Время массопередачи:

$$\tau_M = \frac{w - \varepsilon_0 u}{K_{\nu} u} S_{\chi}, \tag{6}$$

где S_x — число единиц переноса; w — расчетная скорость потока; u — скорость перемещения фронта сорбции; \mathcal{E}_0 — порозность слоя сорбента; K_v — объемный коэффициент массопередачи. Эти величины S_x , u, K_v — определяются по предложенной методике [4].

Для обоснования применения полученного выражения (4) был выполнен сравнительный расчет степени насыщения зоны массопередачи — Ψ по формулам (4) и (2). Было установлено, что по формуле (2) Ψ =0,27-0,2, а по формуле (4) Ψ =0,63-0,85. Наиболее благоприятным считается второй результат, так как, ссылаясь на литературные данные, значения Ψ колеблются в пределах 0,3-0,8 и более.

Таким образом, установлено, что для расчета τ_0 можно рекомендовать предложенный способ расчета Ψ по формуле (4).

- 1.Громогласов А.А. и др. Водоподготовка: Процессы и аппараты. М.: Энергоатомиздат, 1990. 272 с.
- 2.Захаров Е.И. и др. Ионообменное оборудование атомной промышленности. М.: Энергоатомиздат, 1987. 245с.
- 3.Чуб И.Н. Расчет сорбционных фильтров с неподвижным слоем для процессов водоподготовки // Сборник тезисов докладов участников І Всеукр. науч.-практ. конф. студентов, аспирантов и молодых ученых. К.: НТУУ «КПІ» ВПІ ВПК «Політехніка», 2006. С.134
- 4.Айштейн В.Г., Захаров М.К., Носов Г.А., Захаренко В.В. и др. Общий курс процессов и аппаратов химической технологии Т.2. М.: Высшая школа, 2003. 930 с.

 Получено 07.11.2006

УДК 504.4

С.В.СВЕРГУЗОВА, канд. техн. наук, Ж.А.СВЕРГУЗОВА Белгородский государственный технологический университет им. В.Г.Шухова (Российская Федерация)

ЭКОЛОГИЧЕСКОЕ СОСТОЯНИЕ ВОДНЫХ ОБЪЕКТОВ БЕЛГОРОДСКОЙ ОБЛАСТИ И ОЧИСТКА СТОЧНЫХ ВОД ОТХОДАМИ ПРОМЫШЛЕННОСТИ

Рассматривается возможность использования отходов промышленности для очистки сточных вод, что дает возможность уменьшить количество загрязняющих веществ, поступающих в водные объекты.

Известно, что около 80% возбудителей различных заболеваний

попадают в организм человека через водную среду. Поэтому роль различных водных объектов в жизни человечества чрезвычайно велика. Однако экологическое состояние поверхностных и подземных источников водоснабжения в последние десятилетия вызывает тревогу экологов всего мира. Рассмотрим эту проблему на примере Белгородской области.

Все поверхностные водные объекты, расположенные на территории области, занимают 0,45% ее площади. По Белгородской области протекают 480 малых и средних рек, относящихся к Днепровскому и Донскому бассейнам, среди которых к наиболее крупным относятся Северский Донец, Ворскла, Псел. В Белгородской области имеется также 110 прудов и водохранилищ, к наиболее крупным из которых следует отнести Старооскольское, Белгородское, Корочанское, Ураевское.

В результате промышленно-хозяйственной деятельности населения в водные объекты Белгородской области ежегодно сбрасываются миллионы кубометров сточных вод, из которых более четверти неочищенные, а значительная часть – очищенные частично (табл.1).

Годы	Всего в водоемы	Нормативно Нормативно чистых очищенных		Загрязненные
1994	187,7	86,7	82,5	18,5
1995	199,2	86,38	80,9	31,8
1996	197,9	84,0	79,27	34,6
1997	189,4	79,6	80,17	29,66
1998	190,1	-	80,168	30,86
1999	188,91	-	90,27	30,57
2000	199,69	-	63,02	44,68

Таблица 1 – Сброс сточных вод в водные объекты, млн. м³

Из года в год из-за перегруженности многих очистных сооружений области, а также во многих случаях ввиду полного их отсутствия в водные объекты поступают сотни и тысячи тонн различных загрязняющих веществ (табл.2).

Вследствие влияния перечисленных факторов самоочищающая способность водных объектов находится ниже критического уровня и не может обеспечить необходимое качество воды в них. Так, преимущественное большинство водных объектов Белгородской области относятся к категории «умеренно загрязненная» и «загрязненная» (табл.3). И лишь некоторые реки (например, Тихая Сосна) относятся к категории «чистая».

Таблица 2 – Динамика сброса основных загрязняющих веществ со сточными водами в водоемы области

Вещества	1995 г.	1996 г.	1997 г.	1998 г.	1999 г.	2000 г.
БПКполн., тыс. т	2,309	2,042	1,521	1,422	1,22	0,99
Нефтепродукты, тыс. т	0,027	0,026	0,021	0,012	0,01	0,02
Взвешенные вещества, тыс. т	2,928	1,965	1,712	1,517	1,45	1,52
Сухой остаток, тыс. т	81,85	80,27	77,92	74,4	68,46	72,25
Сульфаты, тыс. т	12,61	12,95	12,04	11,16	10,58	12,30
Хлориды, тыс. т	12,84	12,54	11,06	10,34	9,92	10,65
Азот общий, т	964,4	882,7	796,0	802,8	705,44	728,58
СПАВ, т	18,32	11,85	9,195	6,121	5,58	6,34
Жиры, масла, т	388,5	366,3	43,05	235,9	228,94	251,54
Железо, т	28,53	30,03	22,95	30,43	26,93	24,58
Медь, т	0,54	0,315	0,454	0,404	0,17	0,09

Таблица 3 – Качество воды водных объектов Белгородской области

№ п/п	Наименование водного объекта, створ	Величина индекса загрязнения воды (ИЗВ)/класс качества воды			
1	р. Северский Донец (с. Ст. Таволжанка, 950)	ИЗВ –1,632/3, умеренно-загрязненная			
2	р. Оскол (с. Федосеевка, 405)	ИЗВ –1,537/3, умеренно-загрязненная			
3	р. Потудань (с. Одинцовка, 67)	ИЗВ –1,517/3, умеренно-загрязненная			
4	р. Ворсклица (с. М.Орловка, 45)	ИЗВ –2,071/3, умеренно-загрязненная			
5	Белгородское водохранилище, 990 км	ИЗВ –1,327/3, умеренно-загрязненная			
6	Белгородское водохранилище, 967 км	ИЗВ –2,007/3, умеренно-загрязненная			
7	р. Разумнае (устье)	ИЗВ –3,080/4, загрязненная			
8	р. Топлинка (устье)	ИЗВ –2,440/3, умеренно-загрязненная			
9	р. Нежеголь (устье)	ИЗВ –1,827/3, умеренно-загрязненная			
10	р. Осколец (устье)	ИЗВ –2,593/4, загрязненная			

Как свидетельствуют результаты многолетних наблюдений систем экологического контроля области [1], в воде рек и водохранилищ из года в год отмечается превышение нормативных требований по таким веществам, как фосфаты, азотсодержащие соединения, жиры, нефтепродукты, тяжелые металлы и др. Контроль качества источников водоснабжения по санитарно-эпидемиологическим показателям (табл.4) также показывают несоответствие проб воды нормативным требованиям.

Все перечисленные выше факторы не могут не сказываться на здоровье населения области. Динамика заболеваемости и смертности детского и взрослого населения свидетельствует о негативной тенденции увеличениям заболеваемости по заболеваниям эндокринной и сердечно-сосудистой систем, желудочно-кишечного тракта и мочеполо-

вой системе, онкозаболеваниям и врожденным аномалиям.

Санитарно-гигиенические показатели	1995 г.	1996 г.	1997 г.	1998 г.	1999 г.	2000 г.		
Доля проб, не отвечающих гигиеническим нормативам по:								
Санитарно-химическим показателям	28,3	34,9	20,2	20,2	22,7	24,6		
Микробиологическим показателям	8,9	8,2	5,8	5,0	6,9	7,1		
В том числе с выделенными возбудителями инфекцион- ных заболеваний	0,5	0,56	0,26	0,05	0,4	0,3		

Таблица 4 – Качество воды в поверхностных водоемах области

Экологически неблагополучное (а в ряде случаев – критическое) состояние водных объектов и ухудшение состояния здоровья населения свидетельствует о необходимости принятия экстренных мер по предотвращению поступления в водные объекты загрязняющих веществ со сточными водами промышленных, сельскохозяйственных и коммунальных предприятий. Для этого необходима частичная или полная реконструкция существующих очистных сооружений и строительство новых, а также разработка способов повышения эффективности очистки сточных вод для существующих очистных сооружений.

Сотрудниками кафедры промышленной экологии Белгородского государственного технологического университета в течение ряда лет успешно разрабатываются способы очистки сточных вод от соединений тяжелых металлов, фосфатов, жиров, нефтепродуктов и других загрязняющих веществ. Для этой цели широко используются модифицированные и немодифицированные отходы местной промышленности.

В качестве примера можно привести шлак электросталеплавильного производства Оскольского электрометаллургического комбината (ОЭМК).

Шлак воздушного охлаждения представляет собой тонкодисперсную систему сложного химического состава с высокоразвитой поверхностью (табл.5), что обусловливает его хорошие реагентные и сорбционные свойства.

 Химический состав шлака, %

 CaO
 MgO
 Al₂O₃
 FeO
 MnO
 SiO₂
 Cr₂O₃
 M₀

 52,7
 27,0
 8,0
 1,2
 0,02
 11,0
 0,08
 1,8

Таблица 5 – Химический состав шлака

При использовании шлака для очистки сточных вод от фосфатов

и ионов тяжелых металлов нами получены высокие значения эффективности очистки как модельных растворов в лабораторных условиях, так и реальных сточных вод в условиях производства (табл.6). Полученные данные свидетельствуют о перспективности использования отходов промышленности для очистки сточных вод, что дает возможность уменьшить количество загрязняющих веществ, поступающих в водные объекты.

Таблица 6 – Результаты лабораторных испытаний с модифицированным шлаком

І. Поступающая на очистные сооружения вода								
Наименование			Расход шлака, г/л					
процессов очист-		[С]нач	1,0		2,0		3,0	
ки и ингредиен- тов	измер.		[С]кон	D,%	[С]кон	D,%	[С]кон	D,%
τ отстаивания	мин		11,2		14,7		20,3	
pН	-	7,55	8,06	-	8,17	-	8,23	-
PO_4^{3-}	мг/л	6,6	1,53	76,81	0,36	94,54	0,14	97,87
СПАВ	мг/л	0,34	0,10	70,58	н/о	100	н/о	100
Fe _{ОБЩ}	мг/л	0,88	0,69	21,59	0,60	31,88	0,52	40,90
Zn^{2+}	мг/л	0,20	<0,05	75,0	< 0,05	75,0	< 0,05	75,0
Ni ²⁺	мг/л	0,25	0,09	64,0	0,07	72,0	0,06	76,0
II. Ou	ищенные	сточные	воды п	осле вто	ричных	отстойні	иков	
Наименование					Расход ш	лака, г/л	I	
процессов Един.			0,3		0,5		1,0	
очистки и ингредиентов	измер.	[С]нач	[С]кон	D,%	[С]кон	D,%	[С]кон	D,%
τ отстаивания	мин		6,8	-	8,5	-	11,5	-
рН	-	7,4	7,58	-	7,76	-	7,98	-
PO ₄ ³⁻	мг/л	6,4	2,47	47,34	1,67	73,90	0,52	91,8
СПАВ	мг/л	0,02	н/о	100	н/о	100	н/о	100
Fe _{ОБЩ}	мг/л	0,20	0,11	45,0	0,09	55,0	0,05	75,0
Zn ²⁺ Ni ²⁺	мг/л	0,07	н/о	100	н/о	100	н/о	100
Ni ²⁺	мг/л	0,07	н/о	100	н/о	100	н/о	100

^{1.} Состояние окружающей природной среды Белгородской области // Ежегодный доклад. – Белгород: Изд-во Экологического фонда, 1998-2004 гг.

Получено 05.11.2006