

22

29
30

32
37

- Bloom - avtomatsko krmiljenje za rastlinjake
in umetne habitate - Intervju - prof. dr. Bojan Dolšak - Janez Peklenik
INFORMATOR

39 univerze v ljubljani za leto 2016 je prejel
projekt Piezoelektrično deformabilno zrcalo

- Mednarodni strokovni sejem IFAM in
INTRONIKA 2016 INTRONIKA 2016
Sejem priložnosti JEZIKOVNI ODTENKI

AKADEMIJA STROJNIŠTVA 2016

Coser

Mednarodni uredniški odbor, International editorial board:

1. Prof. Cristina H. Amon, University of Toronto
2. Assoc. Prof. Daniel Attinger, lowa State University
3. Assoc. Prof. Ivan Bajsić, University of Ljubljana
4. Prof. Janez Diaci, University of Ljubljana

Prof. Janez Diaci, University of Ljubljana
Assoc. Prof. Nazanin Emami, Luleả University of Technology
Prof. Iztok Golobič, University of Ljubljana
Assist. prof. Peter Gregorčič, University of Ljubljana Assist. Prof. Mirko Halilovič, University of Ljubljana
Assoc. Prof. Niko Herakovič, University of Ljubljana Prof. Matjaž Hriberšek, University of Maribor Assoc. Prof. Matija Jezeršek, University of Ljubljana Prof. Mitjan Kalin, University of Ljubljana Assoc. Prof. Janez Kušar, University of LjublJana Assist. prof. Nikolaj Mole, University of Ljubljana

Prof. Adian Morina, University of Leeds
Prof. Marko Nagode, University of Ljubljana
17. Prof. Marko Nagode, University of Ljubljana
Prof. Greg F. Naterer, Memorial University of Newfoundland

Prof. Zoran Ren, Unilil Sefiane, The University of Edinburgh
Assoc. Prof. Roman Šturm, University of Ljubljana
exqui!oว fo К र!!
Tehnični urednik:Žiga Zadnik
Ime in sedež založnika:ZSIS, Karlovška cesta 3, 1000 Ljubljana
Leto izida publikacije: 2016 natisa ali izdelave publikacije: letnik 05, 5 L. 01
Število natisnjenih izvodov: 150
Preverite www.zveza-zsis.si za posodobitve.
Svet strojnišlva (ISSN-2350-3505), revija, je vpisana v razvid medijev, ki ga vodi Ministrstvo za kulturo RS, pod zaporedno številko 872. Revija je brezplačna za člane Zveze strojnih inżenirjev Slovenije,
podjetja, izobraževalne ustanove in drugo zainteresirano javnost na območju Republike Slovenije.

Objavljeni avtorski prispevki v promociijskem delu revije Sve
Strojništva izražajo mnenja in stališ̌̌a avtorjev in ne izražajo nujno tudi mnenja uredniškega odbora ali izdajatelja. Avtorske pravice za revijo Svel strojništva so last izdajatelja. Uporabniki lahko prenašajo
in razmnožujejo vsebino zgolj v informativne namene, ob pisnem soglasju izdajatelja.

Revija Svet strojnišlva je dosegljiva tudi na internetni strani v elek-
tronski obliki pod www.zveza zsis/svetstrojniš́tva. Copyright © Svet strojništva.
Prof. Cristina H. Amon, University of Toronto
Assoc. Prof. Daniel Attinger, Iowa State University

1

- Predstavitev slovenske akreditacije ter Godcem pri
strojništvo
$\bar{\nabla}$
$\not \subset \underset{+}{\infty}$
The procedure developed in [3] was used to find the optimal level of energy-efficient modernization, which procedure, including:

Selection of the reference building/buildings; Definition of construction concepts based on building envelope optimization for fixed four specific heat loss levels (from business as usual

 Specification of building technical systems;
Energy simulations for specified construction
Post processing of the simulation results to
calculate delivered, exported and primary energy;
Economic calculations for construction cost and net
present value calculations;
Sensitivity analyses for interest rate, escalation of energy prices and other parameters.
Energy calculations were performed in this study for the 6 building concepts, according to the methodology 4]. Construction concepts have been described in
Section 2.2 .
2.1 THE REFERENCE BUILDINGS
n the study typical school building in Ukraine, built in

 provided, without mechanical ventilation system.

 this value is used for further calculations.
Average electricity consumption was determined by averaging the values from energy audits for similar
objects and amounts to $12 \mathrm{kWh} /\left(\mathrm{m}^{\imath} \mathrm{a}\right)$.
Most of the buildings in Ukraine require substantial modernization. More than 80% of the buildings were
 USSR building codes, issues of energy efficiency in the
building were not considered as a priority. At the time saving building materials and reducing construction

 country, if not forever, then at least for the very long time.
However, with the independence of Ukraine the situation has changed dramatically, which was particularly acute in recent years. The problem of essential dependence on expensive imported energy resources has jeopardized
the question of Ukraine's the question of Ukraine's independence.
Therefore, issues related to the energy efficiency of existing buildings are become especially relevant for Ukraine. The objective of presented study is the existing public building stock with the focus on school buildings. with the minimum established regulatory requirements with the minimum established regulatory requirements
for energy efficiency of buildings in Ukraine. The for energy efficiency of buildings in Ukraine. The
compliance with these requirements allows 2-3 tim reduction of the the energy consumption and reach a final energy consumption rate in the range of 80 -
 standards valid for the EU countries, and also Slovenia,
 EPBD recast [2] and nearly-zero energy building (nZEB)

 Ukraine based on European and Slovenian experiences
in this area.

STROŠKOVNO IN ENERGETSKO UČINKOVITA PRENOVA

COST AND ENERGY EFFICIENT MODERNIZATION OF
 SCHOOLBUILDINGS IN UKRAINE

${ }^{\text {con }}$ O.M Beketov National University of Urban Economy in Kharkiv, Kulikivskyi uzviz str. 12,61002 Kharkiv, Ukraine
Mechanical Engineering World - 14 Article info Received 1 March 2016 and
*Corresponding author: Tetiana Rapina
OM Beketov National University of Urban
齐
in Kharkiv录
Tel: +380971952109
E mail: tvrapina@gmai
E mail: turapina@gmail.com
Kratki znanstveni prispevek/Short scientific paper
Improvement of the energy efficiency of existing buildings in EU has great potential in the efforts to reduce energy consumption,

Izvleček
zbolǰ̌anje energetske učinkovitosti obstoječih stavb v EU ima velik potencial pri naporih za zmanjšanje rabe energije
in je brez dvoma pomembna tema tudiza Ukrajino. V članku smo analizirali pomembnost prenove stavb javnega sektorja sposebnim poudarkom na šolskih stavbah. Uporabili smo metodologijo stros̆kovnega optimum za oceno ne zgolj
ekonomskih, ampak tudi okol jskih in družbenih učinkov prenove stavb šolskega fonda. Pri i skanju optimalne ravni energetsko učinkovite prenove šolskih stavb v Ukrajini smo uporabil evropske in slovenske izkušnje. Pokazali smo, da
je trajnostna prenova s smernicami za skora-nič energijsko je trajnostna prenova s smernicami za skoraj-nič energi isko
stavbo (sNES), kot so definirane v evropskih predpisih, zvedljiva z dobrimi rezultati in je priporoéljiva tudi za prenovo šolskih stavb v Ukraini.
Ključne besede: stroškovna optimalnost, energetska učinkovitost, skoraj-nič energijska stavba, ovoj stavbe,
2.6 SENSITIVITY ANALYSES
In the calculations assumed interest rate of 6%, which
corresponds to the parameters of financing program
«NEFCO» [5], which is currently the most accessible
fond for the realization of the public sector buildings
modernization in Ukraine. The interest rate for energy
efficiency program loans from state banks in Ukraine is at
least 10%. In order to show sensitivity to the escalation
rate in the study were considered three escalation
versions: $4 \% ; 6 \%$ and 8%, as showed in Figures 2-4.
building insulation;
heating modernization;
equipping ventilation system;
installation of solar panels.
The operating (used energy) cost consider the current
Ukrainian prices:
Electricity $0.0497 € / \mathrm{kWh}+\mathrm{VAT}(20 \%)$.
District heating $0.0443 \mathrm{\epsilon} / \mathrm{kWh}+$ VAT (20%).
亮
building insulation;
heating modernization; equipping ventilation syste installation of solar panels. The operating (used energy) cost consider the current Ukrainian prices:

District heating $0.0443 \epsilon / \mathrm{kWh}+$ VAT (20%).

2.6 Sensitivity analyses
In the calculations assumed interest rate of 6%, which
corresponds to the parameters of financing program "NEFCO" [5], which is currently the most accessible fond for the realization of the public sector buildings efficiency program loans from state banks in Ukraine is least 10%. In order to show sensitivity to the escalation rate in the study were considered three escalation

[^0] Figure 1: Concepts and simulated delivered energy, $\mathrm{kWh} /\left(\mathrm{m}^{2} \mathrm{a}\right)$

Concept 3 "Intermediate building"
 Building envelope \& engineering equipment, $€ / \mathrm{m} 2$
Energy cost for district heating, NPV, $€ / \mathrm{m} 2$
walls (in common $\mathrm{U}=0.07 \mathrm{~W} / \mathrm{m}^{\mathrm{N}}$); 80 cm mineral , wool insulation for roof (in common $\mathrm{U}=0.06 \mathrm{~W} / \mathrm{m}^{\mathrm{K}}$), 70 cm EPS -insulation for ground floor (in common $\mathrm{U}=0.06 \mathrm{~W} / \mathrm{m}^{\mathrm{N}} \mathrm{K}$) ; windows replacement ($\mathrm{U}=0.6 \mathrm{~W} /$

Heating system specification: air-to-water heat
Placement on the roof solar panels that generate ueyt alou эp, inad spued delos əyp pue dund teey The heat pump and the solar panels provide more ner
100% from renewable energy sources (RES) of energy 100% from renewable ensys used by building, thus ensuring azero balance of energy consumption. In all variants the building is equipped with the mechanical ventilation system with heat recovery for energy efficient conditioning of the air in the

In Ukraine, very often the modernization of schools and kindergartens begins with replacement of wooden windows for cheap metal and plastic windows with

 controllable ventilation regime.

2.3 ENERGY SIMULATIONS FOR SPECIFIED CONSTRUCTION

 concepts, according to the methodology, described in
2.4 Post processing of the simulation results to CALCULATE DELIVERED, EXPORTED AND PRIMARY ENERGY To calculate primary energy, the delivered energy
 values (ET-values) were calculated with Estonian

district heating 0,9
renewable fuels 1.
2.5 ECONOMIC calculations, CONSTRUCTION COST AND NET

PRESENT VALUE CALCULATIONS The cost of a building's life cycle was considered during 30 years. The calculations were taken into account the
cost of materials, work and equipment maintenance
2.2 Defintion of construction concepts
In the analysis, six construction concepts were used, in
which the building envelope energy performance levels was varied.
. Existing building; . Mere "The thermal insulation of buildings." Envelope specifications: 10 cm EPS-insulation for walls (in common $\mathrm{U}=0.30 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$); 18 cm mineral wool insulation for roof (in common $\mathrm{U}=0.19 \mathrm{~W} / \mathrm{m}^{\mathrm{K}}$); 10 cm EPS-insulation for ground floor (in common
$\mathrm{U}=0.27 \mathrm{~W} / \mathrm{m} 2 \mathrm{~K}$); windows replacement $(\mathrm{U}=1.33 \mathrm{~W}$ / $m^{2} \mathrm{~K}$).
3. An intermediate variant between options of modernization buildings №2 and №5. For the (in common $\mathrm{U}=0.17 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$); 32 cm mineral wool insulation for roof (in common $\mathrm{U}=0.14 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$); 25 cm EPS-insulation for ground floor (in common $\mathrm{U}=0.14$
$\mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$); windows replacement ($\mathrm{U}=0.9 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$). W/mK); wind modernization buildings №2 and №5. Envelope specifications: 25 cm EPS-insulation for walls (in comb (in 10 cm
 $\left.\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}\right)$; windows replacement ($\mathrm{U}=0.8 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$). Modernization of buildings to the level of nZEB. This determination of accordance with case, which comply with standards established in Slovenia [6].
Envelope specifications: 35 cm EPS-insulation for
 /M90'0=П uowmos u!) foos sof uo!̣eןnsu! ןoom $\mathrm{m}^{2} \mathrm{~K}$); 70 cm EPS-insulation for ground floor (in
common $\mathrm{U}=0.06 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$); windows replacement ($\mathrm{U}=0.7 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$).
Heating system specification: air-to-water heat 흘
Placement on the roof solar panels that generate electricity in the amount of $3,8 \mathrm{kWh} /\left(\mathrm{m}^{2} \mathrm{a}\right)$.
The heat pump and the solar panels provide more than 50% from renewable energy sources (RES) of energy used by building, as required for nZEB in Slovenia.
6. The modernization of the building to the level of
Envelope specifications: 45 cm EPS-insulation for

Figure 3：Global incremental cost calculation（the real discount rate of
6% and the escalation 6% ）for 30 years life time period．

－Energy cost for electricity，NPV，€／m2 $■$ Building envelope \＆engineering equipment，$€ / \mathrm{m} 2$ ■ Energy cost for district heating，NPV，$€ / \mathrm{m} 2$
 Concept 4 ＂Intermediate building＂ Concept 3 ＂Intermediate building＂ Concept 2 ＂DBN building Concept 1 ＂Existing building＂

－Energy cost for electricity，NPV，$€ / \mathrm{m} 2$ ■ Building envelope \＆engineering equipment，$€ / \mathrm{m} 2$

■ Energy cost for district heating，NPV，$€ / \mathrm{m} 2$

Figure 2：Global incremental cost calculation（the real discount rate of
6% and the escalation 4% ）for 30 years life time period． ＂ $8 \exists Z$ Z．＂ 9 子dəวuoう ＂ gヨZu $_{n} \mathrm{~s}$ 子dəวuoう Concept 4 ＂Intermediate building＂ Concept 3 ＂Intermediate building＂ Concept 2 ＂DBN building＂ Concept 1 ＂Existing building＂

References

1] Energy efficiency rankings of the regions of Ukraine pdf/_UEI_13_ENG.pdf
[2] EPBD recast: Directive 2010/31/EU of the European
Parliament and of the Council of 19 May 2010 on
the Energy Performance of Buildings (recast). http://
ec.europa.eu/energy/efficiency/buildings/buildings
en.htm; http://eurlex.europa.eu/JOHtml.do?uri=OJ:L:20
10:153:SOM:EN:HTML.
[3] J. Kurnitski, A. Saari, T. Kalamees, M. Vuolle, J. Niemel,
T. Tark. Cost optimal and nearly zero (n ZEB) energy performance calculations for residential buildings with

[4] DBN B.2.6-31:2006 Thermal insulation of buildings.
 norm_doc/4\%20DBN\%20B.2.6-31-2006.pdf
[5] Nordic environment finance cooperation/NEFCO /
http://www.nefco.org/?language=en

[^1]
4. Conclusion

 requires modernization is very important to
choose the correct modernization option. We

 but strive for the implementation of relevant cost and energy efficient European requirements. It will allow to come nearer to the European level of
The important point are also the environmental benefits of the school building stock modernization, as if used the nZEB standards it reduces the CO 2 emission by more than 80
 factor is demonstrated through better comfort and healthy microclimate in the modern environmentally friendly buildings, which is

 natural resources.
This study shows, that the sustainable reconstruction with the nearly-Zero Energy Building ($\mathrm{n} Z E B$) guidelines, as defined in EU
regulations, is feasible with good results and can be recommended also for reconstruction of school buildings in Ukraine

Figure 4: Global incremental cost calculation (the real discount rate of 6% and the escala-
tion 8%) for 30 years life time period However, this option might become optimal over time with a significant reduction of the solar panels price in
the future. In general, it can be seen that the results are sensitive to the interest rate, and from an economic point of view solely, it can be seen that at an effective rate of 4% modernization becomes unattractive.

However, in any case the social importance of school building stock, the energy wastefulness of present state for cost and energy efficient modernization of school buildings in kraine, and analysis show, that the that is economic and environmental optimal way to do that is
 level of initial investment is compensated by a low

In Figures 2-5 it can be seen that the modernization of the building with the n ZEB standards require significantly greater initial investment in comparison with the traditional concept 2: DBN. However, in spite of that, and even at the high discount rate, for the whole life cycle cost, the nZEB building reaches a cost
optimum among all 6 analysed building concepts in Ukraine, as well as in the EU, with the effective rate of no more than 3%.

Concept 6: ZEB concedes concept 5 mainly due to the need to install expensive, more powerful solar power station, which requires 41% of the initial investment.

[^0]: 3. Results and discussion

 The calculation results show that increasing insulation as provided from $1^{\text {th }}$ to $6^{\text {th }}$ concept of the building envelope The calculation results show with windows replacement decrease heat losses significantly, and consequently the final energy
 together
 consumption for heating from 200 to $17 \mathrm{kWh} /\left(\mathrm{m}^{2} \mathrm{a}\right)$. Figure 1 .

[^1]: Demonstration of the nearly zero energy building
 concept. Journal of Geoscience and Environment Protection (2015), in SciRes. http://www.scirp.org/ ournal/PaperInformation.aspx?PaperID=59005

