
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Solution: For a fixed reference system, 
we take the ground, and for moving – a 
rotating disk. Transport motion (motion of the 
disk relative to the ground) is rotational. 
Angular velocity of the disk  

22 ,dt tdt t С       
where С = 0, as ω0 = 0. 

So  ω = t2. 
For absolute velocity of point М we get: 
        rea VVV  . 
The relative velocity is directed along the 

radius of the OA and equals rV = 2t. The 
transport velocity is directed perpendicularly 
to the drawing from us in the direction of disk 
rotation is equal to 

 

045sin sМКVe  , 
where s = (a·t2 )/2. So 2/4tVe  . 

Since between the velocity vectors еV   and  rV   the angle of 900, then 

2/4 3222 ttVVV rea   

At the moment t = 1 s  

12,25,4 aV  cm/s. 

Consider that the transport motion is rotational, we have 

cerа aaаа  . 

Relative acceleration is directed along the radius of the OA and equals 
2 aаr  (cm / s). The transport acceleration of the point M consists of two 

components: rotating and centripetal acceleration, i.e. 
tg cp

е е еа а а   

Transportable centripetal acceleration is directed along the MK (from the point 
M to the point K) and is numerically equal to 

2 2 0sin 45cp
еа МК s       

or    
6

2

2 cm .
2 s

cp
е

tа   

Transport rotational acceleration is directed perpendicularly to the drawing 
from us in the direction of the “arrow” ε.  

z 

y 

 

ω 
ε 

y1 

О x1 

z1 

ω 
 

 

M 
A 

450 

 

х 

К 
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0 3
2

сm2 sin 45 2 .
s

tg
еа МК t s t       

at t = 1 s,    2 2

сm сm2 / 2 , 2 .cp tg
е еа а

s s
   

To determine the Coriolis’s 
acceleration, the conditionally vector 
 transferred parallel to itself in the 
point M. Acceleration са  will be 
directed perpendicularly to the plane 

),( rV  in the direction from which 
the rotation   tо rV  a smaller angle 
has a direction against the clockwise 
movement, that is, in this case 
perpendicular to the plane of the 
drawing from the observer. 
Magnitude 

 
 

0 3
2

сm2 sin 45 2 2с rа V t
s

     

At  t = 1s   2

сm2 2
sса  . 

To determine the numerical value of the absolute acceleration and hence the 
compilation of vectors , , ,сp tg

r е е cа a а a  , we make three mutually perpendicular axes X1, 
Y1, Z1. If we take projections of all components of absolute acceleration on these 
coordinate axes, we obtain the projections of absolute acceleration of the point M 

1
2 2 2 3 2tg

ах е са а а        , 

1

0 2 2 2 2cos45 ,
2 2 2

cp
ау е rа а а         

.2
2

2245cos 0
1

 rаz aа  

We construct a vector of absolute 
acceleration taking into account certain 
projections on the axis. By the magnitude of 
the absolute acceleration, the point M will 
be:  

1 1 1

2 2 2
2

1 сm18 2 20,5 4,5 .
2 sа ах ау аzа а а а         

Answer: the absolute velocity of the point M Va = 2,12 cm / s; the absolute 
acceleration of the point M aa = 4,5 cm / s2. 

  

х1 

у1 

z1 

 

 

 

М 
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APPENDIX 

Output dates for work 
“Kinematical analysis of plate mechanism” 

Determine for a given position of the mechanism velocity and acceleration of points B 
and C, as well as angular velocity and angular acceleration of the link, which belongs to the 
point C. Schemes of mechanisms are shown in the following pages, and the required size 
and kinematic parameters are presented in the table, where ОАОА  ,  - angular velocity and 
angular acceleration of the crank OA for a given position of the mechanism;  - the angular 
velocity of the wheel I ; AA aV ,  - velocity and acceleration of point A. Rolling of wheels is 
carried out without slipping. The method of solving problems is considered in section 2.5. 
 

Number 
of 

variant 

Dimensions , сm ОА , 
rad/s 

 , 
rad/s 

ОА , 
rad/s2 

А , 
сm/s 

Аа , 
сm/s2 ОА r AB AC 

1 40 15 - 8 2 - 2 - - 
2 30 15 - 8 3 - 2 - - 
3 - 50 - - - - - 50 100 
4 35 - - 45 4 - 8 - - 
5 25 - - 20 1 - 1 - - 
6 40 15 - 6 1 1 0 - - 
7 35 - 75 60 5 - 10 - - 
8 - - 20 10 - - - 40 20 
9 - - 45 30 - - - 20 10 
10 25 - 80 20 1 - 2 - - 
11 - - 30 15 - - - 10 0 
12 - - 30 20 - - - 20 20 
13 25 - 55 40 2 - 4 - - 
14 45 15 - 8 3 12 0 - - 
15 40 15 - 8 1 - 1 - - 
16 55 20 - - 2 - 5 - - 
17 - 30 - 10 - - - 80 50 
18 10 - 10 5 2 - 6 - - 
19 20 15 - 10 1 2,5 0 - - 
20 - - 20 6 - - - 10 15 
21 30 - 60 15 3 - 8 - - 
22 35 - 60 40 4 - 10 - - 
23 - - 60 20 - - - 5 10 
24 25 - 35 15 2 - 3 - - 
25 20 - 70 20 1 - 2 - - 
26 20 15 - 10 2 1,2 0 - - 
27 - 15 - 5 - - - 60 30 
28 20 - 50 25 1 - 1 - - 
29 12 - 35 15 4 - 6 - - 
30 40 - - 20 5 - 10 - - 
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