О ПОГРЕШНОСТИ ИЗМЕРЕНИЙ РАЗНОСТИ МАСС ТЕПЛОНОСИТЕЛЯ В ОТКРЫТЫХ СИСТЕМАХ ТЕПЛОСНАБЖЕНИЯ

А.Г. Лупей

OAO «Территориальная генерирующая компания № 1» пр. Добролюбова, 16, корп. 2, лит. А, 197198, Санкт-Петербург, Россия E-mail Lupey.AG@tgc1.ru

В настоящее время в двухтрубных открытых системах теплоснабжения с непосредственным водоразбором на нужды горячего водоснабжения (ГВС) в большинстве случаев применяется такая схема учёта тепловой энергии, при которой величина водоразбора из системы теплоснабжения $G_{\Gamma B C}$ определяется как разность показаний счётчиков воды, установленных в подающем (G_1) и обратном (G_2) трубопроводах тепловой сети, т.е.

$$\mathbf{G}_{\Gamma BC} = \mathbf{G}_1 - \mathbf{G}_2. \tag{1}$$

Иногда такой косвенный метод измерения водоразбора является единственно возможным: например, на тепловых магистралях, отходящих от источника теплоты, в головных тепловых пунктах или в точках передачи тепловой энергии оптовым потребителям-перепродавцам иного способа измерения $G_{\Gamma BC}$ просто не существует.

Главным недостатком метода измерения $G_{\Gamma BC}$ по формуле 1 является чрезвычайно низкая точность результатов учета $G_{\Gamma BC}$, особенно в тех случаях, когда величина водоразбора ($G_{\Gamma BC}$) по отношению к G_1 достаточно мала. На практике часто можно наблюдать ситуации, когда результаты учёта $G_{\Gamma BC}$ оказываются или многократно искаженными, или измеренное значение $G_{\Gamma BC}$ вообще отрицательно, хотя расходомеры (счетчики) G_1 и G_2 полностью исправны, т.е. погрешность их показаний не превышает допускаемых значений.

Определим выражение, позволяющее рассчитать допускаемую относительную погрешность измерения разности расходов $G_{\Gamma BC} = G_1 - G_2$, исходя из допускаемой погрешности расходомеров G_1 и G_2 и фактических показаний этих расходомеров.

По определению абсолютная погрешность измерения разности двух величин есть разность абсолютных погрешностей измерения этих величин. В нашем случае при измерении разности расходов по формуле (1) можно записать, что абсолютная погрешность измерения $\mathbf{G}_{\Gamma BC}$

$$\Delta \mathbf{G}_{\Gamma BC} = \Delta \mathbf{G}_1 - \Delta \mathbf{G}_2, \tag{2}$$

где ΔG_1 и ΔG_2 — абсолютные (с учётом знака) погрешности измерения массы теплоносителя соответственно в подающем и обратном трубопроводах тепломагистрали или теплового ввода потребителя.

Относительная погрешность измерения разности расходов по формуле 1 есть отношение абсолютной погрешности этой разности расходов к измеряемой величине:

$$\delta G_{\Gamma BC} = \Delta G_{\Gamma BC} / G_{\Gamma BC} = (\Delta G_1 - \Delta G_2) / (G_1 - G_2). \tag{3}$$

Видно, что формула (3) устанавливает зависимость относительной

погрешности разности расходов $\delta G_{\Gamma BC}$ от абсолютных погрешностей измерения G_1 и G_2 . Применять такую формулу неудобно, т.к. на практике у расходомеров и счётчиков нормируется не абсолютная погрешность измерения расхода (массы), а относительная погрешность. Поэтому преобразуем формулу (3) таким образом, чтобы относительная погрешность разности расходов $\delta G_{\Gamma BC}$ зависела не от абсолютных, а от относительных погрешностей измерения величин G_1 и G_2 . Для этих целей ΔG_1 умножим и разделим на G_1 , а ΔG_2 умножим и разделим на G_2 . В результате получим:

$$\delta \mathbf{G}_{\Gamma BC} = ((\Delta \mathbf{G}_1/\mathbf{G}_1) \cdot \mathbf{G}_1 - (\Delta \mathbf{G}_2/\mathbf{G}_2) \cdot \mathbf{G}_2)/(\mathbf{G}_1 - \mathbf{G}_2). \tag{4}$$

В выражении (4) $\Delta G_1/G_1$ есть относительная (в безразмерных единицах) погрешность расходомера G_1 , а $\Delta G_2/G_2$ — это относительная погрешность расходомера G_2 . Обозначив эти относительные погрешности как δG_1 и δG_2 , формула (4) перепишется так:

$$\delta G_{\Gamma BC} = \delta G_1 \cdot [G_1/(G_1 - G_2)] - \delta G_2 \cdot [G_2/(G_1 - G_2)], \tag{5}$$

Полагая, что относительная погрешность счётчиков (расходомеров) G_1 и G_2 одинакова по величине, но противоположна по знаку ($\delta G_1 = -\delta G_2 = \delta G$), получим окончательное выражение для расчёта предельной (максимально допустимой) относительной погрешности результата косвенных измерений разности расходов (разности масс) $G_{\Gamma BC}$:

$$\delta \mathbf{G}_{\Gamma BC} = \pm \delta \mathbf{G} \cdot [(\mathbf{G}_1 + \mathbf{G}_2) / (\mathbf{G}_1 - \mathbf{G}_2)]. \tag{6}$$

Формула 6 наглядно указывает на полную метрологическую неэффективность измерения $G_{\Gamma BC}$ как разности расходов воды в подающем и обратном трубопроводах, т.к. относительная погрешность измерения разности расходов $\delta G_{\Gamma BC}$ зависит не только от допускаемой относительной погрешности применяемых расходомеров δG , но и в значительно большей степени $\delta G_{\Gamma BC}$ зависит от соотношения измеряемых расходов G_1 и G_2 , т.е. от величины фактического водоразбора $G_{\Gamma BC}$.

На рис. 1 в качестве примера приведены графики зависимости допускаемой относительной погрешности измерения разности расходов воды в подающем и обратном трубопроводах от величины относительного водоразбора (в % от G_1) при применении в узле учёта расходомеров или счётчиков, допускаемая относительная погрешность которых dG не превышает 1, 2 или 5 %. Графики, представленные на рис. 1, рассчитаны по формуле 6.

Анализируя формулу 6 и зависимости, представленные на рис. 1, приходим к следующим неутешительным выводам.

1. При изменении относительного (например, по отношению к G_1) водоразбора от 100 % (однотрубная система теплоснабжения) до 0 % (закрытая двухтрубная система теплоснабжения) относительная погрешность измерения разности расходов $G_{\Gamma BC} = G_1 - G_2$ изменяется от конечного значения, равного погрешности применяемых счётчиков, до бесконечности.

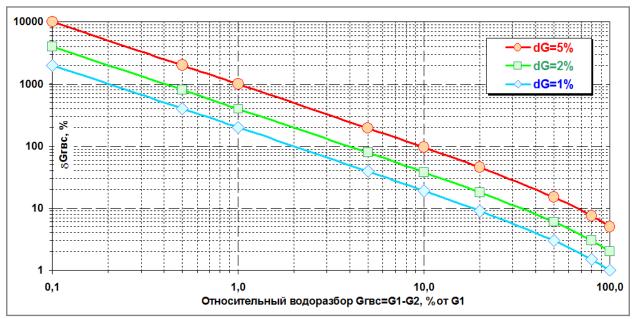


Рис. 1. Зависимость относительной погрешности косвенного измерения

 $G_{\Gamma BC} = G1$ - G2 от относительного водоразбора при применении расходомеров различной точности

- 2. При одинаковых соотношениях значений G_1 и G_2 (при неизменном относительном водоразборе) при увеличении допускаемой погрешности счётчиков воды в N раз допускаемая погрешность измерения $G_{\Gamma BC}$ также возрастает в N раз.
- 3. Стремление применять в узлах учёта высокоточные (класса эталонов, например) расходомеры или счётчики лишь отчасти решает проблему повышения достоверности измерений разности расходов, поскольку у потребителя течение суток любого В всегда имеются довольно продолжительные отрезки времени, на протяжении которых относительный водоразбор из системы теплоснабжения сравнительно невелик, поэтому относительная погрешность его измерения может достигнуть (и часто достигает на практике) сотен и тысяч процентов даже при применении высокоточных расходомеров или счётчиков.
- 4. Для расходомеров определённой точности всегда существует критическое значение относительного водоразбора $\mathbf{G}_{\Gamma BC}^{\ \ \kappa p}$, при котором погрешность его измерения достигает 100 %. Если на практике фактический относительный водоразбор на тепломагистрали (у потребителя) окажется меньше критического, то допускаемая погрешность его измерения косвенным методом превышает 100 %, и по результатам измерений величина $\mathbf{G}_{\Gamma BC}$ может быть не только многократно искажённой, но даже и отрицательной (что часто можно наблюдать в действующих узлах учёта).

В этой связи важно при наличии в тепловом пункте потребителя трубопровода ГВС измерение $G_{\Gamma BC}$ выполнять не косвенным (как разность расходов воды в подающем и обратном трубопроводах), а непосредственным способом, для чего достаточно в трубопровод ГВС установить

соответствующий расходомер или счётчик. Точность измерений $G_{\Gamma BC}$ при этом будет многократно увеличена (на десятки, сотни и даже тысячи процентов), т.к. относительная погрешность современных счётчиков достаточно мала и практически всегда не превышает 1 - 2 %. В то же время при измерениях $G_{\Gamma BC}$ как разности расходов G_1 - G_2 такой точности добиться принципиально невозможно даже при применении сверхточных расходомеров G_1 и G_2 .