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PREFACE 
The basis of the tutorial is a series of lectures on 

advanced mathematics taught at all the faculties of O. M. 
Beketov National University of Urban Economy in Kharkiv.  

The purpose of the tutorial is the practical application of 
the mathematical apparatus to solve problems from the section 
"Linear algebra". It contains 12 paragraphs, each of which 
provides the necessary theoretical information on the 
definitions and basic mathematical concepts of the paragraph. 
The most complicated theoretical issues are accompanied by 
additional explanations of the concepts (without proof) with 
supplementary exercises and tasks. A feature of the manual is 
the presence of a large number of applied tasks which help to 
explain the applied nature of the mathematical apparatus of this 
topic. 

The tutorial includes typical tasks and suggests the 
methods of their solution in detail. At the end of each 
paragraph the tasks for independent work are given to 
consolidate the material studied. At the end of the tutorial there 
are the answers. The appendices present separate definitions, 
theorems and problems, the solution of which causes 
difficulties, or is an extra task to solve more complex problems. 

At the end of the book, an alphabetical index is 
submitted. It may be useful for a quick search for reference 
information on a mathematical term, as well as the answers to 
the required questions. 

The authors hope that the presentation of the text in 
English will allow replenishing the vocabulary of the English 
language of both students and teachers, and will improve the 
quality of foreign students’ training. 
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1 The concept of the determinant. Rules of calculation and 
properties of determinants 

Determinant is defined as the number written as a square 
table. The element of determinant is a number denoted as ija , 
where indices i  and j  indicate the location of this element in 
the table of numbers. The index i  is a number of a row, where 
the element ija  locates, the index j  is a number of a column. 
The determinant is recorded as a table of numbers in direct 
parentheses. and is marked n , where index n  indicates the 
order of the determinant. The order of the determinant is 
considered the number of its rows (columns). For example, 

07
31

 is the determinant of second order, because there are 

two rows and two columns, so it can be marked as 

07
31

2


 . If we say that the number 3  is the element of a 

determinant 2 , which is located at the first row and the 

second column, we can denote it as: 312 a . 
372
015
623

3




  

is the determinant of the third order. By the way, the number of 
elements of any determinant is equal 2n . This can be verified 
by paying attention to the previous examples: the amount of 
elements in the determinant of the second order is four, and in 
the determinant of the third order there are nine of them. 

The second-order determinant is calculated by the 
“cross” rule (the scheme of it is shown at the figure 1.1): 

12212211
2221

1211
2 aaaa

aa
aa

 . 
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The third-order determinant is calculated by «asterisk 
rule» («rule of triangles»; Sarrus' rule or Sarrus' scheme is 
named after the French mathematician Pierre Frédéric Sarrus.) 
(the scheme is shown at the figure 1.2): 

 133221312312332211

333231

232221

131211

3 aaaaaaaaa
aaa
aaa
aaa

112332332112312213 aaaaaaaaa  . 

The rules can be represented schematically and specified as 
follows: 

Figure 1.1                                  Figure 1.2 
 

Example 1.1 Calculate 
245
321
232





. 

Solution:   





 533)2(22
245
321
232

3  

       243)2(13)2(25)2(41  

5246208458  . 

Answer: 5 . 

" "  " "  " " " "
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The determinant of an arbitrary order n  looks like this: 

nnnnn

n

n

n

n

aaaa

aaaa
aaaa
aaaa

...
...............

...

...

...

321

3333231

2232221

1131211

 . 

The main diagonal of the determinant is the diagonal, 
which consists of elements nnaaaa ,...,,, 332211 . Another diagonal 
is called a secondary diagonal. 

Consider the question of calculating a determinant of 
arbitrary order. First of all, we should find out the following 
concepts, as a minor and a cofactor of the element. 

Minor ijM  of the element ija  is the determinant of the 
)1( n  order that is obtained by deleting i  row and j  column, 

at the intersection of which this element is located. For 
example, find the minor 23M  in the determinant 

372
015
623

3




 . According to the definition we need to 

delete the second row and the third column, so we get the 

determinant as: 
72
23

23 


M . 

Note 1.1 In the determinant of the second order 

2221

1211

aa
aa

, for instant, the minor of the element 11a  is the 

element 22a , which can be considered as the first-order 
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determinant, and which is obtained by deleting the first row 
and the first column. 

The cofactor ijA  of the element ija  is: 

  ij
ji

ij MA  1 .                                    (1.1) 

This is a minor, whose sign depends on the parity or oddness of 
the sum of the indices of this element. For example, find the 
cofactors 22A  and 32A  in the given determinant 

472
058
170

3





 . For this we will use the formula (1.1) and 

get: 

     2 2
22 22

0 1
1 1 0 4 1 2 2

2 4
A M 

            


, 

     81800
08
10

)1(1 32
23

32 


  MA . 

The calculations of determinants of any order are 
performed by their decomposition by the elements of the row 
(or column) (the Laplace expansion, named after Pierre-Simon 
Laplace, the so-called cofactor expansion), i.e.: the determinant 
is equal to the sum of products of elements of a certain row 
(column) by their cofactor. It is: 

1

n

ik ik
k

a A


    or 
1

n

kj kj
k

a A


   .                     (1.2) 

Example 1.2 Calculate the determinant 

1511
4321

2123
1512


. 
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Solution. Calculate the fourth order determinant, 
decomposing it by the elements of the first column. According 
to the formula (1.2) we will have the following decomposition: 

11 21 31 41

2 1 5 1
3 2 1 2

2 3 1 1
1 2 3 4
1 1 5 1

A A A A        


 

   1 1 2 1
2 1 2 1 5 1

2 1 2 3 4 3 1 2 3 4
1 5 1 1 5 1

             

   3 1 4 1
1 5 1 1 5 1

1 1 2 1 2 1 1 2 1 2
1 5 1 2 3 4

         


 

2 (6 20 4 6 2 40) 3 ( 1) 0 1 0               

1 ( 4 20 6 2 6 40) 108 54 162           . 

Answer: 162 . 
Properties of determinants: 

1. The value of the determinant will not change if its 
rows are replaced by the corresponding columns, and the 
columns are replaced by the corresponding rows: 

9 8
9 5 8 1 45 8 53

1 5


          , 

9 1
9 5 1 8 45 8 53

8 5


          . 
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2. The determinant will be zero if it contains a row 
(column) with zero elements. 

3. If we swap the two rows (columns), then the sign of 
the determinant will switch. 

534
410
592

534
592

410











. 

4. The determinant will be zero if it contains two 
identical or proportional rows (columns): 

0
532
21315

715






. 

5. A factor, common to elements of a certain row 
(column), can be extracted before sign of a determinant: 

531
714

415
2

532
718

4110











. 

6. If the elements of a certain row (column) of a 
determinant are represented as the sum of two terms, then this 
determinant will be equal to the sum of two determinants: 

3

12 2 1 5 7 2 1 5 2 1 7 2 1
5 11 7 3 2 11 7 3 11 7 2 11 7
2 3 3 3 1 3 3 3 3 3 1 3 3

        
         

   
. 

7. The value of the determinant does not change if the 
elements of a certain row (column), multiplied by the same 
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number that is not equal to zero, add to elements of a different 
row (column). 

Check out this property on an example calculating the 

determinant 
532
715

412





. 

For this we do the following: 
1) add the first row to the second row multiplied by two, 

and calculate the determinant by the rule of triangles:  

2 1 4 2 5 2 1 1 2 4 ( 7) 2 12 1 10
5 1 7 5 1 7 5 1 7
2 3 5 2 3 5 2 3 5

         
     

  
 

60 14 150 20 25 252 131       ; 

2) calculate the determinant by the rule of triangles: 

13142258601410
532
715

412






. 

As you can see, the value of a given determinant really 
has not changed even after our operations using the above 
mentioned property number seven. 

Note 1.2 Elements of the determinant may be not only 
numbers, but other objects as well. 

Example 1.3 Solve the equation 0
111
11

22






x

x
. 
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Solution. We will use the rule of triangles: 

2 2

2 2
1 1 2 2 2 2 3 2
1 1 1

x
x x x x x x


         


,  

0232  xx ,  
9 4 2 1D     ,  

2
13

2,1


x , 21 x , 12 x . 

Answer: 21 x , 12 x . 

Example 1.4 Solve the equation 1

2
sin

2
cos

2
cos

2
sin

xx

xx

.  

Solution. According to the rule of triangles we get: 

xxxxxxx
xx

xx

cos
2

cos
2

sin
2

cos
2

cos
2

sin
2

sin

2
sin

2
cos

2
cos

2
sin

22  , 

1

2
sin

2
cos

2
cos

2
sin

xx

xx

, 1cos  x , 1cos x , 

nx 2)1arccos(  , nx  2 , Zn . 

Answer: nx  2 , Zn  

Questions for self-control 

1. What is a determinant? 
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2. What is a minor?  
3. What is a cofactor of a determinant element? 
4. By what rule the value of the determinant of the n -th 

order is calculated? 
5. Formulate the rules of the "cross" and "triangles" for 

calculating respectively the determinants of the second and 
third order 

6. What are the basic properties of the determinant? 
Which of them can we use to calculate it. 

7. How a determinant of a triangular form is calculated? 
8. Will be the value of the determinant changed if the 

elements of some column are multiplied by 5? If so, how 
much?  

9. Which of the properties can we use to simplify 
calculation the determinant of any order? Explain your answer 

Tasks for revision 

1.1 Calculate the determinant 
2 3 4
2 3 4
2 3 4

a b
c d

   
 

 by 

the most convenient way.  

1.2 Calculate the determinant 

10 1 0 0 0
11 10 1 0 0
0 11 10 1 0
0 0 11 10 1
0 0 0 11 10

   

by the most convenient way.  
1.3 Calculate the given determinant by the most 

convenient way  
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1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

b
b

b
b




 




. 

 

2 Matrices. Operations with matrices. The concept of an 
inverse matrix and algorithm used to find it 

A matrix is defined as an ordered rectangular array (table) 
of numbers. If a matrix has m  rows and n  columns, we will 
say that it has dimension as nm . If a matrix has only one 
column and m  rows, we name it a matrix-column; if a matrix 
has only one row and n  columns we name it a matrix-row. 
Matrix with an equal number of rows and columns, is called a 
square matrix. A symmetric matrix is a square matrix, in which 
its elements are located symmetrically the main diagonal are 
equal to each others, that is: lkkl aa  . A diagonal matrix is 
called a square matrix in which all elements, except those 
which are on the main diagonal, equal zero. 

For examples: 

Symmetric Diagonal Upper 
Triangular 

Lower 
Triangular 



















453
502

321
 


















400
030
001

 
















600
540

321
 

















 453
072
001

 

Identity matrix is a diagonal matrix, the diagonal 
elements of which are units, and denote by letter E : 



16 
 

1 0 ... 0
0 1 ... 0
... ... ... ...
0 0 ... 1

E

 
 
 
 
 
 

. 

Matrices A  and B  are equal, if they have the equal 
dimension  nm  and their corresponding elements are equal  

njmibaBA ijijnmnm ,1;,1,   . 

Operations with matrices: 
1. The multiplication of matrix by the scalar. To do this, 

each element of the matrix must be multiplied by a given 
number.  

Example 2.1 Find the matrix AC 4 , if 














518
243

A . 

Solution: according to the above mentioned rule we 
should multiply all elements of given matrix A  by four 

3 4 2 3 4 4 4 2 4 12 16 8
4 4

8 1 5 8 4 1 4 5 4 32 4 20
C A

          
                   

. 

Answer: 
12 16 8
32 4 20

 
  

. 

2. Addition (or subtraction) of matrices. Two matrices A  
and B  can be added or subtracted if and only if their 
dimensions are the same (i.e. both matrices have the same 
number of rows and columns). If matrices A  and B  have the 
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same dimension then the sum of them is found by adding the 
corresponding elements ijij ba  .  

Example 2.2 Find the sum of matrices A  і B , if 














518
243

A , 












238
457

B . 

Solution. Carry out the operation of addition between 
corresponding elements 




































253188
425473

238
457

518
243

BA  














7416
214

. 

Answer: 
4 1 2
16 4 7
  

  
. 

We emphasize that the operation of addition is 
commutative, i.e.  

ABBA  . 
3. Matrix multiplication. When the number of columns of 

the first matrix is the same as the number of rows in the second 
matrix then matrix multiplication can be performed. Matrix-
result has the number of rows as the first matrix and the 
number of columns as the second matrix, i.e.: 

nmnkkm DBA   . Elements of this matrix-result are obtained 
as the sum of the products of the row elements of the first 
matrix by the corresponding column elements of the second 
matrix.  

Example 2.3 Find the product of matrices : BA   and 
AB  :  
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а) 











322
113

A , 










80

57
B ; b) 












12
43

A , 










80

57
B . 

Solution: а) 





















80

57
322
113

BA  – unfortunately, 

these matrices cannot be multiplied, because the column 
number of the first matrix is three, and the row number of the 
second matrix is two, hence those matrices are not satisfied the 
above mentioned conditions. However, the multiplication AB   
exists, find it: 

7 5 3 1 1
0 8 2 2 3

B A
   

          
 

we will multiply the each element along the first row of the 
matrix A  with the corresponding elements down the first 
column of the matrix B , and add the results, after this we will 
continue to do it with the all columns, changing the row, 
repeating the operations 

7 3 5 2 1 7 5 ( 2) 7 1 5 3
0 3 ( 8) 2 0 ( 1) 8 ( 2) 0 1 ( 8) 3

           
               

 

31 17 22
16 16 24

 
    

; 

b) given matrices have the same dimension, they are 
square matrices, so multiplications as A B , as well as AB   
exist. Find them. 

 3 4 7 5 3 7 ( 4) 0 3 5 ( 4) 8
2 1 0 8 2 7 ( 1) 0 2 5 ( 1) ( 8)

A B
              

                       
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21 47
14 18
 

  
 

, 

 7 5 3 4 7 3 5 2 7 ( 4) 5 1
0 8 2 1 0 3 ( 8) 2 ( 4) 0 ( 1) ( 8)

B A
             

                        
 

31 33
16 8

 
   

. 

Answer: а) A B  does not exist, 
31 17 22
16 16 24

B A
 

     
, 

b) 
21 47
14 18

A B  
   

 
, 

31 33
16 8

B A
 

    
. 

As we see, multiplication of matrices is not commutative, 
that is  

ABBA  . 

Note 2.1 Note some properties of the matrix product:   

1) AAE  ;  AEA  ;         2) )()( BCACAB  ;  

3) ACBACBA  )( ;   4) )()()( BABAAB   ;   

5) for square matrices A  and B  is correct the following  

   det det det detAB BA A B   . 

Note 2.2 For a square matrix, powers of a matrix A can 
be defined as, 

AAA 2 , AAAAAAAA  223 . 

Each square matrix A  of the arbitrary order n  is placed 
respectively the determinant, which can be written as  
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11 12 1

21 22 2

1 2

...

...
det | |

... ... ... ...
...

n

n

n n nn

а a a
a a a

A A A

a a a

    . 

It is called the determinant of the matrix A .  
Note 2.3 A determinant of a square matrix is defined in 

such a way that a scalar value is associated with the matrix that 
does not change with certain row or column operations on the 
matrix i.e., it is one of the scalar invariants of the matrix 

Further, we need to know about the transposed matrix. 
The transpose matrix of a matrix A  can be found by 
exchanging rows for columns. Matrix ( )ijA a  and the 

transpose of TA  is: ( )T
jiA a  where j  is the column number 

and i  is the row number of matrix A .  
In the case of a square matrix (when m n ), the 

transposition can be used to check if a matrix is symmetric. For 
a symmetric matrix AAT  . 











32
21

A ;   









32
21TA . 

Example 2.4 Transpose the given matrix 














253
327

A . 

Solution:                       






















23
52

37
TA . 

If the determinant of the matrix A  is zero, i.e. 0det A , 
then such a matrix A  is called singular (degenerate) matrix.  

If the determinant of the matrix A  is not zero, i.e. 
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0det A , then the matrix A  is called non-singular (non-
degenerate) matrix.  

A matrix 1A  is called the inverse matrix of the non-
singular square matrix A , if the condition  

EAAAA   11   

is fulfilled. 
Theorem. The unique inverse matrix 1A  exists for 

arbitrary non-singular square matrix A  of the n -order, and it 
can be calculated by the formula  





















nnnn

n

n

AAA

AAA
AAA

A
A

...
............

...

...

det
1

21

22212

12111

1 , 

where ijA  are cofactors of all elements ija  of the matrix A .  
(Without proof). 

To find the inverse matrix, use the following algorithm: 
1. Calculate the determinant of the matrix Adet . If it 

equals zero, then the inverse matrix does not exist. 
2. Transpose the matrix and get TA . 
3. Calculate cofactors of all elements of the transposed 

matrix TA  and find the inverse matrix 1A . 
4. Check out the equality EAAAA   11 . 

Example 2.5 Find the inverse matrix to the matrix  





















101
212
111

A . 

Solution: Calculate the determinant of the matrix A : 
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1 1 1
det 2 1 2 1 0 2 1 2 0 2 0

1 0 1
A


          , 

so the given matrix A  is a non-singular matrix and we can find 
the inverse matrix 1A .  

Transpose the matrix A  and obtain the matrix TA : 





















121
011
121

TA . 

Calculate cofactors of all elements of the transposed 
matrix TA  and write down the inverse matrix: 

 1 1
11

1 0
1 1

2 1
TA  
    ,      1 2

12

1 0
1 1

1 1
TA     , 

 3 1
13

1 1
1 3

1 2
TA  
   ,      2 1

21

2 1
1 0

2 1
TA    , 

 2 2
22

1 1
1 2

1 1
TA  
    ,      2 3

23

1 2
1 4

1 2
TA  
   , 

 1 3
31

2 1
1 1

1 0
TA   


,      2 3

32

1 1
1 1

1 0
TA  
   , 

 3 3
33

1 2
1 1

1 1
TA  
   


,     























111
420
311

2
11A . 

Check out: 
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1

1 1 3 1 1 1
1 0 2 4 2 1 2
2

1 1 1 1 0 1
A A

     
           
      

 

1 2 3 1 1 0 1 2 3 2 0 0
1 10 4 4 0 2 0 0 4 4 0 2 0
2 2

1 2 1 1 1 0 1 2 1 0 0 2

          
              
            

 

1 0 0
0 1 0
0 0 1

E
 
   
 
 

. 

Thus, the inverse matrix has been found correctly. 

Answer: 






















111
420
311

2
11A . 

Questions for self-control 

1. What is a matrix? 
2. Which of matrix is called non-degenerate? 
3. How are doing the operations of adding (subtracting) 

matrices and multiplying the matrix by the number?  
4. What is the difference between multiplication of the 

matrix by the scalar and the multiplication of the determinant 
by the number? 

5. How is operation of multiplication of the matrixes 
carried out? What are the properties of this operation? 

6. Which of matrix has determinant? 
7. What is an inverse matrix and how is it calculated? 
8. Does any matrix have an inverse matrix? Why? 
9. How can you check the accuracy of the found inverse 
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matrix? 

Tasks for revision 

2.1 Check out the fifth propriety of matrices multiplication 

for the given matrices 
1 2
3 4

A  
  
 

 and 
1 2
3 4

B
  

    
.  

2.2 Find 3A , if 









aa
aa

А .  

2.3 Find the inverse matrix 1A  for the given matrix A  


















211
112
121

А . 

 

3 Systems of linear algebraic equations. Solution of a 
system. Methods of finding the solution of a linear algebraic 

equations system 

A system of linear algebraic equations (SLAE) is a set of 
equations with m  equations and n  unknowns jx  ( 1, )j n , it 
looks like 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

... ;
... ;

...............................................
... ,

n n

n n

m m mn n m

a x a x a x b
a x a x a x b

a x a x a x b

   
    


    

 

where ija  ( 1,i m , 1,j n ) and ib  ( 1,i m ) are given 

numbers: ija  ( 1,i m , 1,j n ) are coefficients of the 
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unknowns;  ib  ( 1,i m ) are the constant terms (right parts).  
A system in which the number of equations is equal to 

the number of unknowns n , is called the square system of the 
n  order.  

The determinant of the square system   

11 12 1

21 22 2

1 2

...

...
det

... ... ... ...
...

n

n
n

n n nn

а a a
a a a

A

a a a

   , 

composed of coefficients of the unknowns, is called the main 
determinant of the system (or the coefficients matrix). 

A system, where all constant terms are zeros, 0ib   

( 1,i m ), is a homogeneous system, but if at least one of the 
constant terms is not equal to zero, then a system will be named 
non-homogeneous.  

A system can be named as compatible if it has one 
solution at least, and a system is incompatible (contradictory) if 
it has no solution.  

A homogeneous system is always compatible, because it 
has at least one trivial (zero-solution) solution 0jx  

( 1, )j n .  
A compatible system is defined if it has the unique 

solution, otherwise this system will be named as indefinite.  
In matrix form the system of equations above can be 

written as:  
A X B  , 

where X  is a matrix-column of unknowns, it has dimension 
1n ; A  is a the coefficients matrix of the system composed of 

coefficients of the unknowns and has dimension as nm ; B  is 
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a matrix-column of the constant terms (right parts), which has 
dimension 1m ; A~  is an augmented matrix of the system 
which has dimension )1(  nm : 





















mx

x
x

X
...

2

1

;   





















mnmm

n

n

aaa

aaa
aaа

A

...
............

...

...

21

22221

11211

;   





















mb

b
b

B
...

2

1

; 

 
11 12 1 1

21 22 2 2

1 2

...

...
... ... ... ... ...

...

n

n

m m mn m

а a a b
a a a b

A A B

a a a b

 
 
    
  
 

 . 

It is clear that the coefficients matrix of a square system 
will also be square, therefore for such a matrix we can try to 
find the inverse matrix. Consider this possibility.  

To do this, we solve the matrix equation A X B  . As 
we know, if a matrix A  is non-singular, we can find the 
inverse matrix, it is 1A . We multiply both sides of the matrix 
equation by the inverse matrix 1A , and have 

BAAXA   11 . 

Considering it EAAAA   11 , we get 

BAXE  1 , 

BAX  1 .                                     (3.1) 

This formula (3.1) is a formula for finding the solution of 
square system and this method is called as the matrix method. 
Thus, if we need to solve SLAE by the matrix method we 
should do the following acts: firstly, find the inverse matrix 
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1A  for the coefficients matrix A  (using the algorithm to find 
the inverse matrix presented at the section 2); secondly, 
multiply the obtained inverse matrix 1A  by the matrix-column 
B  of the constant terms. 

Example 3.1 Solve the system of linear algebraic 
equations by the matrix method 

1 2 3

1 2 3

1 2 3

3 2 1;
2 3;

2 3 4.

x x x
x x x

x x x

  
    
    

 

Solution. Write down the coefficients matrix and find the 
inverse matrix for it (look at the algorithm to find the inverse 
matrix): 






















312
211
123

A , 

3 2 1
det 1 1 2 9 1 8 2 6 6 4 0

2 1 3
A


           


, 

















321
112

213
TA , 

11

1 1
3 2 1

2 3
TA

 
      ,    12

2 1
6 1 5

1 3
TA

 
       ,  

13

2 1
4 1 3

1 2
TA

 
      ,    21

1 2
3 4 1

2 3
TA       ,  
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22

3 2
9 2 7

1 3
TA     ,    23

3 1
6 1 5

1 2
TA        , 

31

1 2
1 2 1

1 1
TA     

 
,    32

3 2
3 4 1

2 1
TA        

 
, 

33

3 1
3 2 1

2 1
TA      

 
,   
























111
571
351

4
11A , 

1

1 5 3 1 1 15 12
1 11 7 5 3 1 21 20
4 4

1 1 1 4 1 3 4
X A B

         
                                   

 

4 1
1 0 0
4

8 2

   
        
      

, 

11 x , 02 x , 23 x . 

Let’s check our results. Substitute the obtained values of 
unknowns 1x , 2x , 3x  in all equations of the system:  

 
 

3 1 2 0 2 3 0 2 1;
1 0 2 2 1 0 4 3;

2 1 0 3 2 2 0 6 4.

        

        

          

 

Since we have got the identities, we can say that our 
obtained values of unknowns 1x , 2x , 3x  are correct. 

Answer: 11 x , 02 x , 23 x . 

You can also use Cramer's Rule to find a solution to a 
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square system, which sometime is called the determinant’s 
method.  

Theorem 3.1 (Cramer's Rule). If a determinant of a 
square system does not equal zero, then the system has one 
unique solution which can be calculated by the formula  

j
jx





, 1,j n ,                                 (3.2) 

where   is a main determinant of the system composed of the 
system equations coefficients ija  before unknowns jx ; j  is 
the auxiliary determinant obtained from the main determinant 
  by replacing j -column with a column of the constant terms 
( 1,j n ). 

For the system of linear algebraic equations, which 
consists of three equations with three unknowns 1x , 2x , 3x , it 
looks like 













.
;

;

3333232131

2323222121

1313212111

bxaxaxa
bxaxaxa
bxaxaxa

 

the solution according to Cramer’s rule is performed as 
follows:  

firstly, we should calculate the main determinant of the 
system composed of the coefficients for variables   

;det

333231

232221

131211

aaa
aaa
aaa

A   

secondly, we should calculate auxiliary determinants 
each of which is obtained by successively replacing the 
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columns of the determinant by a column of the constant terms 
(it is numbers the following in the equations of the system after 
the sign of equal). Doing this we obtain three determinants: 

1 12 13

1 2 22 23

3 32 33

b a a
b a a
b a a

  , 
11 1 13

2 21 2 23

31 3 33

a b a
a b a
a b a

  , 

33231

22221

11211

3

baa
baa
baa

 ; 

thirdly, to find the unknown, we need to use formulas, 
which can be received from the formula (3.2): 




 1
1x ; 




 2
2x ; 




 3
3x .                      (3.3) 

Example 3.2 Solve the square system by Cramer’s rule  

1 2 3

1 2 3

1 2 3

5 3 2;
3 5 4;

2 7 3.

x x x
x x x

x x x

  
   
   

 

Solution. Calculate the system main determinant: 

5 3 1
3 1 5 35 6 15 1 63 50 56 0
1 2 7


          


. 

Calculate the auxiliary determinants: 

1

2 3 1
4 1 5 14 45 8 3 84 20 112
3 2 7


         


, 
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2

5 2 1
3 4 5 140 10 9 4 42 75 168
1 3 7

          , 

3

5 3 2
3 1 4 15 12 12 2 27 40 56
1 2 3


        


. 

According to the formulas (3.3) we can find the value of 
system unknowns 1x , 2x , 3x :  

1
1

112 2
56

x 
  


, 2
2

168 3
56

x 
  


, 3
3

56 1
56

x 
  


. 

Check out:  
5 2 3 3 1 10 9 1 2;
3 2 3 5 1 6 3 5 4;
2 2 3 7 1 2 6 7 3.

       
        
        

 

Answer: 1 2x  , 2 3x  , 3 1x  . 

Example 3.3 Solve a square system 













.234
;1652
;2782

321

321

321

xxx
xxx
xxx

 

Solution. Calculate the main determinant of the system 

036161404219210
134

652
782







. 

Answer: the given system cannot be solved by the 
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Cramer’s rule because the system main determinant equals 
zero. 

In this case we have to use other more universal method, 
which will be examined further. 

Questions for self-control 

1. What kind of the form has a system of m  linear 
algebraic equations (SLAE) with n  unknowns? 

2. Which of a system is called the compatible?  
3. Which of a system is called the defined system? 
4. What is the system of linear algebraic equations which 

has all free terms are zeros? Does such system have a solution? 
How many? 

5. How can we find a solution of a square SLR with an 
inverse matrix? 

6. How should you do the check out of your solution? 
What result can you get? 

7. How to solve the square system of linear equations by 
Cramer’s rule? 

8. Could the main determinant of the system be zero? 
What does it mean? What should you do? 

9. Could the inverse matrix method and Cramer method 
be applied to solve any kind of systems? Explain your answer. 

Tasks for revision 

3.1 Solve the system of equations 1 2

1 2

;
,

ax bx a
bx ax b

 
  

 

( , 0)a b   by two methods: by the inverse matrix method and 
Cramer’s rule.  

3.2 Solve the system of equations by Cramer’s rule  



33 
 

2 3 4

1 3 4

1 2 4

1 2 3

3 4 5;
2 3 4;

3 2 5 12;
4 3 5 5,

x x x
x x x
x x x
x x x

   
    
   
   

 

 

4 Matrices elementary transformations. The concept of the 
rank of the matrix. Kronecker-Capelli theorem. Gaussian 

elimination method  

We select in the matrix A , which has any dimension 
nm , k  rows and k  columns   nmk ,min1  . The 

determinant composed of elements at the intersection of 
selected rows, is called minor kM  of the k  order of the matrix 
A .  

Rank of the matrix A , ( Arang , ( )r A , rank A , rg A ), 
with dimension nm  is the largest (the highest) order of a 
non-zero minor of this matrix.  

It is clear, that  
 nmArang ,min0  ,  

at this the rank is zero only for the zero matrix.  
The principal minor of the matrix A  is called an 

arbitrary non-zero minor, whose order is equal to the rank of 
the matrix.  

A minor 1kM  of the )1( k  order, which contains some 
minor kM  of the k  order, is called the bordering minor for 
this minor kM  or the characteristic minor.  

Definition. A characteristic minor is a minor with 1r  
rows and 1r  columns obtained from the principal minor 
adding like 1r  row the elements from one of the remaining 
rows and the 1r  column is the column of the constant terms. 
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Theorem 4.1 If a matrix A  has non-zero minor 0rM  
of the r  order, and all its characteristic minor 1rM  of the 

)1( r  order equal zero, then the number r  is a rank of the 
martix A .  (Without proof).  

Method of the bordering minors to find the rank of the 
matrix A , which has a dimension as nm , consists of such 
steps:  

1) choose the minor of the first order 1M , which can be 
any number at the first row and doesn’t equal zero.  

2) compute turn by turn the following characteristic 
minor 2M , which has the order larger than the order of the 
previous minor. If any minor of this order doesn’t equal zero, 
then it can be taken as a principal minor and we should 
consider the next minor of a higher order by one. If all of such 
order characteristic minors equal zero, go to the following step 
3.  

3) this order of the characteristic minor is a rank of the 
matrix.  

So, this operation should be carried out gradually and 
considering the minors of all orders. 

Example 4.1 Compute the rank of the given matrix A  by 
method of the bordering minors and point its principal minor  























4262
5562
2131

A . 

Solution. We will consider characteristic minors, starting 
with the minors of the first order and gradually moving to a 
higher order minors. 

011 M ; 
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2

1 3
6 6 0

2 6
M     

 
,   2

1 1
5 2 3 0

2 5
M


    


; 

3

1 3 1
2 6 5 12 12 30 12 12 30 0

2 6 2
M


         


, 

3

1 1 2
2 5 5 20 8 10 20 8 10 0

2 2 4
M


        


; so 2Arang ;  

52
11

2 


M  is a principal minor. 

Answer: 2Arang ; 
52
11

2 


M . 

Elementary transformations of the matrix are the 
following operations:  

1) swapping of any two rows (columns); 
2) multiplying elements of any row by an arbitrary non-

zero number; 
3) adding to all of elements of any row of the 

corresponding elements of any other row, multiplied by the 
same arbitrary number.  

Two matrices A  і B  is called equivalent and denote 
as BA ~ , if one of them can be obtained from another due to 
use elementary transformations. 

Theorem 4.2 Equivalent matrices have the same rank  

BrangArangBA ~ .  
In other words, elementary transformations don’t change the 
rank of matrix.  (Without proof).  
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Elementary transformation method of finding the matrix 
rank consists of the reducing of matrix with dimension nm  
using elementary transformations of the rows and the 
rearrangement of the columns to the equivalent echelon form 
matrix A~  (upper trapezium or upper triangular): 





























 





0...00...00
.....................
0...00...00

~...~1...00
.....................

~...~~...10

~...~~...~1

~
)1(1

2)1(22

1)1(1112

rnr

nrr

nrr

aa

aaa
aaaa

A ,  

in which is non-zero diagonal elements equal unit. Rank of the 
trapezium form matrix A~  equals the number r  of its non-zero 
rows.  

Then rArangArang 
~

.  
For the principal minor rM~  of the trapezium form matrix 

A~  we can take the angular minor   

1...00
............

~...10

~...~1
~ 2

112

r

r

r
a
aa

M  .  

Example 4.2 Compute the rank of the given matrix A  by 
elementary transformation method 

2 3 1 2
3 6 5 5

5 9 6 3
A

 
    
   

. 
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Solution. For convenience, we will change the first and 
third columns: 

2 3 1 2 1 3 2 2
3 6 5 5 ~ 5 6 3 5 ~

5 9 6 3 6 9 5 3
A

    
          
         

 

We multiply the first row by 5  and add it to the second 
row, after it we multiply the first row by  6  and add it to the 
third row; as a result we will get the matrix. Note that the first 
row remains unchanged. 

 
1 3 2 2

~ 0 9 7 15 ~
0 9 7 15

 
 
 
    

 

We add the second row to the third row, don’t change the 
second row: 

1 3 2 2 1 3 2 2 1 3 2 2
~ 0 9 7 15 ~ 0 1 7 9 5 3 ~ 0 1 7 9 5 3

0 0 0 0 0 0 0 0 0 0 0 0

         
     
     
     
     

; 

2rang A r  . 

Answer: 2rang A r  . 

Kronecker-Capelli theorem. A system of m  linear 
algebraic equations with n  unknowns A X B   is compatible 
if and only if the rank of the augmented matrix A  equals to a 
rank of the system main matrix A : rang A rang A r  . In the 
case of compatibility:  

1) if the rank of these matrices is equal to the number of 
unknowns r n , then the system has a unique solution (is 



38 
 

defined);  
2) if this joint rank is less than the number of unknowns 

r n , then the system is indefinite and has an infinite number 
of solutions, which depends on n r  arbitrary constants or 
parameters (Figure 4.3).  

(Without proof)  

 
Since the augmented matrix A~  includes the coefficients 

matrix A , then ArangArang ~
 . The augmented matrix A~  

consists of the coefficients martix A  and complemented by 
only one column, so 1rang A rang A  . 

Let the system be compatible ( rArangArang 
~ ) 

and rM  is some (arbitrarily selected) principal minor of the 
coefficients matrix A .  

If we leave only all those equations in the system, the 
coefficients of which are included in the principal minor, then 
the resulting system will be equivalent to the initial.  

If compatible system is indefinite 
( rang A rang A r n   ), then only those r  unknowns jx , 

System of linear algebraic equations 

Incompatible 
rangAArang 

~

Compatible 
ArangArang 

~  

Defined 
nArangArang 

~
Indefinite 

nArangArang 
~

Figure 4.3 
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whose coefficients are included in the selected principal minor 
rM , are called as principal, and the rest rn   unknowns jx  

are designated as free (or independent, or parameters).  
We will leave in the system only all those equations, 

which coefficients of the minor are included in the principal 
minor, and we will move all the members with free unknowns 
to the right. Considering free unknowns as arbitrary constants, 
we will get a square system of the r  order regarding principal 
unknowns, the determinant of which is the principal minor rM  
(Appendix A). Since 0rM , then principal minors are found 
uniquely. Thereby, we get the general solution to the initial 
system. When free unknowns (parameters) are arbitrarily 
selected fixed values, we obtain a partial solution. A partial 
solution, which is corresponded to zero values of free 
unknowns, is called the fundamental solution.  

Example 4.3 Make sure that the system  

1 2 3

1 2 3

1 2 3

3 2 3;
6 2 1;

3 3 2,

x x x
x x x

x x x

  
   
    

 

is compatible and indefinite. 
Solution. To establish the system compatibility we need 

to define the rank of the coefficients matrix and rank of the 
augmented matrix. To find the rank of the matrix A  we use the 
method of the bordering minors.  




















313
126

213
A ; 

1 3 0M   ; 
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2

3 1
6 6 0

6 2
M     ,   2

1 2
1 5 5 0

2 1
M       


; 

3

3 1 2
6 2 1 18 12 3 12 18 3 0
3 1 3

M          


; 

so 2rang A  ; 05
12

21
2 


M  is the principal minor. 

Find out the rank of the augmented matrix A  by 
elementary transformation method. For convenience, we will 
swap the first column and the second column: 

3 1 2 3 1 3 2 3
6 2 1 1 ~ 2 6 1 1 ~
3 1 3 2 1 3 3 2

A
   
        
         

  

Multiply the first row by  2  and add to the second row, 
then multiply the first row by  1  and add to the third row, at 
the result we have the matrix: 

1 3 2 3 1 3 2 3
~ 0 0 5 5 ~ 0 0 1 1 ~

0 0 5 5 0 0 1 1

   
       
         

 

Add the second row to the third row: 

1 3 2 3
~ 0 0 1 1

0 0 0 0

 
 
 
 
 

, 



41 
 

we get that 2rang A  .  

Since 32~
 nrArangArang , then according 

to Kronecker-Capelli theorem the given system is compatible 
and indefinite.  

Example 4.4 Using Cramer rule, find the general 
solution of the compatible and undefined system  

1 2 3

1 2 3

1 2 3

3 2 3;
6 2 1;

3 3 2,

x x x
x x x

x x x

  
   
    

 

and extract the fundamental solution from the general solution.  
Solution. We accept 2x  and 3x  as principal unknowns 

(they correspond to the columns of the principal minor, look at 
the example 4.3.), and 1x  is a free unknown (it corresponds to 
the column which isn’t included in the principal minor). Let 

11 Cx  , where 1C  is an arbitrary constant (parameter). We 
leave in the system only the first and second equations 
corresponding to the principal minor rows (look at the 
Appendix A). We move the member with a free unknown 

11 Cx   to the right. We get the square system regarding the 
principal unknowns 2x  and 3x , and solve it by Cramer’s rule: 

11 Cx   ;   2 3 1

2 3 1

2 3 3 ;
2 1 6 ,
x x C

x x C
  

   
    

5
12

21
2 


 M ;  

515
161

233
1

1

1)1( 



 C

C
C

;  5
612
331

1

1)2( 




C
C

;  
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 
13

5
515

1
1

1

2 







 CCx ;  
 

1
5
52

3 







x .  

So, the general solution is: 

1 1x C , 2 11 3x C  , 3 1x  , 1C R . 

Let 011 Cx . Then the fundamental solution will have 
a form: 1 0x  , 2 1x  , 3 1x  . 

Answer: 1 1x C , 2 11 3x C  , 3 1x  , 1C R  is the 
general solution; 1 0x  , 2 1x  , 3 1x   is the fundamental 
solution. 

Example 4.5 Find out how many solutions does a system 
of equations that is given by an expanded matrix (or augmented 
matrix)  

1 2 1 0 0
0 1 2 2 1
0 0 3 1 1
0 0 0 0

A

a

   
    
  
 

   

at different values of the parameter a  have. 
Solution. If 0а  , then 4rang A  , and 3rang А  . In 

this case the system is incompatible and it has no solutions. 
If 0а  , 3rang А rang A  , it is less than the number 

of unknowns, the number of which is equal to four. Then one 
of the unknowns should be considered as free, and thus the 
system has a solution for any of its values. Consequently, the 
system has an infinite number of solutions (compatible and 
undefined). 

Consider the problem of applying the method of 
elementary transformations of the matrices known as the 
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Gaussian elimination method to find an arbitrary rectangular 
SLAE solution.  

Suppose we have an arbitrary rectangular system in 
which m  linear algebraic equations and n  unknowns jx  
 nj ,1   

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

... ;
... ;

...............................................
... .

n n

n n

m m mn n m

a x a x a x b
a x a x a x b

a x a x a x b

   
    


    

 

Let us denote A  as the coefficients matrix, and A~  as an 
augmented matrix of the given system. A matrix A~  composed 
from the coefficients matrix A  due to addition to it of a new 
column of the system constant terms. Elementary 
transformations of rows of the augmented matrix A~  and 
swapping of the coefficients matrix A  columns correspond to 
the following equivalent transformations of the linear system 
which are:  

1) swapping any two equations (renumbering of 
equations);  

2) multiplying both parts of any equation by an arbitrary 
non-zero number;  

3) adding to both parts of any equation the corresponding 
parts of another equation, multiplied by an arbitrary number;  

4) renumbering of unknowns. 
The research and solution of the SLAE by Gaussian 

elimination method consists of two stages.  
The first stage of Gaussian elimination method (a 

straight course), is when the augmented matrix A  due to usage 
the elementary transformations is turning into a stepwise 
matrix.  
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A stepwise matrix (echelon form matrix) is a matrix, 
elements of which that are under the main diagonal, equal to 
zero. 

In order, to achieve this matrix form, it is necessary to 
perform sequential extraction of unknowns using the specified 
equivalent system transformations. First of all, we should pick 
out the first equation and, accordingly, the first unknown. 
Assume, that 011 a . If this condition is not satisfied, then the 
equations are rearranged and/or renumbered unknown so that 
this coefficient is non-zero. Then gradually add the first 
equation to the second equation, then to the third equation, etc. 
up to the last, multiplied by some factors. These factors are 
chosen so that when adding the first coefficients, in each case, 
zero is obtained. Then the second equation and accordingly the 
second unknown is allocated. We should repeat this procedure 
for adding the second equation to all others, while adhering to 
the advice that when adding other coefficients, in each case, a 
zero have to be obtained. This process continues until it 
reaches the last lowest equation or the situation, where the 
selected equation and all the equations below it, have only zero 
coefficients for unknowns. 

If a matrix has acquired a triangular form during 
performing those transformations (Figure 4.4), then a system is 
defined compatible and it has a unique solution. Its solution 
can be found through carrying out the second stage of Gaussian 
elimination method (the inverse course). To do this, obtained 
matrix should be written in the form of a system of linear 
equations and, after it, we can solve this system moving "from 
the bottom up", starting with the last equation, which is the 
common linear equation. Having obtained value of kx  we plug 
in at the previous upper equation and find a value of 1kx  and 
continue to do the same acts. 
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                Figure 4.4                                     Figure 4.5 

If at the result of those transformations matrix has a 
trapezium form (figure 4.5), then the system is compatible 
indefinite and it has infinite set of solutions. We reject zero 
equations (identities 00  ). All members that contain free 
unknowns are transferred to the right part. Thus, we get the 
system of the upper triangular shape (figure 4.4) relative to the 
principal unknown and solve it, moving from the bottom up. 
First of all, we should find the principal unknown kx  from the 
last equation. After this, we put this obtained value kx  at the 
penultimate equation and define a value 1kx   from it, continue 
to do the same acts until a value of 1x  is found. 

Example 4.6 Solve the system of equations from 
example 3.2 by Gaussian elimination method and compare 
answers. 

Solution. Write down the augmented matrix of the given 
system: 

1 2 3

1 2 3

1 2 3

5 3 2; 5 3 1 2
3 5 4; 3 1 5 4

2 7 3, 1 2 7 3

x x x
x x x

x x x

     
        

       

. 

For convenience we will swap the first and the second 
rows: 

5 3 1 2 1 2 7 3
3 1 5 4 ~ 3 1 5 4 ~
1 2 7 3 5 3 1 2

     
       
       
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We will exclude the first coefficients from the first 
column below the first row. For this we will add the first row 
multiplied by )3(  to the second row and add the first row 
multiplied by )5(  to the third row. Then we will exclude 
coefficients from the second column below the second row. At 
the result we have: 

1 2 7 3
~ 0 1 ( 2) ( 3) 5 7 ( 3) 4 3 ( 3) ~

5 3 1 2

  
            
  

 

1 2 7 3 1 2 7 3
~ 0 7 26 5 ~ 0 7 26 5 ~

0 3 ( 2) ( 5) 1 7 ( 5) 2 3 ( 5) 0 7 34 13

     
         
                  

 

1 2 7 3 1 2 7 3
~ 0 7 26 5 ~ 0 7 26 5

0 7 7 26 34 13 5 0 0 8 8

     
         
            

. 

The obtained matrix has a triangular form, thus, our 
system will have a unique solution, which can be found and 
let’s do it. Let us make and solve a system of equations: 

1 2 3 1 2 3 1 2 3

2 3 2 3 2

3 3 3

2 7 3; 2 7 3; 2 7 3;
7 26 5; 7 26 5; 7 26 1 5;

8 8, 1, 1,

x x x x x x x x x
x x x x x

x x x

          
               
      

 

1 2 3 1 1

2 2 2

3 3 3

2 7 3; 2 3 7 3; 2;
7 21; 3; 3;

1, 1, 1.

x x x x x
x x x
x x x

         
        
      
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As we can see, our answers coincided with previously 
obtained values. (Conclusion to be made by yourself). 

Answer: 1 2x  , 2 3x  , 3 1x  . 

Example 4.7 Solve the system of linear algebraic 
equations: 

1 2 3 5

1 2 3 4 5

2 3 5

1 2 3 4 5

4 4 0;
2 2 1;

2 2 1;
2 2 4 4 1.

x x x x
x x x x х

х х х
х x x х x

   
      
    
      

 

Solution. Write our system as the augmented matrix:  

1 4 4 0 1 0
1 2 1 1 2 1

0 2 1 0 2 1
2 2 4 1 4 1

А

   
      
      

 . 

Get zeros at the first column. For this we add the 
elements from the first row to the corresponding elements from 
the second row, after it we multiply the first row by 2  and add 
to the fourth row: 

1 4 4 0 1 0
0 2 3 1 1 1
0 2 1 0 2 1
0 6 4 1 2 1

А

   
     
     

 . 

Now, we will get zeros at the second column, for this we 
will do the following: multiply the second row by ( 1)  and 
add to the third, and then multiply the second row by ( 3)  and 
add to the fourth row: 
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1 4 4 0 1 0
0 2 3 1 1 1
0 0 2 1 1 0
0 0 5 2 1 4

   
   
 
     

 

Next, we will swap the third and fifth columns: 

5 3

01 4 1 0 4
10 2 1 1 3
00 0 1 1 2
40 0 1 2 5

x x 
  

  
 

 
   

 

Further, we will get zeros at the third row, for this: add 
the elements from the third row to the corresponding elements 
from the fourth row: 

5 3

01 4 1 0 4
10 2 1 1 3
00 0 1 1 2
40 0 0 3 7

x x 
  

  
 

 
  

. 

At the result of those transformations, our matrix has 
acquired a trapezium form (Figure 4.5), that means that the 
given system is indefinite, compatible and it has unlimited 
number of solutions.  

System can be rewritten as:   

1 2 5 3

2 5 4 3

5 4 3

4 3

4 4 0;
2 3 1;

2 0;
3 7 4.

x x x x
x x x х
х х х

х x

   
    
   
   
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Let 3 1x C , where 1C  is arbitrary constant. Move all 
members with a free unknown 3 1x C  to the right. We get the 
system of the upper triangular form (Figure 4.4) regarding the 
principal unknowns (look an example at the appendix A) 1x , 

2x , 4x , 5x  and solve this system, moving from the bottom up: 

1 2 5 1

2 5 4 1

5 4 1

4 1

4 4 ;
2 1 3 ;

2 ;
3 4 7 ,

x x x C
x x x C

х х C
х C

   
    
  
   

 

 

1 1 2 5

2 1 5 4

5 1 4

4 1

4 4 ;
2 1 3 ;

2 ;
1 7 4 ,
3

x C x x
x C x x

х C х

х C

   
    
  

  


   

1 1 2 5

2 1 5 4

5 1 1 1

4 1

4 4 ;
2 3 1;

7 4 1 42 ;
3 3 3 3

7 4 ,
3 3

x C x x
x C x x

х C C C

х C

   
    

      



 
  

1 1 2 5

2 1 1 1 1 1

5 1

4 1

4 4 ;
1 1 4 7 4 1 1 5 1 53 1 ;
2 3 3 3 3 2 3 3 6 6

1 4 ;
3 3

7 4 ,
3 3

x C x x

x C C C C C

х C

х C

   


                    


  

  
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1 1 1 1 1

2 1

5 1

4 1

2 10 1 4 11 144 ;
3 3 3 3 3 3

1 5 ;
6 6

1 4 ;
3 3

7 4 ,
3 3

x C C C C

x C

х C

х C

         

  

   


  


  

1 1

2 1

3 1

4 1

5 1

11 14 ;
3 3

1 5 ;
6 6

;
7 4 ;
3 3

1 4 .
3 3

x C

x C

x C

х C

х C

   

  
 

  



  


 

Let 3 6x t , t R , then the general solution will be as 
the following: 

1
1422
3

x t   , 2
5
6

x t  , 3 6x t , 4
414
3

х t  , 5
42
3

х t   . 

We will check the obtained solution: 
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14 5 422 4 2 4 6 0;
3 6 3

5 4 42 2 14 3 6 1;
6 3 3

4 42 14 2 6 0;
3 3

43 14 7 6 4,
3

t t t t

t t t t

t t t

t t

                     
                     

       


          

 

14 10 4 14 10 422 4 2 24 0;
3 3 3 3
5 4 4 5 4 42 2 14 18 1;
3 3 3 3

4 4 4 42 14 12 0;
3 3 3 3

42 4 42 4.

t t t t

t t t t

t t t

t t

         


           



       

    

 

Answer: 1
14 223x t  , 2

5
6x t  , 3 6x t , 4

414
3

x t  , 

5
4 2
3

x t  , t R . 

Questions for self-control 

1. What is the matrix rank? 
2. How can we calculate the rank of the matrix by the 

method of bordering minors? 
3. What operations are called elementary transformations 

of the matrix? 
4. What matrices are called equivalent? 
5. How can we calculate the rank of the matrix by 

method of elementary transformations? 
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6. Formulate the Kronecker-Capelli theorem for linear 
systems. 

7. Does the system have a solution if the rank of the 
augmented matrix is greater than the rank of the basic matrix? 

8. How is an arbitrary SLAE solved by the Gaussian 
elimination method? 

9. Is it possible to determine the consistency of the 
system using the Gaussian elimination method? Explain your 
answer. 

10. Tell the sequences of operations of the straight course 
of Gaussian elimination. 

11. How can we know by performing the Gaussian 
elimination method that the system does not have a solution? 

12. What is the difference between the fundamental 
solution and the general solution? How should we find them? 

Tasks for revision 

4.1 Find out at which parameters а  and b  the system 
will be the compatible. 

1 2 3

1 2 3

1 2 3

2 3 ;
4 5 6 ;
7 8 9 0.

x x x а
x x x b
x x x

  
   
   

  

4.2 Solve the system of linear algebraic equations using 
the one of the learned methods 
















.0
;652
;432

;32

4321

431

432

4321

xxxx
xxx
xxx

xxxx
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4.3 Solve the system of linear algebraic equations using 
the Cramer’s rule and Gauss elimination method, and compare 
obtained results 

1 2 3

1 2 3

1 2 3

2 3 9;
2 4;

3 2 4 3.

x x x
x x x

x x x

   
   
   

 

4.4 Solve the system of equations by Gaussian 
elimination method 

2 5;
3 4 18;
5 6 39;
7 8 68;
9 10 55.

x y
y z
z u
u v
v x

 
    
  

 

 

4.5 Explore the system of equations for compatibility  

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

3 5 7 9 1;
2 3 4 5 ;

2 11 12 25 22 4.

x x x x x
x x x x x

x x x x x

    
     
     

 

 

5 Gauss- Jordan elimination method 

Gauss-Jordan elimination method is based on elementary 
transformations of the augmented matrix rows  

11 12 1 1

21 22 2 2

1 2

...

...
... ... ... ... ...

...

n

n

m m mn m

a a a b
a a a b

A

a a a b

 
 
   
  
 

  
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of the system 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

... ;
... ;

...............................................
... .

n n

n n

m m mn n m

a x a x a x b
a x a x a x b

a x a x a x b

   
    


    

 

At the result of each of elementary transformations the 
augmented matrix is changing, however, the system of 
equation corresponded to the obtained matrices is equivalent to 
the initial system. 

Suppose the system of m  linear equations with n  
unknowns is given. Using the elementary transformations, we 
will build an equivalent system of a special form. As the first 
equation, we choose the one in which the coefficient of 1x  is 
not equal to zero. Suppose that 11 0а  , then the first system is 

11 1 12 2 1 1... n na x a x a x b    . 

Multiply the first row by 
11

1
a

. Then multiply the first row 

by ( 1iа ), ( 2,3,...,i m ) and add it term by term to the 
equations with numbers as 2,3,...,i m . After these 
transformations at the equation with numbers 2i   we will 
provide the exclusion of 1x . The first step of Gauss-Jordan 
elimination method is finished. The equivalent augmented 
matrix has a form: 

(1) (1) (1)
12 1 1
(1) (1) (1)

(1) 22 2 2

(1) (1) (1)
2

1 ...
0 ...
... ... ... ... ...
0 ...

n

n

m mn m

a a b
a a b

A

a a b

 
 
   
  
 

 . 
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It may happen that at the first step, the variable 1x  and 
unknowns 

12 3, ,...,
kj

x х х


 ( 1kj n  ), will be excluded together, 
but there will be at least one of the equation in which the 
unknown 

kj
x  remains. One of these equations will be taken as 

the second equation of the system. In this case, an augmented 
matrix (1)A  corresponding to the resulting system will look like 

(1) (1) (1) (1)
12 1 1 1

(1) (1) (1)
2 2(1) 2

(1)(1) (1)

1 ... ...

0 0 ... ...
...... ... ... ... ... ...

0 0 ... ...

k

k

k

j n

j n

mmj mn

a a a b
a a b

A

ba a

 
 
 

  
 
 
 

 . 

We use the second equation to exclude an unknown 
kj

x of 
all equations except the second one. After the second step of 
Gauss- Jordan elimination method we get the equivalent matrix 

(2)A  which looks like 

1

1

1

(2) (2) (2) (2)
12 1 1 1

(2) (2) (2)
2 2(2) 2

(2)(2) (2)

1 ... 0 ...

0 0 ... 1 ...
...... ... ... ... ... ... ...

0 0 ... 0 ...

k

k

k

j n

j n

mmj mn

a a a b
a a b

A

ba a







 
 
 

  
 
 
 

 . 

Continuing the process, after r  steps we get a matrix 
( )rA  containing r  unit columns in a place of the first n  

columns of the matrix A  ( r  is a rank of the matrix A  of the 
system). 

There are three possible cases: 
1. If ( ) ( )rang A rang A n  , the matrix A  transformed 

into a matrix 
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(n)
1
(n)
2

( ) (n)

1 0 0 ... 0
0 1 0 ... 0
... ... ... ... ...
0 0 0 ... 1
0 0 0 ... 0 0
... ... ... ... ... ...
0 0 0 ... 0 0

n
n

b
b

A b

 
 
 
 
 

  
 
 
 
 
 

 . 

The system has a unique solution:  
( )

1 1
nx b , ( )

2 2 ,...,nх b  ( )n
n nх b . 

2. If ( ) ( )rang A rang A r   and r n , then  

( ) ( ) ( )
1, 1 1 1
( ) ( ) ( )
2, 1 1 2

( ) ( ) ( ) ( )
, 1

1 0 0 ... 0 ...
0 1 0 ... 0 ...
... ... ... ... ... ... ... ... ...
0 0 0 ... 1 ...
0 0 0 ... 0 0 ... 0 0
... ... ... ... ... ... ... ... ...
0 0 0 ... 0 0 ... 0 0

r r r
r n

r r r
r n

r r r r
r r rn r

a a b
a a b

A a a b







 
 
 
 
 

  
 
 
 
 
 

 . 

The system has an infinite set of solutions. The general 
solution has a form as 

( ) ( ) ( )
1 1 1, 1 1 1

( ) ( ) ( )
2 2 2, 1 1 2

( ) ( ) ( )
, 1 1

... ;

... ;

.................................................
... .

r r r
r r n n

r r r
r r n n

r r r
r r r r r rn n

x b a x a x

x b a x a x

x b a x a x

 

 

 

   

   

   
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Unknowns 1 2, ,..., rx х х  are called principal unknowns, 
and unknowns 1 2, ,...,r r nx х х   are called free unknowns. 

Free variables 1 2, ,...,r r nx х х   can acquire any values, 
while the principal variables 1 2, ,..., rx х х  will depend on these 
values. At the result we get unlimited set of the particular 
solutions. 

Among the partial solutions of the system, we select the 
basic solutions that are obtained if all free unknown systems 
are zero 

( ) ( ) ( )
1 1 2 2 1, ,..., , 0,..., 0r r r

r r r nx b х b х b х х     . 

In the general case, the number of basic solutions does 
not exceed r

nC . 
3. If ( ) ( )rang A rang A  , then  

( )( ) ( )
11, 1 1
( )( ) ( )
22, 1 1

( ) ( )( ) ( )
, 1

( )
1

( )

1 0 0 ... 0 ...
0 1 0 ... 0 ...

...... ... ... ... ... ... ... ...
0 0 0 ... 1 ...
0 0 0 ... 0 0 ... 0

...... ... ... ... ... ... ... ...
0 0 0 ... 0 0 ... 0

rr r
r n

rr r
r n

r rr r
rr r rn

r
r

r
n

ba a
ba a

A ba a
b

b









 
 




 




 












, 

where at least one of the elements r
ib , 1r i m   , is different 

from zero. In this case the system is incompatible. 

Thus, Gauss-Jordan elimination method consists of r  
iterations ( r  steps). On each S  iteration we select the guiding 
element ( 1)

, 0
S S

S
i ja   , where ,S Si j  are respectively, the guide row 

and the column. Due to elementary transformations, the 
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column Sj  is converted into a unit column with a unit at the 
row Si .  

Example 5.1 Solve the system of linear equations 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

2 5 4 20;
2 10 9 7 40;

3 2 11;
3 8 9 2 37

x x x x
x x x x

x х х х
х x x х

   
    
    
    

 

by Gauss-Jordan elimination method. 
Solution. Write down the augmented matrix of the given 

system of equations: 
2 5 4 1 20
2 10 9 7 40
1 3 2 1 11
3 8 9 2 37

A

 
 
   
  
 

 . 

The first step. Swap the first row and the third row: 

1 3 2 1 11
2 10 9 7 40
2 5 4 1 20
3 8 9 2 37

A

 
 
   
  
 

 . 

Multiply the first row by  2  and add to the second row 

and to the third row, then multiply it by  3  and add to the 
fourth row. We get the equivalent the augmented matrix of the 
system: 
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(1)

1 3 2 1 11
0 4 5 5 18
0 1 0 1 2
0 1 3 1 4

A

 
 
     
    

 . 

The second step. Swap the second row and the third row: 

(1)

1 3 2 1 11
0 1 0 1 2
0 4 5 5 18
0 1 3 1 4

A

 
      
    

 . 

Multiply the second row by 4  and add to the third row, 
then multiply the second row by  1  and add to the fourth: 

(2)

1 3 2 1 11
0 1 0 1 2
0 0 5 1 10
0 0 3 0 6

A

 
 
   
  
 

 . 

The third step. Swap the third row and the fourth row: 

(2)

1 3 2 1 11
0 1 0 1 2
0 0 3 0 6
0 0 5 1 10

A

 
 
   
  
 

 . 

Multiply the third row by 1
3

, then multiply the third row 

by  5  and add to the fourth, we get: 
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(3)

1 3 2 1 11
0 1 0 1 2
0 0 1 0 2
0 0 0 1 0

A

 
 
   
  
 

 . 

The forth step. Multiply the fourth row by  1  and add to 
the second row, after it add the result to the first row: 

(4)

1 3 2 0 11
0 1 0 0 2
0 0 1 0 2
0 0 0 1 0

A

 
 
   
  
 

 . 

The fifth step. Multiply the third row by  2  and add to 
the first row: 

(5)

1 3 0 0 7
0 1 0 0 2
0 0 1 0 2
0 0 0 1 0

A

 
 
   
  
 

 . 

The sixth step. Multiply the second row by  3  and add 
to the first row: 

(6)

1 0 0 0 1
0 1 0 0 2
0 0 1 0 2
0 0 0 1 0

A

 
 
   
  
 

 . 

So, the solution of the system is: 1 1x  , 2 2х  , 3 2х  , 

4 0х  . 
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Check out: 

2 1 5 2 4 2 0 2 10 8 0 20;
2 1 10 2 9 2 7 0 2 20 18 0 40;
1 3 2 2 2 0 1 6 4 0 11;
3 1 8 2 9 2 2 0 3 16 18 0 37.

          
            
          
            

 

Answer: 1 1x  , 2 2х  , 3 2х  , 4 0х  .

 
Example 5.2 Solve the system of linear equations 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

2 3 0;
2 4;

5 5 4 4;
8 7 7 8

x x x x
x x x x
x х х х
х x x х

   
    
     
     

 

by Gauss-Jordan elimination method. 
Solution. Write down the augmented matrix of the 

system: 

1 2 3 1 0
1 1 1 2 4
1 5 5 4 4
1 8 7 7 8

A

  
     
    

 . 

The first step. Multiply the first row by  1  and add to 
the second row. We get the equivalent augmented matrix: 

(1)

1 2 3 1 0
0 3 2 3 4
0 3 2 3 4
0 6 4 6 8

A

  
      
    

 . 

The second step. Add the second row to the third row, 
then multiply the second row by 2  and add to the fourth row: 
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(2)

1 2 3 1 0
0 3 2 3 4
0 0 0 0 0
0 0 0 0 0

A

  
     
  
 

 . 

The third step. Divide the second row by  3 , then 

multiply the second row by  2  and add to the first row, and 
we have: 

(3)

1 0 5 3 1 8 3
0 1 2 3 1 4 3
0 0 0 0 0
0 0 0 0 0

A

 
     
  
 

 . 

The matrix (3)A  defines the general solution of the 
system: 

1 3 4
8 5
3 3

x x x   , 2 3 4
4 2
3 3

х x x    , 

where 1x , 2х  are principal unknowns, 3x , 4х  are free 
unknowns. We get one of the particular solution, let 3 0x  , 

4 0х   , then 1
8
3

x  , 2
4
3

х   . 
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Check out: 

8 4 8 82 0 0 0;
3 3 3 3
8 4 120 0 4;
3 3 3
8 4 8 20 125 0 0 4;
3 3 3 3 3
8 4 8 32 248 0 0 8.
3 3 3 3 3

       

     
           

           


 

Answer: 1 3 4
8 5
3 3

x x x   , 2 3 4
4 2
3 3

х x x    .

 Example 5.3 Solve the system of linear equations  

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

2 3 4 5;
2 3;
4 2 10 12 2;

4 2 2 3 2

x x x x
x x x x
x х х х

х x x х

   
    
    
    

 

by Gauss-Jordan elimination method. 
Solution. Write down the system augmented matrix 

2 1 3 4 5
2 1 1 1 3
4 2 10 12 2
4 2 2 3 2

A

   
      
    

 . 

The first step. Multiply the first row by  1  and add to 

the second, then multiply the first row by  2  and add to the 
third row and fourth row, we get: 
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(1)

2 1 3 4 5
0 0 4 5 2
0 0 16 20 8
0 0 4 5 8

A

   
      
    

 . 

The second step. Multiply the second row by  4  and 

add to the third row, then multiply the second row by  1  and 
add to the fourth row, we get: 

(1)

2 1 3 4 5
0 0 4 5 2
0 0 0 0 0
0 0 0 0 6

A

   
     
   

 . 

The system is incompatible, because the obtained 
equation 1 2 3 40 0 0 0 6x x x x          from the fourth row 
doesn’t have a solution at whatever values of the variables 1x , 

2х , 3х , 4х . 

Answer: the given system is incompatible.

 
Questions for self-control 

1. What is the basis of Gauss-Jordan elimination method? 
2. Is it possible to use Gauss-Jordan method to establish 

the consistency of the linear system? 
3. What is common and different in Gaussian elimination 

method and Gauss-Jordan elimination method? 
4. What is the difference between the basic variables and 

free variables? 
5. In which case the system of equations has an infinite 

set of solutions? 
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6. How to distinguish basic solutions among partial 
solutions? 

Tasks for revision 

5.1 Compute the rank of a matrix by Gauss-Jordan 
elimination method  

1 2 3 1
2 3 1 3
3 1 2 5
2 2 2 3

A

 
 
 
 
 
 

. 

5.2 Solve the given system by Gauss-Jordan elimination 
method

  
1 2 3

1 2 3

1 2 3

1 2 3

1 2

2 3 14;
3 2 10;

6;
2 3 5;

3.

x x x
x x x

x x x
x x x

x x

  
      
   
  

 

5.3 Solve the given system by Gauss-Jordan elimination 
method 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

2;
2 2 5;

2 3 2 1;
2 3 6 10.

x x x x
x x x x

x х х х
х x x х

    
     
     
     
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6 Application of Gauss-Jordan elimination method for 
finding the inverse matrix 

Consider the application of Gauss-Jordan elimination 
method to find the inverse matrix 1A . Take the equation 
A Х Е   , where A , Х  are square matrices with a dimension 
n n  , and Е  is the unit matrix. Obviously, that matrix 
equation A Х Е   has a unique solution 1Х А . The 
solution of given matrix equation is reduced to a solution of n  
systems with n  linear equations to n  unknowns looks like  

1 1 2 2 ...i j i j i n n j i ja x a x a x e    , , 1,i j n , 

where 
1, ;
0, .i j

i j
e

i j


  
 This system of equations corresponds to 

the augmented matrix ( )A A E . Applying Gauss-Jordan 
elimination method to the matrix A~ , we get matrix 

( ) ( )nA E B . Let us show that 1В A . The augmented matrix 
( )nA  corresponds to the matrix equation Е Х В  , which has a 

unique solution Х В . We obtained this matrix ( ) ( )nA E B  

from the matrix ( )A A E  by Gauss-Jordan elimination 
method. Therefore, systems of linear equations that correspond 
to matrices ( )E B  і ( )A E , are equivalent, i.e., they have the 

same solution. It follows that 1В A , that is ( ) 1( )nA E А  . 
So, to calculate an inverse matrix 1A , for a non-singular 

matrix A , it is necessary to write down the augmented matrix 
( )A A E , then at the matrix A  we should transform the 

matrix A  into a unite matrix by Gauss-Jordan elimination 
method, and then we get an inverse 1A  on the place of the unit 
matrix E . 
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Example 6.1 Calculate the inverse matrix by Gauss-
Jordan elimination method for this matrix 

1 2 1
1 6 1

2 6 12
A

 
    
 
 

.

 
Solution. Write down the augmented matrix   

1 2 1 1 0 0
1 6 1 0 1 0

2 6 12 0 0 1
A

  
    
 
 

 .

 
The first step. Add the first row to the second row, then 

the first row multiplied by  2  and add it to the third row, we 
get: 

(1)

1 2 1 1 0 0
0 8 2 1 1 0
0 2 14 2 0 1

A
  
   
  

   

The second step. Multiply the second row by 1
8 , then 

multiply the second row by  2  and add to the third row: 

(2)

1 2 1 1 0 0 1 2 1 1 0 0
0 1 1 4 1 8 1 8 0 0 1 1 4 1 8 1 8 0
0 2 14 2 0 1 0 0 29 2 9 4 1 4 1

A
     
         
        

 . 

The third step. Multiply the third row multiplied by 2
29 ; 

multiply the third row by 1
4  and add to the second row; the 

third row add to the first row: 



68 
 

(3)

1 2 1 1 0 0
0 1 1 4 1 8 1 8 0
0 0 1 9 58 1 58 2 29

A
  
    
   

  

1 2 1 49 58 1 58 2 29
0 1 0 5 58 7 58 1 58
0 0 1 9 58 1 58 2 29

   
   
   

. 

The fourth step. Multiply the second row by  2   and 
add to the first row: 

(4)

1 0 0 39 58 15 58 1 29
0 1 0 5 58 7 58 1 58
0 0 1 9 58 1 58 2 29

A
  
   
   

 . 

Thus, the inverse matrix 1A  has the form: 

1

39 58 15 58 1 29
5 58 7 58 1 58
9 58 1 58 2 29

A

 
   
   

 or 1

78 30 4
1 10 14 2

116
18 2 8

A

 
   
   

. 

Check out: 

1

78 30 4 1 2 1
1 10 14 2 1 6 1

116
18 2 8 2 6 12

A A

    
           
       

 

78 30 8 156 180 24 78 30 48
1 10 14 4 20 84 12 10 14 24

116
18 2 16 36 12 48 18 2 96

       
          
         
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116 0 0 1 0 0
1 0 116 0 0 1 0

116
0 0 116 0 0 1

E
   
        
   
   

. 

So, the inverse matrix was found correctly. 

Answer: 1

78 30 4
1 10 14 2

116
18 2 8

A

 
   
   

. 

Questions for self-control 

1. In which case can you use Gauss-Jordan method 
except for the solution of systems? 

2. How to find the inverse matrix using Gauss-Jordan 
method? 

3. What are the differences between the algorithm for 
finding the inverse matrix and applying the method for this 
purpose? 

4. What transformations do we use in Gauss-Jordan 
method for the search of the inverse matrix? Give examples. 

5. Could we find the inverse matrix for any matrix? 
Why? 

Tasks for revision 

6.1 Find the matrix inverse to the given matrix using 
Gauss-Jordan method  

1 2 3
2 3 1
3 1 2

A
 
   
 
 

,. 
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6.2 Find the matrix inverse to the given matrix using 
Gauss-Jordan method  

1 2 3 4
4 1 2 3
3 4 1 2
2 3 4 1

A

 
 
 
 
 
 

. 

6.3 Find the matrix inverse to the matrix using Gauss-
Jordan elimination method 

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

A

 
  
 
 

 

. 

6.4 Find the matrix inverse to the matrix using Gauss-
Jordan elimination method  

1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

A

 
 
 
 
 
 

. 

 

7 Linear models of "input-output" and their application 
for the analysis of the enterprise economic activity  

The model «input-output», which is also called as a 
model inter-industry balance by Leontief, it is a background of 
many linear models of the manufacturing sector of the 
economy. Really, an input-output model is a quantitative 
economic technique that represents the interdependencies 
between different branches of a national economy or different 
regional economies. Vassily Leontief (1906–1999) is credited 
with developing of this analysis type and earned the Nobel 
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Prize in Economics for this model in 1973. 
The purpose of balance analysis is the search of the 

answer to the question of the macroeconomic level associated 
with the efficiency of conducting a multi-sectoral economy. 
Namely, what should be the volume of production of each of 
the n  industries to satisfy the needs of products in it. The 
connection between different industries, which may be both 
producers of some products and consumers of a particular 
product or service, is often provided in the form of inter-
industry balance sheets. In order to analyze them in 1938, 
economist V. Leontief work out his mathematical model. 

Consider the process of production (provision of 
services) for a certain period of time and introduce some 
designations: ix  is the total (gross) volume of production i  
industry ( ni ,...,2,1 ); ijx  is the volume of production of this 
industry consumed in the production process j  industry 
( nji ,...,2,1,  ); iy  is the volume of the final product of the i  
industry, which is not used for production. Since the gross 
volume of production of any one i  industry is equal to the total 
volume of products consumed by industries and the final 
product, then  





n

j
iiji yxx

1
, ( ni ,...,2,1 ), 

which is called the balance sheet ratio. 
The balance sheet ratio can be presented as: 

a) in a form 



n

j
iijiji yxax

1
  ( ni ,...,2,1 )                  (3) 

where 
j

ij
ij x

x
a   ( nji ,...,2,1,  ) are coefficients of direct 

expenses, which indicate the expenses of products of i  industry 
for production of per unit of  j  industry; 
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Note 7.1 If the coefficient ija  is a constant and isn’t 
dependent on the established production technology, then it 
will point out the linear dependence of material expenses on 
gross output, that is  

jijij xax  , ( nji ,...,2,1,  ). 

As a result, the inter-industry balance will be called 
linear. 

 b) in a matrix form 

YAXX   
                          or            YXAE  )( ,                                (4) 

where 





















nx

x
x

X
...

2

1

, 





















nnnn

n

n

aaa

aaa
aaа

A

...
............

...

...

21

22221

11211

, 





















ny

y
y

Y
...

2

1

, 

X  is a vector of gross output, Y  is a vector of the final product, 
A  is a matrix of direct expenses. 

The main goal of inter-industry balance is to find such a 
vector of a gross output X , which with a known matrix of 
direct expenses A  provides a given vector of the final product 
Y . 

Vector X  of gross output is found by the formula: 

YSYAEX  1)( ,                                (5) 

where the matrix 1)(  AES  is called the matrix of  full 
expenses, each element of which ijs  points out an amount of a 
gross output of i  industry, which is necessary to ensure the 
release of the unit of the final product j  industry 1iy  
( nj ,...,2,1 ). 
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Note 7.2 A matrix 0A  is productive, if a solution 
0X  for equation (4) exists for any vector 0Y . In this case 

linear model is called productive. 
There are several criteria by which a matrix A  is 

considered productive. So, if the matrix A  is productive, then 
the maximum of the sums of elements of its column does not 
exceed one, at least for one of the columns the sum of elements 
is less than one. So, a matrix A  is productive, if 0ija  for any 

nji ,...,2,1,   and 



n

i
ijnj

a
1,...,2,1

1max , and there exists number j  

such that 



n

i
ija

1
1 . 

The net production of the branch is called the difference 
between the gross output of this branch and the expenses of 
production of all branches for the production of this branch. 

We use the definitions above for solving some tasks. 
Example 7.1 The coefficients of direct costs and final 

product of branches for the planned period are presented in the 
table 7.1 (in conventional currency): 

Table 7.1 

Branch Consumption Final 
product branch 1 branch 2 

Production branch 1 0,35 0,25 350 
branch 2 0,27 0,14 280 

Find: 
1) planned about the gross production of goods, interim  

deliveries, net products of the goods; 
2) the required volume of gross output of each industry, 

if the final consumption of products of the first industry will 
increase by 15 %, and the second industry will increase 
by 20 %. 
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Solution: 1) write down the direct expenses matrix A  
and the vector of final products: 











14,027,0
25,035,0

A ,   









280
350

Y . 

Notice that the matrix A  is productive, because its 
elements are positive and the sum of the elements at the each 
row is less than one. 

To find the direct expenses matrix, we find the matrix 
AE  : 

1 0 0,35 0,25 0,65 0, 25
0 1 0, 27 0,14 0, 27 0,86

E A
     

             
. 

Hence, the matrix of full costs   1 AES  is based on 
the previously considered algorithm for finding the inverse 
matrix: 

  4915,00675,0559,0
86,027,0
25,065,0

det 



 AE , 

  












86,025,0
27,065,0TAE , 

86,011 TA , 25,0
12
TA , 27,0

21
TA , 65,0

22
TA , 

  
















 

32,155,0
51,075,1

65,027,0
25,086,0

4915,0
11AES . 

Find the vector X  of the gross product by the formula 
above: 







































1,562
3,755

6,3695,192
8,1425,612

280
350

32,155,0
51,075,1

YSX . 
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The first row of the matrix X  corresponds to branch 1, 
and the second row corresponds to branch 2. 

We can find intersectoral supplies ijx  using the following 
formula:    

jijij xax  , 
35,2643,75535,011111  xax
53,1401,56225,021212  xax , 
93,2033,75527,012121  xax

69,781,56214,022222  xax . 
The net production of the industry is equal to the 

difference between the gross output of this branch and the 
expenses of production of all branches for the production of 
this branch. 

So, the production expenses of all branches are:  
- for the first branch: 

28,46893,20335,2642111  xx ; 

- for the second branch: 

22,21969,7853,1402212  xx . 

Finally, we have the following net products for 

- the first branch: 02,28728,4683,755  ; 

- the second branch: 88,34222,2191,562  . 

2) find the final consumption vector Y , taking into 
account that the final consumption of the first branch will 
increase by 15 %, and the second branch will increase by 20 %: 






















336

5,402
2,1280

15,1350
Y . 
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The latter makes it possible to find a vector X  of gross 
output , which provides a given vector Y  of the final product 
under a known matrix of direct expenses A : 

1,75 0,51 402,5 704,38 171,36 875,74
0,55 1,32 336 221,38 443,52 664,9

X S Y
       

                   
. 

Note 7.3 Data on total daily sales for the four stores is 
given in the table 7.2. 

Table 7.2 
Kind of 
products 

store 
№ 1 № 2 № 3 № 4 

product 1 35 51 36 70 
product 2 30 46 35 61 
product 3 50 49 52 48 

 
The contents of this table can be presented in the form of 

a rectangular matrix which has a dimension 34: 

35 51 36 70
30 46 35 61 .
50 49 52 48

А
 
   
 
 

 

Then it is easy to interpret every element of it. For 
example, the element 32а  means, that the volume of the third 
product which have been sold in the second store is 49.  

Example 7.2 Data on the aggregate supply of goods by 
some logistics company in the first and second quarters of the 
year are written by matrices: 

35 51 36 70
30 46 35 61
50 49 52 48

А
 
   
 
 

,   
34 40 31 60
21 40 32 69
44 40 48 32

В
 
   
 
 

. 
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Find data on the total volume of deliveries by logistics 
company for the first half of the year specified.  

Solution. The requested data can be found by adding the 
given matrices and the result will be presented in this form: 

35 51 36 70 34 40 31 60
30 46 35 61 21 40 32 69
50 49 52 48 44 40 48 32

С А В
   
          
   
   

 

69 91 67 130
51 86 67 130
84 89 100 80

 
   
 
 

. 

Example 7.3 The store sells every day 45 pcs. of some 
goods for 1 UAH for a piece, 30 pcs. of some goods for 2 UAH 
for a piece and 50 pcs. of some goods for 0,5 UAH for a piece. 
Calculate the daily income from the sale of all goods. 

Solution. We write down the given data about the sold 
goods as a matrix-row x , and the given data about the price of 
goods as a matrix column p : 

 45 30 50x  ,  1 2 0,5p  . 

Then the desired profit can be written as the product of 
matrices x  and Tp . Note that Tp  is a transpose matrix of the 
matrix p . 

1
2

0,5

Tp
 
   
 
 

, 
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 
1

45 30 50 2 45 30 2 50 0,5 130
0,5

TS x p
 
            
 
 

. 

Example 7.4 A trading company carries out retail, 
wholesaling of various goods, as well as sales through the 
Internet. Data on daily sales are recorded in the table 7.3: 
Table 7.3 

Sale 
Product (price) 

product 1  
(1 thousand) 

product 2  
(2 thousand) 

product 3 
(0,5 thousand) 

retail 45 30 50 
wholesale 38 25 40 
by Internet 20 15 20 

 
Calculate daily profits from the sale of each type of 

service separately. 

Solution. We write down data on daily sales as a matrix:  

45 30 50
38 25 40
20 15 20

А
 
   
 
 

, 

and data on prices (in thousands of UAH) as a column matrix: 

1
2

0,5
p

 
   
 
 

. 

The desired daily incomes (or profits) 1u , 2u , 3u  from 
the sale of each of the three types of goods can be written as a 
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matrix column u  and defined as the product of matrices  А and 
p : 

1

2

3

45 30 50 1
38 25 40 2
20 15 20 0,5

u
u u A p

u

     
             
     
     

 

45 1 30 2 50 0,5 130
38 1 25 2 40 0,5 108
20 1 15 2 20 0,5 60

       
            
          

. 

Example 7.5 The company produces three kinds of 
products: pies, cakes and brownies; and uses three types of raw 
materials 1 2 3, ,S S S . The raw material consumption rates for 
one type of product and the volume of their consumption for 
one day for production of each product are presented in the 
table 7.4: 
Table 7.4 

Type of 
raw 

materials 

Raw material consumption rates 
for one type of product, standard 

units  

The volume of 
raw material 
consumption 
for one day, 

standard units pie cake brownie 

1S  5 3 4 2700 

2S  2 1 1 800 

3S  3 2 2 1600 
 

Find the daily output of each type of products. 
Solution. Let the company produces 1x  pies, 2x  cakes, 

3x  brownies. Then according to the raw material costs of each 
type we have a system: 
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1 2 3

1 2 3

1 2 3

5 3 4 2700;
2 800;

3 2 2 1600.

x x x
x x x

x x x

  
   
   

 

(The system should be solved by yourself) 
When we solved this system, we get 1 200x  , 2 300x  , 

2003 x , that is: the company produce 200 pies, 300 cakes and 
200 brownies.   

Example 7.6 The manufacturing company offers three 
types of goods using four types of resources. Resource 
consumption rates of i  goods to provide the production unit of 
j  kind of goods is given at the matrix А . Suppose that for a 

certain period of time the enterprise will offer the quantity of 
each type of goods, which is given by the matrix Х , and the 
cost of each type of resources per unit is presented in the form 
of a matrix Р : 





















945
826
348
974

А , 

















495
230
275

Х ,  452510160Р . 

Find: 
а) a matrix S of the total expenses of resources of each 

type for the preparation of all goods for a certain period; 
б) a matrix C  of the total cost of all spent resources for a 

certain period. 
Solution: a) a matrix of the total expenses of resources of 

each type for the preparation of all goods for a certain period 
can be found by formula XAS  : 
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4 7 9 4 275 7 230 9 495
275

8 4 3 8 275 4 230 3 495
230

6 2 8 6 275 2 230 8 495
495

5 4 9 5 275 4 230 9 495

S

       
                                    

 

1100 1610 4455 7165
2200 920 1485 4605
1650 460 3960 6070
1375 920 4455 6750

    
        
    
   

    

; 

б) a matrix of the total cost of all spent resources for a 
certain period can be found due to using formulas С Р A X    
or С Р S  : 

 

7165
4605

160 10 25 45 1647950
6070
6750

С

 
 
   
 
 
 

. 

Consequently, the total cost of the spent resources is 
1647950 of monetary units. 

Questions for self-control 

1. In what field of research are matrices applied? 
2. What is an input–output model? 
3. What could be analyzed by Leontief’s model? 
4. How can we know if consumption matrix is productive 

or not? 
5. What is resulting demand? How we can find it? 
6. What is an amount of production vector? 
7. Are systems used to perform economic analysis? Give 

some examples. 
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Tasks for revision 

7.1 The direct costs and final product of branches for the 
planned period (in conventional monetary units) are given in 
the table 7.5: 
Table 7.5 

Branch Consumption final 
product branch 1 branch 2 

Production branch 1 0,25 0,4 200 
branch 2 0,15 0,3 400 

Find: 1) planned gross production of goods, interim 
deliveries, net products of the goods; 2) the required volume of 
gross output of each branch, if the final consumption of 
products of the first industry will increase by 10 %, and if the 
final consumption of products of the second industry will 
increase by 20 %. 

7.2 Given matrix S  of full costs of some model of inter-
industry balance.  Find: а) increase in gross output 1X , which 
would ensure the growth of the final product 1Y ; б) increase 
in the final product 2Y , which corresponds to the growth of 
gross output 2X : 

0,5 1, 2 0,3
0, 4 0, 2 1,1
0,7 0,6 0, 2

S
 
   
 
 

, 1

20
10
30

Y
 
    
 
 

, 2

5
20
15

X
 
    
 
 

. 

 

8 The homogeneous square systems of linear algebraic 
equations 

As previously stated (look at page 3) the homogeneous 
rectangular SLAE, having the matrix equation as 0AX , is 
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always compatible and has a trivial (zero) solution, that is 
0X . This statement is true because, according to Kroneker-

Kappelli theorem, the rank of the augmented matrix  0~ AA   
equals the rank of the coefficients matrix A . The zero solution 

0X  will be unique if their common rank of matrices equals 
the number of the system unknowns. Otherwise, the 
homogeneous SLAE will have an infinite set of solutions.  

Therefore, we can formulate the following theorem for 
the square system of linear equations.  

Theorem 8.1 The homogeneous square system 0AX  
has a non-zero solution then and only if the determinant of a 
system equals zero, 0det A . In the case if the determinant is 
different from zero, a system has only a zero solution.  

Example 8.1 Find a value of the parameter  , for which 
the homogeneous square system  













0
053
07

321

321

321

xxx
xxx
xxx




 

has a non-zero solution (or an infinite set of solutions).  
Solution: As we know, the given system can have a non-

zero solution (according to the theorem 8.1), if the main 
determinant equals zero, 0det  A , so we write down this 
determinant and equate it to zero. We solve the equation:  

0
11

531
71






;  03382   ;   11;3 21  . 

Answer: This system will have a non-zero solution if 
value of parameter is 3  or 11 . 
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Example 8.2 Make sure that given homogeneous square 
system has an infinite set of solutions. Find its general solution 
and any non-zero partial solution:  

1 2 3

1 2 3

1 2 3

2 3 0;
3 2 0;
2 0.

x x x
x x x
x x x

  
   
   

 

Solution: 0
121
231
312

det 


 A .  

Hereby, our system has an infinite set of solutions. We 
solve this system by Gaussian elimination method.  

The straight course: Swap the first row and the second 
row 

  ~
0
0
0

121
312
231

0~



















 AA  

multiply the first row by )2(  and add it to the second row; 
subtract the first row from the third row and the second row 
from the third row. In the result we have a matrix 









































0
0
0

000
150

231
~

0
0
0

150
150

231
~ . 

As we can see, after performing the row operations on 
the augmented matrix of a homogeneous system of linear 
equations the last column of the matrix is all zeros. Any one of 
three allowable row operations will convert zeros to zeros and 
thus, the final column of the matrix in reduced row-echelon 
form will also be all zeros. So in this case, we may likely refer 
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only to the coefficient matrix because we remember that the 
final column consists of zeros, and after any number of row 
operations have been performed, is still zero. 

Thus,  
32~

 nrArangArang , 

There are 21 , xx   which are the basic unknowns;  3x  is a 
free unknown.  

The reverse course. From the last row we get 00 3 x . As 
we know that the solution of such an equation is any value of 

3x , so free unknown can be accepted for an arbitrary constant 
(parameter), namely: tx 3 , Rt . We compose the system of 
equations from the obtained matrix, without taking into 
consideration of the zero-row, and solve it. 

1 2 3

2 3

2 2 0;
5 0.

x x x
x x

  
  

 

Remove all elements which have a free unknown 3x  to 
the right. The obtained system has an upper triangular form 
relative to principal unknowns 21 , xx :  

1 2 3

2 3

2 2 ;
1 .
5

x x x

x x

  





  

Solve the given system, starting from the last equation.  

tx 3 ;  tx
5
1

2  ; ttttxx
5
82

5
1222 21  . 

Thus, the general solution is  

tx
5
8

1  ;   tx
5
1

2  ;   tx 3 ,   Rt . 
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Let us 5t . Then we have a non-zero particular 
solution as:  81 x ;   12 x ;   53 x .     

Answer: tx
5
8

1  , tx
5
1

2  , tx 3 , Rt  is the general 

solution; 81 x , 12 x , 53 x  is the particular solution. 

Example 8.3 Solve the system 













.02
;053
;074

321

321

321

xxx
xxx
xxx

 

Solution. Calculate the main determinant of system 

754427403
112
531

741






. 

According to theorem 8.1, this system has only one 
unique solution as zero-solution: 0321  xxx . 

Answer: 0321  xxx . 

Questions for self-control 

1. What is a homogeneous system? 
2. How many solutions can a homogeneous system have? 
3. Formulate the condition for the presence of non-zero 

solutions in a square SLAE. 
4. How are block matrices used to solve SLAE and find 

the inverse matrix? 
5. What should you do to find the non-zero solution of a 

homogeneous system? 
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Tasks for revision 

8.1 Solve the system 
1 2 3

1 2 3

1 2 3

5 3 0;
3 5 0;

2 0.

x x x
x x x

x x x

  
   
   

 

8.2 Solve the system 
1 2 3

1 2 3

1 2 3

5 3 0;
3 5 0;

2 10 6 0.

x x x
x x x
x x x

  
   
   

 

8.3 Solve the system 

1 2 3

1 2 3 4

1 2 3 4

1 2 3

5 3 0;
3 5 0;

2 10 6 0;
5 3 0.

x x x
x x x x

x x x x
x x x

  
    
    
    

 

 

9 Eigenvalues and eigenvectors of the matrix 

Let n  be an arbitrary fixed natural number. Any ordered 
set of n  real numbers 1 2( , , ... , )nx x x  is called the n -
dimensional point M , so 1 2( , , ... , )nM x x x . Set of n -
dimensional points is called n -dimensional point space nR . 
Numbers 1 2, , ... , nx x x  are coordinates of the point M . The 
number n  is called a space dimension. 

Let A  be a square matrix having dimension n  by n . 
Consider the corresponding linear mapping of a space nR  by 
itself: y Ax

  . If the non-zero vector x  and a number   are 
such at which the equality Ax x

   is performed, then one 
says that   is the eigenvalue of a matrix A , and x  is the 
eigenvector corresponding to the eigenvalue  .  

Consequently, the multiplication of the matrix by its 
eigenvector is equivalent to multiplication of the eigenvalue 
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with this vector. The mentioned matrix equation can be 
presented in the form: 

Ax Еx
  , ( ) 0A Е x 

 . 
This homogeneous square system of linear equations has 

non-zero solution x  then and only then if its determinant 
equals zero: 

det( ) 0A Е  . 

This equation is called a characteristic equation of a 
matrix A . The corresponding polynomial 

( ) det( )f A Е    

is called a characteristic polynomial of a matrix A . 
The characteristic equation can be written in expanded 

form as: 

11 12 1

21 22 2

1 2

...

...
0

... ... ... ...
...

n

n

n n nn

а а а
а а а

а а а













. 

The eigenvalues j  ( 1, )j n  are the roots of 
characteristic equation. 

Set of all eigenvalues j  ( 1, )j n  of the given matrix is 
called its spectrum. 

If some eigenvalue   is known, then the corresponding 
eigenvector can be found from the homogeneous system 
( ) 0A Е x 

 . 

Properties of eigenvalues: 
1. Each eigenvector corresponds to the one eigenvalue. 
2. If x  is an eigenvector and   is its eigenvalue, then an 
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arbitrary vector x , 0 , which is a collinear vector to the 
vector x , and also it is an eigenvector with the same 
eigenvalue  . Thus, a eigenvector is defined up to an arbitrary 
non-zero multiplier. Usually unit eigenvectors are isolated. 

3. If 1x  and 2x  are eigenvectors of matrix А  which have 
the same eigenvalue as  , then their sum 1 2x x

   is eigenvector 
of matrix А  and it has the same eigenvalue as  . 

4. The determinant of the matrix А  equals to the product 
of all its eigenvalues: 

1 2
1

det ...
n

j n
j

A


     . 

5. Trace of an n -by- n  square matrix А  is defined as a 
sum of the elements of the main diagonal 

11 22
1

...
n

i j nn
j

SpA a a a a


     . Trace of the matrix А  equals 

to the sum of all its eigenvalues 

1 2
1

...
n

j n
j

SpA


        . 

Example 9.1 Find eigenvalues and eigenvectors of the 
matrix 

1 2
2 1

A  
  
 

. 

Solution. We compose and solve the characteristic 
equation: 

0A E  , 

1 2 1 0 1 2 0
2 1 0 1 2 1 0

A E


 


       
            

       
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1 2
2 1



 

   
, 

    21 2
1 1 4 1 2 4

2 1
A E


    




           


 

2 2 3    ,  2 2 3 0    , 

   22 4 1 3 4 12 16D          , 

 
1

2 16 2 4 3
2 1 2


   

  


, 

 
2

2 16 2 4 2 1
2 1 2 2


    

    


. 

Thus, our values 1 3  , 2 1    are the eigenvalues. 
Find the corresponding eigenvectors. 
Let 1 3  , we substitute it into a homogeneous system of 

equations: 

  1

2

0
x

A E
x

 
   

 
 , 

1

2

1 2
0

2 1
x
x




   
      

, 1

2

1 3 2
0

2 1 3
x
x

   
      

, 

1

2

2 2
0

2 2
x
x

   
      

. 

We will solve the system of equations: 1 2

1 2

2 2 0;
2 2 0.

x x
x x

  
  
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We get from these two equations that 1 2x x . Let 2 1x  , 

then 1

2

1
1

x
x

   
   
  

. Thereby, the eigenvalue 1 3   corresponds 

to the eigenvector 1

1
1

X  
  
 

. 

Let 2 1   , we substitute it into a homogeneous system 
of equations: 

  1

2

0
x

A E
x

 
   

 
 , 1

2

1 2
0

2 1
x
x




   
      

, 

 
 

1

2

1 1 2
0

2 1 1
x
x

    
        

, 1

2

2 2
0

2 2
x
x

  
   

   
. 

We will solve the system of equations: 1 2

1 2

2 2 0;
2 2 0.

x x
x x
 

  
 

From those two equations we get: 1 2x x  . Let 2 1x  , 

then 1

2

1
1

x
x

   
   
  

. Thereby, the eigenvalue 2 1    

corresponds to the eigenvector 2

1
1

X
 

  
 

. 

Answer: 1 3  , 2 1   , 1

1
1

X  
  
 

, 2

1
1

X
 

  
 

. 

Example 9.2 Find eigenvalues and eigenvectors of the 
matrix 
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1 1 1
1 1 1
1 1 1

A
 

   
   

. 

Solution. We compose and solve the characteristic 
equation: 

0A E  , 

1 1 1 1 0 0 1 1 1 0 0
1 1 1 0 1 0 1 1 1 0 0
1 1 1 0 0 1 1 1 1 0 0

A E


  


        
                   
                 

 

1 1 1
1 1 1
1 1 1






  
   
    

, 

after this we calculate the determinant of the obtained matrix 
as: 

 
1 1 1

det 1 1 1 0
1 1 1

A E


 


 
   

  
, 

1 1 1 1 1 1
(1 ) 1 1 0

1 1 1 1 1 1
 


 

 
      

     
, 

     1 1 1 1 ( 1 1) (1 1 ) 0                 , 

   21 1 1 2 0          ,  

    21 2 2 1 0       , 
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   21 4 0    , 

solving this equation, we get: 

1 1  ,   2,3 2   . 

Thus, the eigenvalues are 1 1  , 2,3 2   . 
Further, we find the corresponding eigenvector. 
Let 1 1  , we substitute it into a homogeneous system of 

equations: 

 
1

2

3

0
x

A E x
x


 
    
 
 

,  

1

2

3

1 1 1
1 1 1 0
1 1 1

x
x
x






    
        
        

,  

1

2

3

1 1 1 1
1 1 1 1 0
1 1 1 1

x
x
x

    
        
        

, 

1

2

3

0 1 1
1 0 1 0
1 1 2

x
x
x

   
       
       

. 

We will solve the system of equations: 
1 2 3

1 2 3

1 2 3

0 0;
0 0;

2 0.

х x x
x х x

x x x

  
   
   
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We have: 2 3x x , 1 3x x  , 3x R . Let 3 1x  , then 

1

2

3

1
1
1

x
x
x

   
      
   
   

. Thereby, the eigenvalue 1 1   corresponds to the 

eigenvector 1

1
1
1

X
 
   
 
 

. 

Let 2 2  , we substitute it into a homogeneous system 
of equations: 

 
1

2

3

0
x

A E x
x


 
    
 
 

,  
1

2

3

1 1 1
1 1 1 0
1 1 1

x
x
x






    
        
        

, 

1

2

3

1 2 1 1
1 1 2 1 0
1 1 1 2

x
x
x

    
        
        

,  
1

2

3

1 1 1
1 1 1 0
1 1 3

x
x
x

    
        
       

. 

We will solve the system of equations:  

1 2 3

1 2 3

1 2 3

0;
0;

3 0.

x x x
x x x

x x x

   
   
   

 

We have:             
1 2 3

2 3

3

0;
2 0;

0 0,

x x x
x x

x

  
  
  

 
3

2 3

1 3

;
2 ;

.

x R
x x
x x


 
 
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Let 3 1x  , then 
1

2

3

1
2
1

x
x
x

   
      
   
   

. Thereby, the eigenvalue 

2 2   corresponds to the eigenvector 

















1
2
1

2X . 

Let 3 2   , we substitute it into a homogeneous system 
of equations: 

 
1

2

3

0
x

A E x
x


 
    
 
 

, 

1

2

3

1 1 1
1 1 1 0
1 1 1

x
x
x






    
        
        

, 

1

2

3

1 2 1 1
1 1 2 1 0
1 1 1 2

x
x
x

    
        
        

, 
1

2

3

3 1 1
1 3 1 0
1 1 1

x
x
x

   
       
      

. 

We will solve the system of equations:  

1 2 3

1 2 3

1 2 3

3 0;
3 0;

0.

x x x
x x x

x x x

  
   
   
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We have:             
1 2 3

2 3

3

3 0;
2 0;
0 0,

x x x
x x
x

  
  
  

 

3

2 3

1 3

;
1 ;
2

1 .
2

x R

x x

x x



  


 


 

Let 3 1x  , then 
1

2

3

1
2

1
2

1

x
x
x

 
   
          

 

. Thereby, the eigenvalue 

3 2    corresponds to the eigenvector 3

1
2

1
2

1

X

 
 
 
 
 
 

. 

Answer: 1 1  , 3 2   , 2 2  , 1

1
1
1

X
 
   
 
 

,  


















1
2
1

2X , 3

1
2

1
2

1

X

 
 
 
 
 
 

. 

Questions for self-control 

1. What is the characteristic equation? What can we get 
from the characteristic equation? 

2. What is a root of the characteristic equation? 
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3. What are the eigenvalues and eigenvectors of the 
square matrix? 

4. What do we name the eigenvalues and eigenvectors? 
5. Formulate the properties of the eigenvalues and 

eigenvectors. 
6. What are differences between eigenvalues and 

eigenvectors? 

Tasks for revision 

9.1 Find the eigenvalues and eigenvectors of the matrix  

1 100
100 1

A  
  
 

. 

9.2 Find the eigenvalues and eigenvectors of the matrix  

a b c
A c a b

b c a

 
   
 
 

. 

9.3 Find the eigenvalues and eigenvectors of the matrix 

3 1 1
1 5 1

1 1 3
A

 
    
  

. 

 

10 Matrix polynomials 

Let A  be a square matrix with an arbitrary dimension n . 
If at the arbitrary polynomial  

1
0 1 1( ) ...m m

m mf x a x a x a x a
      

we substitute a matrix А  instead of х , then we get  
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1
0 1 1( ) ...m m

m mf А a А a А а А а Е
     , 

which is called as polynomial of the matrix А  (the matrix 
polynomial). 

Note 10.1 Algebraic actions can be carried out on matrix 
polynomials as well as on ordinary polynomials. 

Cayley-Hamilton theorem. An arbitrary square matrix 
is a root of its characteristic matrix polynomial. 

(Without proof). 

Example 10.1 Check out that the given matrix 

1 3
4 2

A  
  
 

 

is a root of its characteristic matrix polynomial? 
Solution. Find the characteristic matrix polynomial: 

21 3
( ) det( ) 3 10

4 2
f A Е


   




     


. 

Calculate ( )f А : 
2

2 1 3 1 3 1 0
( ) 3 10 3 10

4 2 4 2 0 1
f А А А Е      

           
     

 

1 1 3 4 1 3 3 2 3 9 10 0
4 1 2 4 4 3 2 2 12 6 0 10
          

                  
 

13 3 10 9 9 0 0 0
12 12 0 16 6 10 0 0

      
          

. 
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Questions for self-control 

1. What is a matrix polynomial? 
2. What arithmetic operations can we do with matrix 

polynomial? 
3. Formulate the Cayley-Hamilton theorem about a 

characteristic polynomial. 
4. What should you do to check out if the matrix is a root 

of the characteristic equation? 
5. How can we solve SLAE by the method of simple 

iterations? 

Tasks for revision 

10.1 Find the value of the polynomial 

2( ) 3 5 2f x x x    of the matrix 
1 0 0
2 1 0
3 2 1

A
 
   
 
 

.  

10.2 Find the value of the matrix polynomial 

2( ) 2 3 5f A A A E   , if 

















114
131
211

A , and E  is identity 

matrix of the third order. 
10.3 Find the value of the matrix polynomial 

( ) 7f A A E  , if 
0 0

0
a

A a a
a a a

 
   
 
 

, and E  is identity matrix of 

the third order. 
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11 Application the systems of linear algebraic equations in 
chemistry 

In chemistry, when solving certain problems, 
mathematical methods are used. In particular, the solution of 
systems of linear algebraic equations is used, for example, to 
analyze mixtures and calculate the equilibrium of 
multicomponent systems. Consider the examples. 

Example 11.1 Let us mix, under controlled conditions, 
toluene 7 8C H  and nitric acid 3HNO  to produce trinitrotoluene 

7 5 6 3C H O N  along with the byproduct water. In what 
proportions should they be mixed? 

Solution. The number of atoms of element before the 
reaction must equal the number of its atoms after the reaction: 

7 8 3 7 5 6 3 2xC H y HNO z C H O N t H O   . 

Applying that to the elements C , H , N , and O  gives 
the following system: 

7 7 ;
8 5 2 ;

3 ;
3 6 ,

x z
x y z t

y z
y z t


   
 
  

   or   

7 7 0;
8 5 2 0;

3 0;
3 6 0.

x z
x y z t

y z
y z t

 
    
  
   

 

We obtained a homogeneous system of linear algebraic 
equations. Let us solve it by the Gauss method. An augmented 
matrix of the system has the form: 

7 0 7 0
8 1 5 2
0 1 3 0
0 3 6 1

 
   
 
 

  

. 
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Let us divide the first row by 7 . Then we multiply the 
first row by ( 8)  and add to the second one: 

1 0 1 0 1 0 1 0
8 1 5 2 0 1 3 2

~ ~
0 1 3 0 0 1 3 0
0 3 6 1 0 3 6 1

    
        
    
   

      

 

Multiply the second row by ( 1)  and add to the third 
one, then by ( 3)  and add to the fourth row: 

1 0 1 0
0 1 3 2

~ ~
0 0 6 2
0 0 15 5

 
  
 
 

 

 

Divide the fourth row by ( 5) . Then we will interchange 
the third and fourth rows. Further, we multiply the third row by 
2  and add to the fourth one: 

1 0 1 0 1 0 1 0 1 0 1 0
0 1 3 2 0 1 3 2 0 1 3 2

~ ~ ~
0 0 6 2 0 0 3 1 0 0 3 1
0 0 3 1 0 0 6 2 0 0 0 0

       
            
       
     

      

. 

As a result of transformations, the matrix has a trapezium 
form, which means the system is indefinite, consistent and has 
many solutions. 

The system can be written in the form: 
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0;
3 2 0;

3 0.

x z
y z t
z t

 
   
  

 

Let t k , where k R . Remove the members with a 
free unknown t k  to the right side. We obtain the system of 
the upper triangular form with respect to the basic unknowns 
x , y , z  and solve it, rising from the bottom up: 

0;
3 2 ;

3 ,

x z
y z k
z k

 
  
 

   

0;
3

3 2 ;
3

,
3

kx

ky k

kz

  

   

 

   

;
3

2 ;

,
3

kx

y k k
kz

 


 

 


   

;
3
;

.
3

kx

y k
kz

 




 


 

That is, the general solution has the form: 

3
kx  , y k , 

3
kz  , t k , k R . 

Let us check the obtained solution: 

7 7 0;
3 3

8 5 2 2 0;
3 3

3 0;
3

3 6 3 2 0.
3

k k

k kk k k k k

kk k k

kk k k k k

    

         

     


       


 

The solution set has many vectors besides the zero vector 
(if we take k  to be a number of molecules then solution makes 
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sense only when k  is a nonnegative multiple of 3). 

Answer: 
3
kx  , y k , 

3
kz  , t k , k R . 

Example 11.2 When dissolved in acid, 2.33 g of a 
mixture of iron and zinc, 896 mL of hydrogen were obtained. 
How many grams of each metal were in the mixture? 

Solution. The task says about the interaction of a mixture 
of metals with acid. So, at the same time there are two 
reactions: zinc with acid and iron with acid. Herewith, the 
corresponding salts are formed, and hydrogen is emitted, the 
total volume of which is 896 L: 

2Fe 2HCl FeCl H   ,   2 2Zn 2HCl ZnCl H   . 

First way. Let it be the mixture x  g of iron and y  g of 
zinc: 

1

2

g L
Fe 2HCl FeCl H
56g 22,4 L

x y
   ,   

2

2 2

g L
Zn 2HCl ZnCl H
65g 22,4 L

y y
   . 

According to the condition of the problem: 

1 2

2,33;
0,896,

x y
y y
 

  
 

   
2,33;

22, 4 22,4 0,896,
56 65

x y
x y

 



 

    
2,33;

0, 4 0,345 0,896.
x y

x y
 

  
 

Let us solve the system by the Cramer’s rule: 

1 1
0,345 0, 4 0,055

0, 4 0,345
      , 
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1

2,33 1
0,80385 0,896 0,09215

0,896 0,345
      , 

2

1 2,33
0,896 0,932 0,036

0, 4 0,896
      , 

1 0,09215 1,68
0,055

x  
  
 

,   2 0,036 0,65
0,055

y  
  
 

. 

Second way. Let in a mixture x  moles of iron and y  
moles of zinc be, then (Fe) 56m x , and (Zn) 65m y . And 
the system of equations will take the form: 

56 65 2,33;
22, 4 22, 4 0,896.

x y
x y
 

  
 

Let us solve the system by the Cramer’s rule: 

56 65
1254,4 1456 201,6

22, 4 22, 4
      , 

1

2,33 65
52,192 58, 24 6,048

0,896 22, 4
      , 

2

56 2,33
50,176 52,192 2,016

22, 4 0,896
      , 

1 6,048 0,03
201,6

x  
  
 

,   2 2,016 0,01
201,6

y  
  
 

. 

Then 

(Fe) 56 0,03 1,68m     g, а (Zn) 65 0,01 0,65m     g. 

Answer: (Fe) 1,68m   g, (Zn) 0,65m  g. 
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Example 11.3 Four tanks with solutions of sulfuric acid 
of different concentrations are given. Basic data are presented 
in the table 11.1. If one mixes the solutions in certain ratios, an 
acid of a given concentration will be received. Determine the 
concentration of acid in each vessel. 

Table 11.1 
Concentration ratio Final acid concentration, % 

1:1:1:1  13 
4 :3 : 2 :1  34 
4 :1:1: 4  25 
4 :1: 4 :1  25 

 
Solution. Let 1x , 2x , 3x , 4x  be unknown concentrations 

of solutions of sulfuric acid in four tanks. Then 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

13;
4 3 2 34;
4 4 25;
4 4 25.

x x x x
x x x x
x x x x
x x x x

   
    
    
    

 

Let us solve the system by Gaussian elimination method. 
An augmented matrix of the system has the form: 

1 1 1 1 13
4 3 2 1 34
4 1 1 4 25
4 1 4 1 25

 
 
 
 
  
 

. 

Multiply the first row by ( 4)  and add to the second, 
third and fourth ones. Then we multiply the second row by 
( 3)  and add to the third and fourth ones. Further, we multiply 
the third row by ( 2)  and add to the fourth one: 
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1 1 1 1 13 1 1 1 1 13
0 1 2 3 18 0 1 2 3 18

~ ~
0 3 3 0 27 0 0 3 9 27
0 3 0 3 27 0 0 6 6 27

   
             
     
           

 

1 1 1 1 13
0 1 2 3 18

~
0 0 3 9 27
0 0 0 12 27

 
     
 
    

. 

The resulting matrix has a triangular form, therefore, the 
system will have a unique solution: 

1 2 3 4

2 3 4

3 4

4

13;
2 3 18;

3 9 27;
12 27,

x x x x
x x x
x x

x

   
    
  
  

   

1 2 3 4

2 3 4

3

4

13;
2 3 18;

93 9 27;
4

27 9 ,
12 4

x x x x
x x x

x

x

   
    

   

 

 
 

   

1 2 3 4

2 3 4

3

4

13;
2 3 18;

81 273 27 ;
4 4

9 ,
4

x x x x
x x x

x

x

   
    

   






   

1 2 3 4

2

3

4

13;
9 92 3 18;
4 4

9 ;
4
9 ,
4

x x x x

x

x

x

   

      





 
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1 2 3 4

2

3

4

13;
18 27 72 18 27 2718 ;
4 4 4 4

9 ;
4
9 ,
4

x x x x

x

x

x

   
          





 

   

1

2

3

4

27 9 9 13;
4 4 4
27 ;
4

9 ;
4
9 ,
4

x

x

x

x

    

 


 


 


   

1

2

3

4

27 9 9 52 45 713 ;
4 4 4 4 4

27 ;
4

9 ;
4
9 .
4

x

x

x

x

      

 


 


 


 

Let us check out the obtained solution: 

7 27 9 9 52 13;
4 4 4 4 4

7 27 9 9 28 81 18 9 1364 3 2 34;
4 4 4 4 4 4 4 4 4
7 27 9 9 28 27 9 36 1004 4 25;
4 4 4 4 4 4 4 4 4
7 27 9 9 28 27 36 9 1004 4 25.
4 4 4 4 4 4 4 4 4

     

            


           


           

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Answer: The concentration of acid in the first vessel is 
7
4

 %, in the second one – 27
4

 %, in the third and fourth vessels 

– 9
4

 %. 

Example 11.4 By mixing 30% and 60% acid solutions 
and adding 10 kg of pure water, a 36% acid solution was 
obtained. If, instead of 10 kg of water, we added 10 kg of a 
50% solution of the same acid, we would get a 41% solution of 
the acid. How many kilograms of a 30% solution could be used 
to make a mixture? 

Solution. Let the mass of the 30% acid solution be x  kg, 
and the mass of the 60% acid solution be y  kg. If 30% and 
60% acid solutions are mixed and 10 kg of pure water is added, 
a 36% acid solution will be obtained: 

0,3 0,6 0,36( 10)x y x y    . 

If instead of 10 kg of water, 10 kg of a 50% solution of the 
same acid was added, you would get a 41% solution of acid: 

0,3 0,6 0,5 10 0,41( 10)x y x y      . 

Thus, we obtained the system of equations: 

0,3 0,6 0,36( 10);
0,3 0,6 0,5 10 0, 41( 10),

x y x y
x y x y
   

      
 

0,3 0,6 0,36 0,36 3,6;
0,3 0,6 5 0, 41 0,41 4,1,

x y x y
x y x y
   

     
 

0,06 0,24 3,6; : 0,06

0,11 0,19 0,9, 10

x y

x y

   


  
   

4 60;
11 19 90.
x y

x y
  

  
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Let us solve the system by the inverse matrix method. To 
do this, we will find the inverse matrix for the matrix of the 
system: 

1 4
11 19

A
 

   
,   

1 4
19 44 25

11 19
A


     


, 

1 11
4 19

TA  
    

,   11 19A   ,   12 4A  ,   21 11A   ,   22 1A  , 

1 19 41
11 125

A  
   

. 

Let us check the correctness of finding the inverse 
matrix: 

1 19 4 1 4 19 44 76 761 1
11 1 11 19 11 11 44 1925 25

A A          
                  

 

25 0 1 01
0 25 0 125

   
    

   
. 

The inverse matrix is found correctly. Find the unknowns 
of the system: 

1 19 4 60 1140 3601 1
11 1 90 660 9025 25

X A B        
                

 

1500 601
750 3025

   
    

   
. 

Answer: 60 kg. 
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Tasks for revision 

11.1. 5 g of magnesium chloride is obtained by treating 
6.5 grams of a mixture of magnesium oxide and magnesium 
bromide with hydrochloric acid: 

2 2MgO 2HCl MgCl H O   , 

2 2MgBr 2HCl MgCl 2HBr   . 
Determine the composition of the mixture.  

11.2. 16 g of a mixture of zinc, aluminum and copper 
were treated with an excess of hydrochloric acid solution. At 
the same time, 5.6 liters of gas were released and 5 g of the 
substance did not dissolve. Determine the mass proportion of 
metals in the mixture. 

Note. Two metals react, and the third metal (copper) does 
not react. Therefore, a residue of 5 g is the mass of copper. The 
quantities of the other two metals, zinc and aluminum (note 
that their total mass is 16 5 11   g) can be found using a 
system of equations. 
 

12 Application of systems of linear algebraic equations in 
the calculation of electrical circuits 

One method of analyzing an electrical circuit is the 
method of loop currents. It is based on the second Kirchhoff’s 
law. Its main advantage is reducing the number of equations to 

1m n  , where m  is the number of branches, and n  is the 
number of nodes in the chain. In practice, such a reduction 
greatly simplifies the calculation. 

Contour current is a value that is the same in all branches 
of a given circuit. Usually in calculations they are denoted by 
double indices, for example, 11I , 22I  etc. 

The actual current in a particular branch is determined 
by the algebraic sum of the contour currents into which this 
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branch enters. Finding the actual currents is the primary task of 
the loop current method. 

Contour electromotive force (EMF) - is the sum of all the 
EMF included in this contour. 

The own resistance of the contour is the sum of the 
resistances of all the branches that are included in it. 

The total resistance of the contour is the branch 
resistance, adjacent to two contours. 

The steps of the method of loop currents: 
1. Selection of the actual currents direction. 
2. The choice of independent contours and the directions 

of the contour currents in them. 
3. Determination of the own and total resistances of the 

contours. 
4. Making equations and finding the contour currents. 
5. Finding actual currents. 

Example 12.1 
 

1 80E   V, 2 50E   V, 

3 60E   V, 1 10R   Ω, 

2 15R   Ω, 3 30R   Ω, 

4 25R   Ω, 5 30R   Ω, 

6 35R   Ω, 

1I , 2I , 3I , 4I , 5I , 6I  – ? 

Solution. 
1. Let us select the directions of actual currents 1 6I I . 
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2. We select three contours, and indicate the direction of 

the contour currents 11I , 22I , 33I . We select a clockwise 
direction. 

 
3. Define the own resistances of the contours. To do this, 

we sum the resistances in each contour: 

11 1 4 5 10 25 30 65R R R R        Ω, 

22 2 4 6 15 25 35 75R R R R        Ω, 
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33 3 5 6 20 30 35 85R R R R        Ω. 

Define the total resistances that belong to several 
contours at once, for example, the resistance 4R  belongs to 
contour 1 and contour 2. For convenience, we denote such 
resistances by the numbers of the contours to which they 
belong: 

12 21 4 25R R R    Ω, 

23 32 6 35R R R    Ω, 

31 13 5 30R R R    Ω. 

4. Let us make the system of equations of contour 
currents. The left parts of the equations consist of the voltage 
drops in the circuit, and the right ones include the EMF of the 
sources of this circuit. 

Since three contours are specified, the system will consist 
of three equations. For the first circuit, the equation will have 
the following form: 

11 11 22 21 33 31 1I R I R I R E   . 

The current 11I  of the first contour is multiplied by the 
own resistance 11R  of the same circuit, and then we subtract the 
current 22I  multiplied by the total resistance of the first and 
second circuits 21R , and the current 33I  multiplied by the total 
resistance of the first and third circuits 31R . This expression 
will be equal to the EMF 1E  of this contour. The value of the 
EMF is taken with a plus sign, since the direction of the circuit 
bypass (clockwise) coincides with the direction of the EMF. 
Otherwise, you need to take with a minus sign. 

We perform the same actions with two other contours 
and as a result we get the system:  
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11 11 22 21 33 31 1

22 22 11 12 33 32 2

33 33 11 13 22 23 3

;
;

.

I R I R I R E
I R I R I R E
I R I R I R E

  
    
   

 

Let us substitute the already known values of resistances 
to the obtained system: 

11 22 33

22 11 33

33 11 22

65 25 30 80;
75 25 35 50;
85 30 35 60,

I I I
I I I
I I I

  
    
   

   
11 22 33

22 11 33

33 11 22

13 5 6 16;
15 5 7 10;
17 6 7 12.

I I I
I I I
I I I

  
    
   

 

Solving the system (solve the system by yourself), we 
get: 

11

22

33

2,726 A;
1, 264A;
2,189 A.

I
I
I


 
 

 

5. Let us find the actual currents. 
If the current flows only in one contour, then it is equal to 

the contour current (it is necessary to consider the direction of 
the bypass, for example, in our case the direction of the current 

2I  does not coincide with the direction of the bypass, so we 
take it with a minus sign): 

1 11 2,726I I   A,   2 22 1,264I I     A,   3 33 2,189I I   
A. 

The currents flowing through the total resistances are 
defined as the algebraic sum of the contour currents, taking 
into account the direction of the bypass. For example, a current 

4I  flows through a resistor 4R , its direction coincides with the 
direction of the bypass of the first circuit and is opposite to the 
direction of the second circuit, therefore: 
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4 11 22 2,726 1, 264 1, 462I I I      A. 

Similarly, for the rest currents we get: 

5 11 33 0,537I I I    A, 

6 33 22 0,925I I I    A. 

Answer: 1 2,726I   A, 2 1, 264I    A, 3 2,189I   A, 

4 1, 462I   A, 5 0,537I   A, 6 0,925I   A. 
The node potential method is one of the methods for 

analyzing an electrical circuit, which is advisable to use when 
the number of nodes in a circuit is less or equal to the number 
of independent contours. This method is based on the 
formulation of equations according to the first Kirchhoff’s law. 
Herewith, the potential of one of the nodes of the chain is 
assumed to be zero, which allows reducing the number of 
equations to 1n . 

Consider the work of the method by example. 

Example 12.2 

 
1 25R   Ω, 2 22R   Ω, 3 42R   Ω, 4 35R   Ω, 5 51R   Ω,   

6 10R   Ω, 7 47R   Ω, 1 50E   V, 2 100E   V, 

1I , 2I , 3I , 4I , 5I , 6I , 7I  – ? 
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Solution. 
1. Let us take the fourth node as the base one and assume 

its potential equal to zero. 
2. Make the equations according to the first Kirchhoff's 

law for 1, 2, 3 nodes (for node 4 we do not compile, since it is 
not required): 

6 7 1 0I I I   , 

1 4 6 3 0I I I I    , 

2 4 5 0I I I   . 

3. Using the generalized Ohm's law, we make equations 
for finding each of the currents ( i  is the potential of the node 
from which the current goes,   is the potential of the node into 
which the current enters, iG  is the conductivity of the i  
branch): 

 i i
i i i i

i

EI E G
R

 
 

 
    , 

 1 1 2 1 1I E G    ,    2 3 2 20I E G   , 

 3 2 30 0I G   ,    4 3 2 40I G    , 

 5 3 50 0I G   ,    6 2 1 60I G    ,    7 1 70 0I G   . 

4. Let us substitute the obtained expressions for currents 
in the equations from point 2: 

   
     
   

1 1 6 7 2 1 6 1 1

1 1 6 2 1 3 4 6 2 4 1 1

2 4 3 2 4 5 2 2

;

;

.

G G G G G E G

G G G G G G G E G

G G G G E G

 

  

 

      


        
     
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The obtained system of equations was written for a chain 
consisting of 4 nodes, and for n  nodes the following system 
holds: 

1 11 2 12 1 1, 1 1 1 1

1 21 2 22 1 2, 1 2 2 2

1 1,1 2 1,2 1 1, 1 1 1 1

... ;

... ;
...
... .

n n

n n

n n n n n n n n

G G G J E G

G G G J E G

G G G J E G

  

  

  

 

 

       

     


    


     

 
 

 

 

Conductances 11G , 22G , etc. are the sum of 
conductivities converging in a node (intrinsic conductivities) 
are always taken with a plus sign. Conductances 12G , 21G , etc. 
are the conductances of the branches connecting the nodes 
(total conductances) are always taken with a minus sign. 

If the current source or EMF is directed to the node, then 
we take it with a plus sign, otherwise with a minus sign. 

5. Solving the system of equations from point 4 (solve 
the system by yourself), we find unknown potentials in the 
nodes, and then we determine the currents: 

1 10,7   V,   2 26,6   V,   3 56,7   V, 

   1 1 2 1 1 10,7 26,6 50 0,04 1,36I E G          А, 

2 1,97I   А,   3 0,63I   А,   4 0,86I   А,  

5 1,11I   А,   6 1,59I   А,   7 0, 23I   А. 

The correctness of the solution will be checked using the 
power balance: 

2 2 2 2 2 2 2
1 1 2 2 3 3 4 4 5 5 6 6 7 7 1 1 2 2I R I R I R I R I R I R I R I E I E        , 

2 2 2 2 21,36 25 1,97 22 0,63 42 0,86 35 1,11 51           
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2 21,59 10 0, 23 47 1,36 50 1,97 100        , 

265, 2  W 265, 2  W. 

Answer: 1 1,36I   A, 2 1,97I   A, 3 0,63I   A, 

4 0,86I   A, 5 1,11I   A, 6 1,59I   A, 7 0, 23I   A. 

Tasks for revision 

12.1  

 

 
 

1 75E   V, 

2 100E   V, 

1 100R   Ω, 

2 150R   Ω, 

3 150R   Ω, 

1I , 2I , 3I  – ? 

 

12.2 

 

1 60E   V, 

2 450E   V, 

1 45R   Ω, 

2 15R   Ω, 

3 45R   Ω, 

4 75R   Ω, 

1I , 2I , 3I  – ? 
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ANSWERS 
 

1.1. 2( )ad bc   ; 1.2. 59630  ; 1.3. 4 32b b   ; 
2.1. det( ) det( )AB BA  det det 4A B   ; 

2.2. 3 3 1 1
4

1 1
А a  

  
 

; 2.3. 1

1 3 1
1 3 1 1

4
1 1 3

А

 
    

  

; 

3.1. 1 21, 0x x  ; 3.2. 1 1x  , 2 2x  , 3 1x  , 4 1x   ; 

4.1. 2a b ; 4.2. 

1
2
3
4

X

 
 
 
 
 
 

; 4.3. 1 1x   , 2 2x  , 3 1x  ; 

4.4. 1x  , 2y  , 3z  , 4u  , 5v  ; 4.5. 2rangA  , 
3rangA  , rangA rangA  , this system is incompatible;  

5.1. 3rangA  ; 5.2. 1 1x  , 2 2x  , 3 3x  ; 

5.3. Rttxtxtxtx  ,3,2,1, 2221 ; 

6.1. 1

5 1 7
1 1 7 5

18
7 5 1

A

 
   
  

; 6.2. 1

9 11 1 1
1 9 11 11
1 1 9 1140
11 1 1 9

A

 
  
 
 

 

; 

6.3. 1

1 1 1 1
1 1 1 11
1 1 1 14
1 1 1 1

A

 
  
 
 

 

; 6.4. 1

1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

A

 
  
 
 
 

; 

8.1. 1 2 3 0x x x   ; 8.2. 1 2 38 , , ,x t x t x t t R     ; 

8.3. 1 2 3 4
1 1, , , 0,

8 8
x t x t x t x t R 
     ; 
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9.1.  1 2 3,a b c x k e e e      
  

; 9.2. the eigenvalues are 

1 101  , 2 99   , and their eigenvectors are 1

1
1

X  
  
 

, 

2

1
1

X  
   

; 9.3. the eigenvalues are 1 2  , 2 3  , 3 6   and 

their eigenvectors are 1

1
0
1

X
 
   
 
 

, 2

1
1
1

X
 
   
 
 

, 3

1
2

1
X

 
   
 
 

; 

10.1. 
0 0 0

( ) 2 0 0
15 2 0

f A
 
   
 
 

; 10.2. 

28 15 16
19 36 15
30 19 28

A
 
   
 
 

;  

10.3. . 
7 1 0 0

7 7 1 0
7 7 7 1

a
A a a

a a a

 
   
  

;  

11.1. (MgO) 0,9m   g, 2(MgBr ) 5,6m   g;  
11.2. 56,25% of zinc, 12,5% of aluminum, 31,25% of copper; 
12.1. 1 0,143I   A, 2 0, 262I   A, 3 0, 405I   A;  
12.2. 1 1, 2I   A, 2 3,73I   A, 3 2,53I   A. 
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APPENDICES 
 

Appendix A 
 

An example of the selection of principal unknowns and free 
unknowns 

 
Example. Solve the system  

1 2 3 4

1 2 3 4

1 2 3 4

3 6 9 13 9;
2 11;

2 2 3 5.

x x x x
x x x x

x x x x

   
     
    

 

If the system is uncertain, find a basic solution. 
Solution. Consequently, we have a SLAE, which consists 

of three equations and four unknowns. Since the number of 
unknowns is greater than the number of equations, then such a 
system cannot have a unique solution, that is, this system is 
indefinite. Let's find a solution of the given system using 
Gaussian elimination method.  

Write down the augmented matrix: 

3 6 9 13 9
1 2 1 1 11

1 2 2 3 5
А

  
    
  

 . 

We need to get zeros at the first column. Swap the first 
and third rows: 

1 2 2 3 5
1 2 1 1 11

3 6 9 13 9
А

  
    
  

 . 
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Add the elements of the first row to the elements of the 
second row. Then multiply the first row by ( 3)  and add to the 
third row: 

1 2 2 3 5
0 0 3 4 6
0 0 3 4 6

А
  
   
  

 . 

Let us get zeros in the third column. Multiply the second 
row by ( 1)  and add to the third one: 

1 2 2 3 5
0 0 3 4 6
0 0 0 0 0

А
  
   
 
 

 .  

The straight course of the Gaussian elimination method is 
complete. We reduced the augmented matrix to the echelon 
form. The number of non-zero lines of the augmented matrix 
A  and of the coefficient matrix A  is equal to two but it is less 
than a number of unknowns: 

 2 , 4rang A rang A r n n     . 

Consequently, the given system is indefinite, that is, it 
has an infinite set of solutions. Find these solutions. First of all 
we should select the principal unknowns. Their number should 
be equal r , in our example it is 2r  . We select as the 
principal unknowns the ones which are located at the first 
places of the non-zero rows of the resulting stepwise matrix, 
that is, on the "steps". There are first and third columns. The 
first column corresponds to the unknown 1х , and the third 
column corresponds to the unknown 3х . We can take the 
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variables 1х , 3х  as the principal unknowns, because the minor 
consists of the first and third columns is not equal to zero: 

 
1 2

1 3 0 2 3 0
0 3

      , 

it is the principal. 
Unknowns 2х  and 4х  are free unknowns. Let's express 

the principal unknowns 1х  and 3х  through free 2х  and 4х . 
Write the obtained matrix: 

1 2 2 3 5
0 0 3 4 6

А
 

   
   

Rewrite it in the system form: 

1 2 3 4

3 4

2 2 3 5;
3 4 6.
x x x x
x x
   

   
  

Present expression for unknown 3х  from the second 
equation and substitute it into the first row: 

 

 

1 2 4 4

3 4

12 2 4 6 3 5;
3

1 4 6 .
3

x x x x

x x

       

   


 

The general solution of the system can be write as 






















.

;2
3
4

;

;9
3
12

4

43

2

421

Rx

xx

Rx

xxx
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The partial solution of the system can be found due to 
putting value of unknowns 2 40, 0х х   in the general 
solution and it is: 

1

2

3

4

9;
0;

2;
0.

x
x
x
x


 
  
 

 

Answer: 1 9x  , 2 0x  , 3 4
4 2
3

x x   , 4 0x  . 
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Appendix B 
Linear spaces 

 
A linear (vector) space L  over a field   is a set with 

two binary operations:  
1) L L L   is usually designated as an addition: 

1 2 1 2( , )l l l l ,  
2) L L   is usually denoted as a multiplication: 

( , )а l аl .  
These operations satisfy the following axioms: 
a) adding elements of L , or vectors, turns L  into a 

commutative (abelian) group. Its zero element is usually 
denoted as 0; an element, inverse to l , is denoted as l ; 

b) multiplication of vectors by the elements of a field  , 
or scalars, is unitary, that is 1 1l  , for all l , and associative, 
that is ( ) ( )а bl ab l , for all , ;а b l L  ; 

c) adding and subtracting are connected by the 
distributivity laws, i.e.  

1 2 1 2( )а l l al al   , 1 2 1 2( )a a l a l a l    

for all 1 2, ,a a а ; 1 2, ,l l l L . 

The expression 
1

n

i i
i

a l

  is called a linear combination of 

vectors 1,..., nl l ; the scalars іа  are the coefficients of this linear 
combination. 

Zero-dimensional space is an abelian group  0L  , 
which consists of only zero element. The single possible law of 
multiplication on scalars is 0 0а    for all а .  

The main field   can be considered as a one-
dimensional coordinate space with L   , adding is the 
addition in  , multiplying by a scalar is the multiplication in 
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 . For example, the field of complex numbers is a linear space 
over the field of real numbers, which is a linear space over the 
field of rational numbers.  

Let ...nL       (Cartesian product 1n   of 
multipliers), then ...nL       is n -dimensional 
coordinate space. Items of L  are written as rows 

1( ,..., ),n iа а а   or columns 
1

...

n

а

а

 
 
 
 
 

. One-dimensional spaces 

over a field   are called straight lines; two-dimensional are 
planes.



132 
 

 
Навчальне видання 

 
СИТНИКОВА Юлія Валеріївна 

ЛАМТЮГОВА Світлана Миколаївна 
КУЗНЕЦОВА Ганна Анатоліївна 

 
 

ЛІНІЙНА АЛГЕБРА 
 

 НАВЧАЛЬНИЙ ПОСІБНИК 
(Англ. мовою) 

 
Відповідальний за випуск А. В. Якунін 

 
За авторською редакцією  

Комп’ютерне верстання  Ю. В. Ситникова 
Дизайн обкладинки Т. А. Лазуренко 

 
 

Підп. до друку 24.10.2018. Формат 60   84/16. 
Друк на ризографі. Ум. друк. арк. 4,3 

Тираж 300 пр. Зам. №  
 

Видавець і виготовлювач: 
Харківський національний університет  

міського господарства імені О. М. Бекетова,  
вул. Маршала Бажанова, 17, Харків, 61002. 
Електронна адреса: rectorat@kname.edu.ua 

Свідоцтво суб’єкта видавничої справи: 
ДК № 5328 від 11.04.2017. 

 


