3. І. Котеньова

АРХІТЕКТУРА БУДІВЕЛЬ І СПОРУД

Навчальний посібник
для студентів будівельних спеціальностей

Харків – 2007

Друкується за рішенням Вченої ради Академії як навчальний посібник (для студентів будівельних спеціальностей, протокол №7 від 30.03.2007 р.).

У навчальному посібнику викладено основні архітектурні конструкції, висвітлено питання призначення, проєктування, конструктивного рішення будинків і споруд і їхніх частин, застосовуваних матеріалів, технологій зведення з урахуванням фізико-технічних факторів.

Посібник призначений для студентів будівельних спеціальностей.

Рецензенти: Романенко І.І., професор, д-р техн. наук
Пагі Б.Ю., доцент, канд. техн. наук
З МІСТ

Вступ 6
Розділ I. ЗАГАЛЬНІ ВІДОМОСТІ ПРО БУДІВЛІ І СПОРУДИ7
 1. Будинки і вимоги до них7
 1.1. Поняття про будинки і споруди .. 7
 1.2. Вимоги до будинків і їхня класифікація 8
 2. Індустріалізація будівництва .. 13
 2.1. Уніфікація, типізація і стандартизація 13
 2.2. Єдина модульна система .. 15
Розділ II. ЦИВІЛЬНІ БУДИНКИ ТА ЇХ КОНСТРУКЦІЇ 17
 3. Основні елементи і конструктивні схеми громадських
 будинків 17
 3.1. Конструктивні елементи будинків ... 17
 3.2. Конструктивні схеми будинків ... 19
 4. Основи і фундаменти 22
 4.1. Поняття про основи і вимоги до них 22
 4.2. Фундаменти та їх конструктивні рішення 26
 4.3. Проектування підвалів. Технічні підпілля 33
 5. Стіни й окремі опори 35
 5.1. Класифікація стін і вимоги до них ... 35
 5.2. Цегельні стіни 36
 5.3. Будинку з монолітного залізобетону 38
 5.4. Архітектурно-конструктивні елементи стін 39
 5.5. Деформаційні шви. Балкони, лоджії й еркери 44
 5.6. Окремі опори. Прогони .. 45
 6. Перекриття і підлоги 46
 6.1. Перекриття. Їхня класифікація і вимоги до них 46
 6.2. Дерев'яні перекриття .. 47
 6.3. Залізобетонні перекриття .. 49
 6.4. Конструктивні рішення надпідвальних і горищних
 перекриттів 53
 6.5. Підлоги і їхні конструктивні рішення 54
 7. Покриття 58
 7.1. Види покриттів і вимоги до них ... 58
 7.2. Скатні дахи і їх констукції .. 59
 7.3. Просторові покриття .. 64
 8. Сходи і пандуси 68
 8.1. Сходи, їхні види й основні елементи 68
 8.2. Конструктивні рішення сходів ... 72
 8.3. Пандуси, область їхнього застосування 75
8.4. Спеціальні евакуаційні шляхи .. 76
8.5. Ліфти й ескалатори ... 77

9. Перегородки .. 80
9.1. Види перегородок і вимоги до них 80
9.2. Конструктивні рішення перегородок 81

10. Вікна і двері ... 84
10.1. Вікна і їхні конструктивні рішення 84
10.2. Двері і їхні конструктивні рішення 88

Розділ III. ЗАГАЛЬНІ ВІДОМОСТІ ПРО ПРОЕКТУВАННЯ ПРОМИСЛОВИХ БУДІВЕЛЬ .. 90
11.1. Загальні положення ... 90
11.2. Проектування виробничих будівель 91
11.3. Прив’язування конструктивних елементів до координаційних осей 95

12. Елементи й конструктивні схеми промислових будівель .. 99
12.1. Класифікація промислових будівель 99
12.2. Вимоги до промислових будівель 102
12.3. Одно- й багатоповерхові промислові будівлі. Уніфікація ... 103

13. Каркаси, їх види й елементи 99
13.1. Каркас промислової будівлі 107
13.2. Фундаменти й фундаментні балки 109
13.3. Колони. Підкранові і обв’язувальні балки 112
13.4. Несучі конструкції покриття 116
13.5. Просторові покриття 121

14. Стіни ... 124
14.1. Типи стін і вимоги до них 124
14.2. Стіни з малорозмірних елементів, великих блоків і панелей .. 125
14.3. Полегшені вертикальні захисні конструкції 129

15. Вікна, двері й ворота ... 131
15.1. Вікна промислових будівель та їх конструктивні вирішення.. 131
15.2. Ворота і двері, їх види й конструктивні вирішення 135

16. Покриття й ліхтарі .. 138
16.1. Типи покриттів. Покриття з великорозмірних елементів .. 138
16.2. Покриття на прогонах 140
16.3. Покривлі промислових будівель.
 Водовідведення з покриттів 143
16.4. Ліхтарі. Принципи проектування.
конструктивні рішення .. 146

17. Інші елементи промислових будівель 151
17.1. Перегородки ... 151
17.2. Внутрішньоцехові конструкції і сходи 153
17.3. Протипожежні перепони 156

18. Суть архітектури та її завдання......................... 157
18.1. Поняття про архітектуру 157
18.2. Архітектура й розвиток будівельної техніки.
Засоби архітектури ... 158

Короткий словник основних архітектурних і
будівельних термінів ... 164
Список літератури .. 170
ВСТУП

Приступаючи до вивчення дисципліни, майбутні фахівці повинні мати на увазі, що їхні творчі задуми можуть реалізуватися тільки в матеріальній формі – у виробах і конструкціях, виконаних з конкретних матеріалів. Від того, в якому матеріалі виконаний будинок – у дереві чи камені, металі чи залізобетонні в моноліті – залежить і архітектурний вигляд, і конструктивне рішення, і вартість, умови та терміни експлуатації цього будинку.

Студенту-фахівцю важливо засвоїти методологію підходу до застосування досягнень науково-технічного прогресу, виявити взаємозв'язок між прийнятими конструкціями і взаємодіями на будинки (силового і несилового характеру), умовами експлуатації будинків і їхніх елементів і вимог при збереженні переважаючої ролі функціонально-художнього початку.

Архітектура будинків і споруд покликана задовольнити різноманітні сторони життєдіяльності людини. Відповідаючи певним матеріальним і духовним запитам, будинки і споруди повинні разом з тим відповідати світогляду суспільства.

Значні за своїм архітектурно-художнім образом будинки й споруди, особливо їхні комплекси організують міські простори, стаючи архітектурною динамікою. Їм належить важлива містобудівна роль і в районах житлової забудови, і в нових чи реконструйованих міських центрах.
Розділ I
Загальні відомості про будівлі і споруди
1. Будівлі і вимоги до них

1.1. Поняття про будинки і споруди

У будівельній практиці розрізняють поняття «будинок» і «споруда».

Спорудою прийнято називати все, що штучно зведено людиною для задоволення матеріальних і духовних потреб суспільства.

Будинком називається наземна споруда, що має внутрішній простір, призначений і пристосований для того чи іншого виду людської діяльності (наприклад, житлові будинки, заводські корпуси, вокзали і т.д.).

Таким чином, поняття «споруда» немовби містить в собі поняття «будинок».

У практичній діяльності прийнято всі інші споруди, що не належать до будинків, відносити до так званих інженерних споруд. Іншими словами, споруди призначені для виконання суто технічних завдань (наприклад, міст, телевізійна щогла, тунель, станція метро, димар, резервуар і т.д.).

Внутрішній простір будинків розділяється на окремі приміщення (житлова кімната, кухня, аудиторія, службовий кабінет, цех та ін.). Приміщення, розташовані на одному рівні, утворюють поверх. Поверхи розділяються перекриттями.

У будь-якому будинку можна умовно виділити три групи взаємно пов’язаних між собою частин чи елементів, що в той же час немовби доповнюють і визначають один одного: об’ємно-планувальні елементи, тобто великі частини, на які можна розчленувати весь об’єм будинку (поверх, окремі приміщення, частина будинку між основними його стінами, що розчленовують, та ін.); конструктивні елементи, що визначають структуру будинку (фундаменти, стіни, перекриття, дах та ін.); будівельні вироби, тобто порівняно дрібні деталі, з яких складаються конструктивні елементи.

Докладніше всі частини й елементи будинку розглядаються далі.

Форма будинку в плані, його розміри, а також розміри окремих приміщень, поверховість та інші характерні ознаки визначаються в ході проектування будинку з урахуванням його призначення.
1.2. Вимоги до будинків і їхня класифікація

Будь-який будинок повинен відповідати наступним вимогам:
1) функціональної доцільності, тобто будинок повинен цілком відповідати тому процесу, для якого він призначенний (зручність проживання, праці, відпочинку і т.д.);
2) технічної доцільності, тобто будинок повинен надійно захищати людей від зовнішніх впливів (низьких чи високих температур, опадів, вітру), бути міцним і стійким, тобто витримувати різні навантаження і довговічним, тобто зберігати нормальні експлуатаційні якості в часі;
3) архітектурно-художньої виразності, тобто будинок повинен бути привабливим за своїм зовнішнім (екстер'єром) і внутрішнім (інтер'єром) виглядом, сприятливо впливати на психологічний стан і свідомість людей;
4) економічної доцільності, що передбачає найбільш оптимальні для даного виду будинку витрати праці, засобів і часу на його зведення. При цьому необхідно також поряд з одноразовими витратами на будівництво враховувати й витрати, пов’язані з експлуатацією будинку.

Головними з перелічених вимог є функціональна чи технологічна доцільність. Оскільки будинок є матеріально-організованим середовищем для здійснення людьми найрізноманітніших процесів праці, побуту і відпочинку, то приміщення будинку повинні найбільш повно відповідати тим процесам, на які вони розраховані; отже основним у будинку чи його окремих приміщеннях є його функціональне призначення.

Усі приміщення в будинку, що відповідають головним і підсобним функціям, зв’язуються між собою приміщеннями, головне призначення яких – забезпечення руху людей. Ці приміщення прийнято називати комунікаційними. До них відносяться коридори, сходи, вестибюлі, фойє, кулаари і т.п.

Отже, приміщення повинне обов’язково відповідати тій чи іншій функції. При цьому в ньому мають бути створені найбільш оптимальні умови для людини, тобто середовище, що відповідає виконуваній нею у приміщенні функції.

Якість середовища залежить від таких факторів, як простір для діяльності людини, розміщення устаткування і руху людей; стан повітряного середовища (температура і вологість, повітROTOбім у приміщеннях); звуковий режим (забезпечення чутності й захист від шумів, що заважають); світловий режим; видимість і зорове сприйняття; забезпе-
чення зручності пересування і безпечної евакуації людей.

Отже для того щоб правильно запроектувати приміщення, створити в ньому оптимальне середовище для людини, необхідно врахувати всі вимоги, що визначають якість середовища. Ці вимоги для кожного виду будинків і його приміщень установлюються Державними будівельними нормами (ДБН) – основним документом, що регламентує проєктування і будівництво будинків і споруд у країні.

Технічна доцільність будинку визначається вирішенням його конструкцій, що має враховувати всі зовнішні впливи, сприймані будинком у цілому і його окремими елементами. Ці впливи підрозділяють на силові і несилові (вплив середовища) (рис.1.1).

Рис.1.1. Зовнішні впливи на будинок

До силового відносять навантаження від власної маси елементів будинку (постійні навантаження), маси устаткування, людей, снігу, навантаження від дії вітру (тимчасові) й особливі (сейсмічні навантаження, впливи в результаті аварії устаткування і т.п.).
До несилового відносять температурні впливи (викликають зміни лінійних розмірів конструкцій), вплив атмосферної і ґрунтової вологи (викликає зміну властивостей матеріалів конструкцій), рух повітря (зміна мікроклімату в приміщеннях), вплив променістії енергії сонця (викликає зміну фізико-технічних властивостей матеріалів конструкцій), вплив агресивних хімічних домішок, що містяться в повітрі (можуть привести до руйнування конструкцій), біологічні впливи (викикани мікроорганізмами чи комахами, що призводять до руйнування конструкцій), вплив шуму від джерел усередині чи поза будинком, що порушують нормальний акустичний режим приміщення.

З урахуванням вказаних впливів будинок повинен задовольняти вимогам міцності, стійкості і довговічності.

Міцністю будинку називається здатність сприймати впливи без руйнування та істотних змінах конструкції.

Стійкістю (твердістю) будинку називається здатність зберігати відповідь при зовнішніх впливах.

Довговічність означає міцність, стійкість і скорочення будинку в цілому, так і його елементів у часі.

Будівельні норми і правила поділяють будинки за довговічністю на IV ступені: I – термін служби більше 100 років; II – від 50 до 100 років; III – від 20 до 50 років; IV – від 5 до 20 років.

Важливою технічною вимогою до будинків є пожежна безпека, що означає заходи, які зменшують можливість виникнення пожежі і, отже, загоряння конструкцій будинку.

Застосовуваний для будівництва матеріали й конструкції поділяються на неспалювани, важко спалювани і спалювани.

Конструкції будинку характеризуються також межею вогнестійкості, тобто опором впливу вогню до втрати міцності чи стійкості або утворення наскрізних тріщин чи підвищення температури на поверхні конструкції з боку протилежної дії вогню до 140 °C (у середньому).

Архітектурно-художні якості будинку визначаються критеріями краси. Для цього будинок повинен бути зручним у функціональному і зробленим у технічному відношенні. Для досягнення необхідних архітектурно-художніх якостей використовують такі засоби, як композиція, масштабність та ін.

При вибірі економічних вимог мають бути обґрунтовані прийняті розміри й форма приміщень з урахуванням потреб населення. Економічна доцільність у вирішенні технічних завдань припускає забезпечення міцності й стійкості будинку, його довговічності. При цьому необхідно, щоб вартість 1 м² площі або 1 м³ об'єму будинку не перевищувала встановленої межі.

Зниження вартості будинку може бути досягнуто раціональним плануванням і недопущенням надмірностей при встановленні площ і об'ємів приміщень, а також внутрішньою і зовнішньою обробкою; вибором найбільш оптимальних конструкцій з урахуванням виду будинку і умов його експлуатації; застосуванням сучасних методів і прийомів виконання будівельних робіт з урахуванням досягнень будівельної науки і техніки.

Будинки залежно від призначення прийнято підрозділяти на цивільні, промислові й сільськогосподарські.

До цивільних відносять будинки, призначені для обслуговування побутових і суспільних потреб людей. Їх розділяють на житлові (житлові будинки, готелі, гуртожитки т.п.) і суспільні (адміністративні, торгівельні, комунальні, спортивні, навчальні, культурно-просвітні та ін.).

Промисловими називають будинки, споруджені для розміщення знарядь виробництва і виконання трудових процесів, у результаті яких виходить промислова продукція (будинки цехів, електростанцій, транспорту, склади та ін.).

Сільськогосподарськими називають будинки, що обслуговують потреби сільського господарства (будинки для утримання худоби, тварин і птахів, теплиці, склади сільськогосподарських продуктів і т.п.).

Перераховані види будинків різко відрізняються за своїм архітектурно-конструктивним рішенням і зовнішнім виглядом. Залежно від матеріалу стін будинки умовно поділяють на дерев'яні й кам'яні. За видом і розміром будівельних конструкцій розрізняють будинки з малорозмірних елементів (цегельні будинки, дерев'яні з колод, із дрібних блоків) і з великорозмірних елементів (великоблочні, панельні, з об'ємних блоків), монолітні.

За поверховістю будинки поділяють на одно- й багатоповерхові. У цивільному будівництві розрізняють будинки малоповерхові (1-3
поверхі), багатоповерхові (4-9 поверхів) і підвищеної поверхновості (10 поверхів і більше).

Залежно від розташування поверхи бувають надземні, цокольні, підвальні й мансардні (горищні).

З застосуванням поширення розрізняють будинки: масового будівництва, возводиме повсюдно, як правило, за типовими проектами (школи, житлові будинки, поліклініки, дошкальні установи, кінотеатри та ін.); унікальні, особливо важливої суспільної і народногоспоживальної значущості, що споруджуються за спеціальними проектами (театри, музеї, спортивні будинки, адміністративні установи та ін.).

За функціональним призначенням та особливостями експлуатації суспільні будинки і споруди можуть бути розділені на спеціалізовані й універсальні.

Спеціалізовані суспільні будинки мають певне призначення, як правило, що не змінюється протягом усього періоду експлуатації (школи, лікарні, театри і т.д.).

Універсальні суспільні будинки можуть бути двох видів. До першого відносяться будинки багатоповерхового призначення, в яких приміщення протягом декількох годин можуть бути трансформовані для використання за іншим призначенням. До другого виду відносяться будинки, в яких можна періодично видозмінювати розміри приміщення та їхне устаткування, а також устаткування, його розміщення відповідно до усніщення суспільних процесів. Обидва види суспільних будинків забезпечують гнучку ефективну й економічну експлуатацію і відповідають сучасним формам громадської діяльності людей.

Особливістю експлуатації універсальних суспільних будинків із залами великої місткості є їхня трансформація при зміні призначення протягом короткого часу (рис. 1.2). Здійснення швидкої трансформації залів вимагає особливих об’ємно-планувальних конструктивних рішень будинків, спеціального устаткування і механізації трудомістких процесів.

Універсальні суспільні будинки другого виду використовують для великих торгових підприємств, адміністративних, проектних та інших організацій. Функціональний процес у них розвивається, змінюється та удосконалюється, що викликає необхідність періодичної заміни устаткування, видозміни приміщень і їхнього угоргання. Періодичність видозміни для таких будинків різна (кілька місяців чи років).

Періодична видозміна приміщень в універсальних суспільних будинках досягається спеціальними об’ємно-планувальними і констру-
Ктивними рішеннями на основі використання укрупнених прольотів і кроку несучих конструкцій.

Рис.1.2. Схема трансформації залу:
а – для тенісу чи хокею; б – для кінофільмів

Контрольні запитання
1. Основні вимоги до будинків.
2. Зовнішні впливи, сприймані будинком.
3. Шляхи зниження вартості будинку.
4. Класифікація будинків.
5. Розділення будинків залежно від їхньої довговічності.

2. ІНДУСТРІАЛІЗАЦІЯ БУДІВНИЦТВА

2.1. Уніфікація, типізація і стандартизація

Збірні конструкції виконують з різних матеріалів. Найбільше застосування в сучасному будівництві одержав залізобетон. Поряд зі сталевими великорозмірними конструкціями в практиці будівництва все більше застосування одержують збірні конструкції з легких металевих сплавів, пластичних мас та ін.

Перевага індустріальних методів масового будівництва доведена практикою. Його технологія заснована на застосуванні типових збірних деталей і конструкцій.

Типізацією називають добір кращих з технічної та економічної сторони рішень окремих конструкцій і цілих будинків, призначених для багаторазового застосування в масовому будівництві.

Кількість типів і розмірів збірних деталей і конструкцій для бу-
динку повинна бути обмежена, тому що виготовляти велику кількість однакових виробів і монтаж їх вести легше. Це дозволяє знизити вартість будівництва. Тому типізація супроводжується уніфікацією, що припускає приведення різноманітних видів типових деталей до невеликого числа певних типів, однакових за формою і розмірами. При цьому в масовому будівництві уніфікують не тільки розміри деталей і конструкцій, але й основні їхні властивості (наприклад, несучу здатність для плит, тепло- і звукоізоляційні властивості для панелей огородження). Уніфікація деталей повинна забезпечувати їхню взаємозамінність і універсальність.

Під взаємозамінністю розуміється можливість заміни даного виробу іншим без зміни параметрів будинку. Наприклад, взаємозамінними є плити покриття шириною 3000 і 1500 мм, тому що замість однієї широкої плити можна укласти дві вузькі. Можлива взаємозамінність за матеріалом і конструктивними рішеннями тих чи інших виробів.

Універсальність дозволяє застосовувати той самий типорозмір деталей для різних видів будинків. Найбільш типові деталі й конструкції, запропоновані проектними організаціями і перевірени на практиці будівництва, стандартизують, після чого вони стають обов'язковими для застосування у проєктуванні і для заводського виготовлення.

При розробці проектів будинків використовують конструкції, вироби і деталі, зведені в каталоги, що періодично обновлюються з урахуванням зрослого рівня будівельної науки і техніки. Оскільки основні розміри будівельних конструкцій і деталей визначаються об'ємно-планувальними рішеннями будинків, уніфікація їх базується на уніфікації об'ємно-планувальних параметрів будинків, якими є крок, прольот і висота поверху.

Кроком (рис.2.1) при проєктуванні плану будинку є відстань між координаційними осями, що розчленовують будинок на планувальні елементи чи визначають розташування вертикальних несучих конструкцій будинку (стін, колон, стовпів). Залежно від напрямку в плані будинку крок може бути поперечний або поздовжній.

Прольотом (рис.2.1) у плані називають відстань між координаційними осями несучих стін чи окремих опор у напрямку, що відповідає довжині основної несучої конструкції перекриття чи покриття.

У більшості випадків крок являє собою меншу відстань між осями, а прольот – більшу. Координаційні осі будинку для зручності застосування маркують, тобто позначають в одному напрямку (більш протяжному) цифрами, а в іншому – заголовними буквами російського алфавіту.

Висотою поверху є відстань по вертикалі від рівня підлоги ниж-
через ташованого поверху до рівня підлоги вищележачого поверху, а у верхніх поверхах і одноповерхових будинках – до верху оцінки горизонтного перекриття.

Використання у проектах єдиного чи обмеженого числа розмірів кроків, прольотів і висот поверхів дає можливість застосовувати обмеженє число типорозмірів деталей. Таким чином, уніфікація об’ємно-планувальних рішень будинків є неодмінною вимогою для уніфікації будівельних виробів.

2.2. Єдина модульна система

Уніфікація об’ємно-планувальних параметрів будинків і розмірів конструкцій та будівельних виробів здійснюється на основі Єдиної модульної системи (ЕМС), тобто сукупності правил координації розмірів будинків і їхніх елементів на основі кратності цих розмірів встановлений одиниці, тобто модулю. Як основний модуль (М) прийнята величина 100 мм. Усі розміри будинку, що мають значення для уніфікації, повинні бути кратні М. Для підвищення ступеня уніфікації прийняти похідні модулі (ПМ) укрупнені й дробові. Укрупнені модулі 6000, 3000, 1500, 1200, 600, 300, 200 мм, що позначаються відповідно 60М, 30М, 15М, 12М, 6М, 3М, 2М, передбачені для призначення розмірів об’ємно-планувальних елементів будинку і великих конструкцій. Дробові модулі 50, 20, 10, 5, 2, 1 мм, що позначаються відповідно 1/2М, 1/5М, 1/10М, 1/20М, 1/50М, 1/100М, служать для призначення розмірів щодо невеликих перетинів конструктивних елементів, товщини плитних і листових матеріалів.

ЕМС передбачає три види розмірів: номінальні, конструктивні й натурні (рис. 2.2).

Номінальний – це проектний розмір між координаційними осями будинку, а також розмір конструктивних елементів і будівельних виробів між їхніми умовними граннями (з включенням частин швів, що
примикають, або зазорів). Цей розмір завжди призначення кратним модулем.

Конструктив-ний – це проектний розмір виробу, що відрізняється від номінального роз-міру на величину конструктивного зазору.

Натурний – фактичний розмір виробу, що відрізняється від конструктивного на величину, обумов-лену допуском (позитивним і від’ємним), значення яко-го залежить від установленого класу точності виготовлення деталі й регламентоване для кожного з них.

Рис. 2.2. Розміри конструктивних елементів:

а – номінальний і конструктивний; б – натурний чи фактичний;

1 – конструктивні елементи; 2 – зазор

Контрольні запитання

1. Що таке типізація і уніфікація?
2. Дайте визначення основних об’ємно-планувальних параметрів будинку.
3. Що таке ЕМС?
4. Основні види розмірів і їхня оцінка.
РОЗДІЛ ІІ
ЦИВІЛЬНІ БУДИНКИ ТА ЇХ КОНСТРУКЦІЇ

3. ОСНОВНІ ЕЛЕМЕНТИ Й КОНСТРУКТИВНІ СХЕМИ ГРОМАДСЬКИХ БУДИНКІВ

3.1. Конструктивні елементи будинків

Основні конструктивні елементи цивільних будинків – це фундаменти, стіни, перекриття, окремі опори, дахи, сходи, вікна, двері й перегородки (рис.3.1).

Фундаменти є підземною конструкцією, що сприймає все навантаження від будинку і передає його на грунт.

Стіни за своїм призначенням і місцем розташування в будинку поділяються на зовнішні й внутрішні, є вертикальними огородженнями, одночасно виконуючи несучі функції. Залежно від цього вони поділяються на несучі й ненесучі. Несучими можуть бути як зовнішні, так і внутрішні стіни. Ненесучі стіни – це звичайно перегородки. Вони служать для розподілу в межах поверху великих, обмежених капітальними стінами приміщень на більш дрібні, причому для обпирання перегородок не потрібне влаштування фундаментів.

Зовнішні стіни, крім того, можуть бути самонесучими, котрі спираються на фундаменти і несуть навантаження тільки від власної маси, і начіпними, які є тільки огородженнями і спираються в кожному поверсі на інші елементи будинку.

Окресом опори – несучі вертикальні елементи (колони, стовпи, стояки), що передають навантаження від перекриттів та інших елементів будинку на фундаменти. Перекриття спираються на покладені по колонах спеціальні балки, називані прогонами чи ригелями, а іноді й безпосередньо на колони.

Розташований всередині будинку окремі опори й балки утворюють внутрішній каркас будинку.

Перекриття являють собою горизонтальні несучі конструкції, що спираються на несучі стіни чи стовпи і сприймають передані на них постійні й тимчасові навантаження. Одночасно перекриття, зв'язуючи між собою стіни, значно підвищують їхню стійкість і збільшують просторову твердість будинку в цілому. Залежно від місця розташування в будинку перекриття поділяються на міжповерхові (поділяючи суміжні поверхи), горищні (між верхнім поверхом і горищем), підвалівні (між першим поверхом і підвалом) і нижні (між першим поверхом і...
Рис.3.1. Основні конструктивні елементи будинку з цегельними несуцьми стінами:
Дах є конструктивним елементом, що захищає приміщення і конструкції будинку від атмосферних опадів. Він складається з несу
них елементів і частини, що огороджує. Дах, сполучений з перекриттям верхнього поверху, тобто без технічного поверху (чи горища), на
зивається сполученим дахом чи покриттям. Добре виконані плоскі спо
лучені дахи дешевше скатних як у будівництві, так і в експлуатації. Крім того, плоскі дахи можна використовувати як площадки для від
почину та інших цілей.

Сходи служать для сполучення між поверхами, а також для евакуації людей з будинку. Приміщення, в яких розташовуються сходи, називаються сходовими клітками. Конструкції сходів в основному складаються з маршрутів (похилих елементів зі ступенями) і площадок. Для безпеки пересування по сходах марші відгодовують поруч. Вікна влаштовують для освітлення і провітрювання приміщень; вони складаються з віконних прорізів, рам чи коробок і віконних сплетінь.

Двері служать для сполучення між приміщеннями. Складаються з дверних прорізів, що влаштовуються у стінах і перегородках, двер
них коробок і дверних полотен.

У цивільних будівлях можуть бути й інші конструктивні еле
менти (вхідні тамбури, козирки над дверима, балкони, лоджії та ін.). Для забезпечення необхідних експлуатаційних і санітарно
gігієнічних умов сучасний цивільний будинок обладнюється санітарно
teхнічними й інженерними пристроями. До них відносяться опалення, гаряче і холодне водопостачання, вентиляція, канальізація, сміттєвіда
лення, газифікація, енергопостачання, телефонізація та ін. Устаткуван
ня цих будинків розглядається у спеціальних курсах.

3.2. Конструктивні схеми будинків

Фундаменти, стіни, окремі опори і перекриття – основні несучі елементи будинку. Вони утворюють кістяк будинку – просторову сис
тему вертикальних і горизонтальних несучих елементів.

Кістяк визначає так звану конструктивну схему будинку. Зале
жно від характеру обірвання вертикальних и горизонтальних несучих елементів (пе
rekриттів) на вертикальні несучі елементи (стіни, окремі опори й балк
ki між ними) розрізняють наступні конструктивні схеми: цивільних будинків (рис.3.2): з несучими поздовжніми стінами; з несучими по
перечними стінами; з неповним каркасом; з повним каркасом.

У будівлях з несучими поздовжніми стінами (рис.3.2, а) останні влаштовують з важких матеріалів, що мають потрібну міцність. Крім
того, зовнішні стіни також повинні задовольняти теплозахисним вимогам. За такою конструктивною схемою будують цегельні й великооблоchenі будинки.

Рис.3.2. Конструктивні схеми будинків:
1 – внутрішня поздовжня стіна; 2 – внутрішні поперечні стіни; 3 – панелі перекриттїв; 4 – стовпи і прогони; 5 – прогони (чи розпірки); 6 – стояки каркаса; 7 – ненесучі зовнішні стіни

Стійкість такої конструктивної схеми в поперечному напрямку забезпечується поперечними стінами, що влаштовуються спеціально, не несуть навантаження від перекриття. Такі поперечні стіни зводяться лише для огородження сходових кліток і в місцях, де вони потрібні для додання стійкості зовнішнім стінам. Застосування зазначеної конструктивної схеми дає велику можливість для вирішення планування приміщень чи, іншими словами, дає велику свободу у вирішенні планувальних питань. Крім того, при даній конструктивній схемі потрібне менше число типорозмірів збірних виробів.

У будинках з поперечними несучими стінами (рис.3.2, б) забезпечується велика твердість системи, але збільшується загальна довжина внутрішніх стін. Проте таке рішення в ряді випадків є раціональним, тому що при цьому до конструкцій зовнішніх поздовжніх стін ставляться тільки теплозахисні вимоги і для їхнього влаштування можна застосувати легкі ефективні матеріали.

Крім того, іноді застосовується змішаний варіант, при якому опорами для перекриттів служать як поздовжні, так і поперечні стіни.
Якщо замість внутрішніх поздовжніх і поперечних стін улаштовується система стовпів з горизонтальними балками, що спираються на них (прогонами), на які, у свою чергу, спираються перекриття, то така схема відповідає будинку з неповним каркасом (кістяк) (рис.3.2, у, з).

Якщо замість несучих зовнішніх стін застосовані стовпи, що утворюють разом з внутрішніми стовпами і балками (прогонами) немовби кістяк будинку, то така конструктивна схема визначає будинки з повним каркасом (кістяк) (рис.3.2, д). У цьому випадку зовнішні стіни виконують тільки огороджуючі функції і можуть бути самонесучими або навісними. Самонесучі стіни спираються на фундаментні балки і не сприймають ніяких навантажень, крім власної маси. Навісні стіни спираються на горизонтальні елементи на рівні кожного поверху.

За характером роботи каркаси бувають рамні, зв'язкові й рамно-зв'язкові. Стовпи і балки рамного каркаса (рис.3.3, а) з'єднуються між собою твердими вузлами, утворюючи поперечні й поздовжні рами, що сприймають усі діючі вертикальні й горизонтальні навантаження. У будинках із зв'язковим каркасом (рис.3.3, б) вузли між стовпами і балками нежорсткі, тому для сприйняття горизонтальних навантажень необхідні додаткові зв'язки. Роль цих зв'язків виконують найчастіше перекриття, що утворюють діафрагми і передають горизонтальні навантаження на тверді вертикальні діафрагми (стіни сходових кліток, зализобетонні перегородки, шахти ліфтів та ін.). У практиці будівництва знаходять застосування будинку з комбінованим типом каркаса, який називають рамно-зв'язковим. У ньому в одному напрямку ставлять рами, а в іншому – зв'язку. У цивільному будівництві найбільше поширення одержали будинки із зв'язковими каркасами.

Рис.3.3. Схеми каркасів будинку:
1 – елемент каркаса; 2 – тверді вузли; 3 – горизонтальні діафрагми; 4 – вертикальні поперечні й поздовжні діафрагми.

Слід відзначити, що застосування каркасної конструктивної схе-
ми найбільше вигідне для будівництва великопанельних висотних житлових і громадських будинків.

Матеріалом для конструкцій каркасу є залізобетон, сталь, а для малоповерхових будинків стовпи нерідко викладають з цегли. Для дерев’яних будинків також використовують з дерева.

Велике поширення одержує монолітне будівництво, будівництво будинків з об’ємних елементів (блок-коробка), в яких кістяк будинку утворюється коробчастими елементами заводського виготовлення.

Контрольні запитання
1. Основні конструктивні елементи будинку.
2. Які конструкції визначають конструктивну схему будинку?
3. Основні переваги конструктивної схеми з поздовжніми несучими стінами.
4. Які основні типи каркасів будинку?
5. Які види стін за характером роботи застосовують у каркасних будинках?

4. ОСНОВИ І ФУНДАМЕНТИ

4.1. Поняття про основи і вимоги до них

Основою називається масив ґрунту, розташований під фундаментом і сприймаючий навантаження від будинку. Основи бувають двох видів: природні й штучні.

Природною основою називають ґрунт, що залишає під фундаментом і здатний у своєму природному стані витримати навантаження від зведеного будинку.

Штучною основою називають штучно ущільнений чи зміцнений ґрунт, який у природному стані не володіє достатньою несучою здатністю за глибиною закладення фундаменту. Діючі навантаження деформують основи, викликаючи осідання будинку.

Відповідно до викладеного ґрунту, що складають основу, повинні відповідати наступним вимогам: володіти достатньою несучою здатністю, а також малою й рівномірною стисливістю (великі й нерівномірні осідання будинку можуть привести до його пошкодження і навіть руйнування); не здиматися, тобто мати властивість збільшення об’єму при замерзанні вологої в порах ґрунту (відповідно до цієї вимоги вибирають глибину закладення фундаменту, що повинна бути узго-
джена з глибиною промерзання грунту в районі будівництва), не розмиватися і не розчинятися грунтовими водами, що також приводить до зниження міцності основи і появи непередбачених осідань будинку; не допускати осідань і зсувів.

Осідання можуть відбутися при недостатній потужності шару грунту, прийнятого за основу, якщо під ним розташовується грунт, що має меншу міцність (більш слабкий грунт). Зсув грунту можуть відбуватися при похилому розташуванні шарів грунту, обмежених крутим рельєфом місцевості.

Головна ж увага при проектуванні приділяється питанню забезпечення рівномірності осідання. При цьому необхідно враховувати, що навантаження від будинку може викликати руйнування основи при його недостатній несучій здатності. З іншого боку, основа може і не зруйнуватися, але осідання будинку виявитися настільки нерівномірним, що в стінах будинку з'являться тріщини, а в конструкціях виникнуть зусилля, що можуть призвести до аварійного стану всього будинку чи його частини.

Грунтові води значно впливають на структуру, фізичний стан і механічні властивості грунтів, знижуючи несучу здатність основи.

Якщо ж у грунті містяться легкорозчинні у воді речовини (наприклад, гіпс), можливо його вилуговування, що спричиняє збільшення пористості основи і зниження його несучої здатності. Для цього знижують рівень грунтових вод. У випадках, коли швидкість руху грунтових вод така, що можливо вимивання часток дрібнозернистих грунтів, треба застосовувати заходи для захисту основи. Для цього влаштовують навколо будинку спеціальне шпунтове огородження чи дренаж.

Які основні види грунтів і їхні властивості? Грунти різноманітні за своїм складом, структурою і характером залігання. Прийнята наступна будівельна класифікація грунтів:

Склінні – залігають у вигляді суцільного масиву (граніти, кварцити, піщаники і т.д.) чи у виді тріщинуватого шару. Вони водостійкі, нестиліві і при відсутності тріщин і порожнеч є найбільш міцними й надійними основами. Тріщинуваті шари скільких грунтів менш міцні.

Великуламкові – незв'язні уламки скільких порід з перевагою уламків розміром більше 2 мм (понад 50%). До них можна віднести гравій, щебінь, гальку, дресву. Ці грунти є гарною основою, якщо під ними розташований щільний шар.

Піщані – складаються з часток крупності від 0,1 до 2 мм. Залежно від крупності часток піски розділяють на гравелісті, великі, середньої крупності, дрібні й пилуваті. Чим крупніші й чистіші піски, тим
більше навантаження може витримати шар основи з нього. Стисли-вість щільного піску невелика, але швидкість щільнення під навантаженням значна, тому осідання споруд на таких основах швидко припиняється. Піски не мають властивість пластичності.

Частки грунту крупністю від 0,05 до 0,005 мм називають пилуватими. Якщо в піску таких часток від 15 до 50%, то їх відносять до категорії пилуватих. Коли в грунті пилуватих часток більше, ніж піщані, грунт називають пилуватим.

Глинисті – зв'язні грунти, що складаються з часток крупністю менше 0,005 мм, що мають в основному лускату форму. На відміну від пісків глини мають тонкі капіляри і велику питому поверхню зіткнення між частками. Оскільки пори глинистих грунтів часто заповнені водою, то при промерзанні глини відбувається її обдимання. Несуча здатність глинистих основ залежить від вологості. Суха глина може витримувати досить велике навантаження. Глинисті ґрунти поділяються на глини (із вмістом глинистих часток більше 30%), суглинки (10-30%) і супесі (10%).

Лесові (макропористі) – глинисті ґрунти з вмістом великої кількості пилуватих часток і няявністю великих пор (макропор) у вигляді вертикальних трубочок, видимих неозброєним оком. Ці ґрунти в сухому стані мають достатню міцність, але при зволоженні здатні давати під навантаженням великі осідання. Вони відносяться до просадних ґрунтів і при зведення на них будинків вимагають належного захисту основ від зволоження. З органічними домішками (рослинний ґрунт, мул, торф, болотний торф) вони неоднорідні за своїм складом, пухкі, мають значну стискальність. Як природні основи під будинки не прийнятні.

Насипні – ґрунти, що утворилися штучно при засипанні ярів, ставків, міст смітника і т.п. Мають властивість нерівномірної стисли-вості і в більшості випадків їх не можна використовувати як природні основи під будинки. У практиці застосовуються також намивні ґрунти, що утворилися в результаті очищення рік і озер. Ці ґрунти називають насипними. Вони є гарною основою для будинків.

Піливуні – утворюються дрібними з мулистими і глинистими домішками, насиченими водою. Вони не придатні як природні основи. Основи повинні забезпечувати просторову твердість і стійкість будинку, тому нормами передбачені припустимі величини осідання будинку (80-150 мм залежно від виду будинку).

Звичайно роблять ретельні геологічні й гідрогеологічні дослідження ґрунтів, щоб визначити їхні фізичні й механічні властивості, а також прийняти відповідне рішення про конструкцію будинку. З цією
Якщо розрізів для ту ментного зультаті кислоти ють вунів більш товують для дку буванням нити заміни слабких нім хідних нту філю спеціальні на хімічний зоні чи ся поверхості метою 1 м до 4 т, що мають вид усіченого конуса з діаметром основи не менше 1 м (із запізобетону, сталі чи чавуну). Цей спосіб застосовують у випадку, якщо грунти недостатньо цільні, а також при насипних грунтах. Для ущільнення великих площ застосовують ковзанки масою 10-15 т. Якщо грунти піщані чи пилуваті, то для їхнього ущільнення використовують також поверхневі вібратори. Слід відзначити, що цей метод є більш ефективним, тому що грунт ущільнюється швидше.

Силікатизацією — для закріплення пісків, пилуватих пісків (пли- вунів) і лесових грунтів. Для цього в піщаний грунт по черзі нагітають розчини рідкого скла і хлористого кальцію, для закріплення пилуватих пісків — розчин рідкого скла, змішаного з розчином фосфорної кислоти, а для закріплення лесів — тільки розчин рідкого скла. У результаті нагітання зазначені розчини грунт після закінчення певного часу кам'яніє і має велику несучу здатність.

Цементацією — шляхом нагітання у грунт по трубах рідкого цементного розчину чи цементного молока, які, тверднучи в порах грунту, додають йому каменевидної структури. Цементацію застосовують для зміцнення гравелистих, великих і середньозернистих пісків.

Випалюванням (термічним способом) — шляхом спалювання паль-
них продуктів, подаваних у шпари, що спеціально влаштовуються, під тиском. Цей спосіб застосовують для зміцнення лесових просадних ґрунтів.

Якщо чи ущільнити закріпити ґрунт важко, шар слабкого ґрунту замінюють більш міцним. Замінений шар ґрунту називають подушкою. При невеликому навантаженні на основу застосовують піщані подушки з великої чи середньої крупності піску. Товщина подушки має бути такою, щоб тиск на слабкий шар ґрунту, що лежить нижче, не перевищував його нормативного опору.

4.2. Фундаменти та їх конструктивні рішення

Фундаменти є важливим конструктивним елементом будинку, що сприймають навантаження від надземних його частин і передають їх на основу. Фундаменти повинні задовольняти вимогам міцності, стійкості, довговічності, технологічності влаштування і економічності.

Верхня площа фундаменту, на якій розташовуються надземні частини будинку, називається поверхнею фундаменту чи обрізом, а нижня його площа, що безпосередньо стикається з основою, – підошвою фундаменту.

Відстань від спланованої поверхні ґрунту до рівня підошви називається глибиною закладення фундаменту, що повинна відповідати глибині залягання шару основи. При цьому необхідно враховувати глибину промерзання ґрунту (рис.4.1). Якщо підставка складається з вологого дрібнозернистого ґрунту (піску дрібного чи пилуватого, супіску, суглинку або глини), то підошву фундаменту потрібно розташувати не вище рівня промерзання ґрунту.

Глибина закладення фундаментів під внутрішні стіни опалюваних будинків не залежить від глибини промерзання ґрунту; її призначають не менше 0,5 м від рівня землі чи підлоги підвалу. На рис.4.1 наведені ізоляції нормативних глибин промерзання суглинних ґрунтів.

У ґрунтах, що здимаються (великоуламкових, а також пісках гравелистих, великої і середньої крупності) глибина закладення фундаментів також не залежить від природного рівня ґрунту при плануванні підсиленням і від планувальної глибини промерзання, але вона повинна бути не менше 0,5 м в оцінки при плануванні ділянки зрисанням.

За конструктивною схемою фундаменти можуть бути: стрічкові, розташовувані по всій довжині чи стін у виді суцільної стрічки під рядами колон (рис.4.2, a, b); стовпчасті, що влаштовуються під окремо коштують опори (колони чи стовпи), а в ряді випадків і під стіни.
(рис.4.2, в, г); суцільні, що являють собою монолітну плиту під усією площею чи будинку його частиною і застосовувані при особливо великих навантаженнях на чи стіни окремі опори, а також недостатньо міцних грунтах у підставі (рис.4.2, д, е); пальові у вигляді окремих занурених у грунт стрижнів з метою передачі через них на підставу навантажень від будинку (рис.4.2, ж).

Рис.4.1. Визначення глибини закладення фундаментів:

а – схема: 1 – підошва фундаменту; 2 – тіло фундаменту; 3 – оцінка глибини закладення фундаменту; 4 – оцінка глибини промерзання грунту; 5 – оцінка рівня грунтових вод; 6 – планувальна оцінка; 7 – стіна; 8 – рівень підлоги І поверху; 9 – обріз фундаменту; hф – глибина закладення фундаменту; b – ширина підошви фундаменту; b – карта нормативних глибин промерзання суглинки грунтів

За характером роботи під дією навантаження фундаменти розрізняють тверді, матеріал яких працює переважно на стиск і в яких не виникають деформації вигину, і гнучкі, працюючи переважно на вигин. Для влаштування твердих фундаментів застосовують кладку з природного каменю неправильної форми (бутового чи каменю бутової плити),
бутобетону і бетону. Для гнучких фундаментів застосовують в основному залізобетон.

Рис. 4.2. Конструктивні схеми фундаментів:
а – стрічковий під стіну; б – те ж під колону; в – стовпчастий під стіни; г – окремий під колону; д – суцільний безбалковий; е – суцільний балковий; ж – пальовий; 1 – стіна; 2 – залізобетонна колона; 3 – залізобетонна фундаментна балка; 4 – залізобетонна фундаментна плита; 5 – стовпчастий фундамент; 6 – ростверк пальового фундаменту; 7 – стовпчастий фундамент.

Стрічкові фундаменти. За обрисом у профілі стрічковий фундамент під стіну в найпростішому випадку являє собою прямокутник. Його ширину встановлюють набагато більше товщини стіни, передбачаючи з кожної сторони невеликі уступи по 50-150 мм. Однак прямокутний перетин фундаменту на висоті припустимий лише при невеликих навантаженнях на фундамент і досить високій несучій здатності грунту.

За способом влаштування стрічкові фундаменти бувають монолітні й збірні.

Монолітні фундаменти влаштовують бутові, бутобетонні, бетонні й залізобетонні (рис. 4.3). Ширина бутових фундаментів повинна бути не менше 0,6 м для кладки з рваного буту і 0,5 м – з бутової плити. Висота ступенів у бутових фундаментах складає звичайно близько 0,5 м, ширина – від 0,15 до 0,25 м.

Влаштування монолітних бутобетонних, бетонних і залізобетонних фундаментів вимагає проведення опалубних робіт. Кладку бутових фундаментів роблять на кладному цементному розчині з обов'язковою перев'язкою (розбіжністю) вертикальних швів (проміж-
ків між каменями, заповнюваних розчином). Монолітні бутові фундаменти не відповідають вимогам сучасного будівництва, для їхнього влаштування важко механізувати роботи. Бутові й бутобетонні фундаменти є дуже трудомісткими при зведенні. тому їх застосовують в основному в районах, де бутовий камінь є місцевим матеріалом.

Більш ефективними є бетонні й залізобетонні фундаменти зі збірних елементів заводського виготовлення (рис.4.4), які у даний час мають найбільше поширення. При їхньому влаштуванні трудові витрати на будівництво зменшуються вдвічі. Їх можна зводити й у зимових умовах без обігріву.

Збірні стрічкові фундаменти під стіни складаються з фундаментних блоків-подушок і стінових фундаментних блоків. Фундаментні подушки укладають безпосередньо на основу при піщаних ґрунтах чи на піщану підготовку товщиною 100-150 мм, яка повинна бути ретельно утрамбована.

Фундаментні бетонні блоки укладають на розчині з обов'язковою перев'язкою вертикальних швів, товщина яких приймається рівною 20 мм (рис.4.5). Вертикальні колодизії, що утворюються торцями блоків, ретельно заповнюють розчином. Зв'язок між блоками поздовжніх і кутових стін забезпечується перев'язкою блоків і закладкою в горизонтальні шви арматурних сіток зі сталі діаметром 6-10 мм.

Блок-подушки виготовляють товщиною 300 і 400 мм і шириною від 1000 до 2800 мм, а блок-стінки – шириною 300,400, 500 і 600 мм, висотою 580 і довжиною 780 і 2380 мм.

При будівництві великопанельних будинків і будинків з об'ємних блоків застосовують фундамент, що складається із залізобетонної плити товщиною 300 мм і довжиною 3,5 м і встановлених на них панелей, що представляють собою наскрізні безроскісні залізобетонні форми товщиною 240 мм і висотою, рівною висоті підвального приміщення. З'єднуються між собою за допомогою зварювання закладних деталей.
Якщо необхідно забезпечити незалежне осідання двох суміжних ділянок будинку, то при власнуванні збірних фундаментів блоки укладають так, щоб вертикальні шви збігалися.

У місцях пропуску, різних трубопроводів (водопроводу, каналізації та ін.) у монолітних фундаментах заздалегідь передбачаються відповідні отвори, а в збірних між блоками – необхідні зазори з наступним їхнім закладенням.

Стовпчасті фундаменти. При невеликих навантаженнях на фундамент, коли тиск на основу менше нормативного, безупинні стрічкові фундаменти під стіни малоповерхових будинків без підвальів доцільно замінити стовпчастими. Фундаментні стовпи можуть бути бутовими, бутобетонними і залізобетонними (рис. 4.6, а). Відстань між осями фундаментних стовпів приймають 2,5-3,0 м, а якщо грунті міцні, то ця відстань може складати і 6,0 м. Стовпи розташовують обов'язково під кутами будинку, в місцях перетинання і примикання стін і під простінками. Перетин стовпчастих фундаментів у всіх випадках повинне бути не менш: бутових і бутобетонних – 0,6х0,6 м; бетонних – 0,4х0,4 м.

Стовпчасті фундаменти під стіни зводять також у будинках велікої поверховості при значній глибині закладення фундаментів (4-5 м), коли влаштовувати стрічковий фундамент недоцільно через велику витрату будівельних матеріалів.

Стовпи перекривають залізобетонними фундаментними балка-
Для запобігання їх від сил обдимання грунту, а також для вільного їхнього осідання (при осіданні будинку) під ними роблять підсилення товщиною 0,5-0,6 м. Якщо при цьому треба утеплити пристінну частину підлоги, підсилення виконують з чи шлаку керамзиту.

Стовпчасті фундаменти також влаштовують під окремі опори будинків (рис.4.6, а, б, в). Збірні фундаменти під залізобетонні колони можуть складатися з одного залізобетонного башмака склянкового типу (рис.4.6, д) чи із залізобетонних блок-склянки й опорної плити під ним (рис.4.6, е).

Рис.4.6. Стовпчасті фундаменти:
1 – залізобетонна фундаментна балка; 2 – підсилення; 3 – вимощення; 4 – гідроізоляція; 5 – цегельний стовп; 6 – блок-подушки; 7 – залізобетонна плита; 8 – залізобетонна колона; 9 – башмак склянкового типу; 10 – плита; 11 – блок-склянка

Суцільні фундаменти зводять у випадку, якщо навантаження, передане на фундамент, значне, а грунт слабкий. Ці фундаменти влаштовують під усією площу будинку. Для вирівнювання нерівномірностей опадів від впливу навантажень, переданих через колони каркасних будинків, у двох взаємоперпендикулярних напрямках застосовують перехресні стрічкові фундаменти (рис.4.7, а). Їх виконують з монолітного залізобетону. Якщо балки досягають значної ширини, то їхній доцільно поєднувати в суцільну ребристу або безбалкову плиту (рис.4.7, б, в). При суцільних фундаментах забезпечується рівномірне осідання будинку, що особливо важливо для будинків підвищеної поверховості. Суцільні фундаменти застосовують також у випадку, якщо підлога підвалу зазнає значний підпір грунтових вод.

У практиці будівництва під інженерні споруди (телевізійні вежі, димарі та ін.) застосовують суцільні фундаменти коробчатого типу.

Пальові фундаменти використовують при будівництві на слабких стислих грунтах, а також у випадках, коли досягнення природної основи економічно чи технічно недоцільне через велику глибину закладення. Крім того, ці фундаменти застосовують і для будинків, що
зводяться на досить міцних грунтах, якщо використання паль дозволяє одержати більш економічне рішення.

За способом передачі вертикальних навантажень від будівництва на грунт пали підрозділяють на пали-стоїки та пали висячі. Пали, що проходять слабкі шари грунту і спираються своїми кінцями на міцній грунт, називають пляями-стоїками (рис.4.8, а), а пали, що не досягають міцного грунту і передають навантаження на грунт тертям, що виникає між бічною поверхнею палі і грунтом, називаються висячими (рис.4.8, б, в).

За способом занурення в грунт пали бувають забивні й набивні. За матеріалом виготовлення забивні пали бувають залізобетонні, металеві й дерев'яні. Набивні пали виготовляють безпосередньо на будівельному майданчику в грунт.

Рис.4.7. Суцільні фундаменти:
1 – колона; 2 – залізобетонна стрічка; 3 – залізобетонна стрічка; 4 – бетонна підготовка.

Рис.4.8. Види пальових фундаментів:
1 – палі забивна; 2 – ростверк; 3 – палі набивна.
Залежно від несучої здатності і конструктивної схеми будинку палі розміщують в один чи кілька рядів або кущами.

Поверху залізобетонні й металеві палі з’єднуються між собою залізобетонним ростверком, що може бути збірним або монолітним. При дерев’яних палах ростверк виконують з дерева.

Вибір того чи іншого виду фундаменту визначається в результаті техніко-економічного порівняння.

4.3. Проектування підвальів. Технічні підпілля

Розрізняють три типи підземної частини цивільних будинків: з підвалом, з технічним підпіллям і без підвалу.

У підвалах розміщують різні підсобні служби, що забезпечують нормальну експлуатацію будинку. Однак сьогодні у зв’язку з центральним теплою постачанням кількість будинків з підвалами скоротилася. Для трасування інженерних мереж і комунікацій всередині будинку влаштовують технічні підпіллям. Це створює не тільки зручність їхньої експлуатації, але й знижує витрати на будівництво будинку в цілому.

При зведені будинків без підвалів вартість підземної частини зменшується. Але слід мати на увазі, що необхідно влаштовувати заглиблені приміщення для вузлів керування інженерними комунікаціями (введення електроенергії, водопроводу, тепломережі).

Зовнішні стіни підземної частини підвалів звичайно виконують з тих же матеріалів, що і фундаменти безпідвальних будинків. Вони повинні мати достатню стійкість проти горизонтального тиску ґрунту, а при опалювальних підвалах — також належними теплотехнічними якостями. Для висвітлення і провітрювання підвалів у їхніх зовнішніх стінах влаштовують вікна, розташовані нижче рівня землі, а перед вікнами — колодязі, що називаються приямками.

Входи в підвальні поверхні можна робити всередині будівлі в місці розташування сходової клітки або у вигляді відкритих назовні одномаршових сходів, які розташовують в особливих приямках. Ці сходи примикають до зовнішньої стіни і захищені підпірною стінкою.

Для захисту від опадів приямки можуть бути перекриті або обгороджені прибудовою.

Особливо увагу при влаштуванні підвалів, як і взагалі при зведені фундаментів, необхідно приділяти їхній гідроізоляції. Для безпідвальних будинків це важливо, якщо ґрунтів води агресивні.

Захист від ґрунтової вогкості здійснюється влаштуванням горизонтальної і вертикальної гідроізоляції (рис.4.9). Горизонтальну гідро-
ізоляцію виконують з двох шарів толо або руберойду, склеєних відпо-
відно дьогтьовою чи бітумною мастикою, або шару цементного розчи-
ну (склад 1:2 з добавкою церезиту) товщиною 2-3 см. Вертикальну гідроізоляцію здійснюють ретельним пофарбуванням зовнішніх пове-
рхонь стін фундаменту, що стикаються з ґрунтом, гарячим бітумом. При висоті рівня ґрунтових вод від 0,2 до 0,8 м застосовують обклею-
вальну ізоляцію, що складається з двох шарів руберойду на бітумній мастиці. Рекомендується також для стін підвальів додаткове влашту-
вання глиняного замка з шару 'м'ятої зволоженої глини. Існують також інші способи влаштування гідроізоляції.

При наявності агресив-
них вод фундаменти викону-
ють з бетону на пучолановому портландцементі і шлакопортландцементі. Щоб попередити проникнення дошових і таїх вод до підземних частин буди-
нку, роблять планування поверхні ділянки під забудову, створюючи необхідний ухил для відводу поверхневих вод від будинку. Навколо будинку уздовж зовнішніх стін влаштову-
ють вимощення з щільних водонепроникних матеріалів (асфальт, асфальто-бетон та ін.). Ширина вимощення при-
ймається не менше 0,5 м з ухилом від будинку 2-3 %. Для пристрою вимощення викори-
стовують також спеціальні збірні плити.

Гідроізоляцію надземної частини стін завжди влаштовує на рівні не менше 150 мм вище поверхні землі по всій товщі зовнішніх і внутрішніх стін.

Контрольні запитання
1. Види ґрунтів, коротка характеристика вимог до ґрунтів, викорис-
tовуваним як природні основи.
2. Способы зміцнення грунтів.
3. Основні конструктивні схеми фундаментів.
4. Як визначити глибину закладення фундаменту?
5. Коротка характеристика збірних стрічкових і стовпчастих фундаментів.
6. У яких випадках застосовують пальові фундаменти?
7. Призначення вимощення і його конструктивне рішення.

5. СТІНИ Й ОКРЕМІ ОПОРИ

5.1. Класифікація стін і вимоги до них

Стіни є найважливішими конструктивними елементами будинків, що служать не тільки вертикальними конструкціями, які огороджують, але нерідко й несуцільними елементами, на які спираються перекриття і покриття. У зв'язку з цим призначенням стін при розробці проекту будинку особливу увагу приділяють вибору конструктивної схеми будинку і виду стін. При цьому залежно від призначення будинку стіни повинні задовольняти наступним вимогам: бути міцними й стійкими; мати довговічність, що відповідає класу будинку; відповідати ступеню вогнестійкості будинку; забезпечувати підтримку необхідного волого-температурного режиму в приміщеннях; володіти достатніми звукоізоляційними властивостями; бути технологічними, забезпечувати максимально можливу індустриальність при спорудженні; бути економічними, тобто мати мінімальні витрати матеріалів, масу одиниці площі, найменші трудовитрати та витрати коштів; відповідати архітектурно-художньому рішенню, оскільки стіни є, по суті, одним з основних структурних частин будинків, що формують їх архітектурне обличчя.

За видом застосовуваних матеріалів стіни можуть бути кам'яні (зі штучних і природних каменів), дерев'яні, ґрунтові і з синтетичних матеріалів.

За характером роботи стіни бувають несучі, самонесучі і навісні. Несучими є стіни, які є не тільки захисними конструкціями, на них спираються також конструкції покриття або перекриття. При конструктивній схемі з самонесучими стінами вертикальні навантаження від перекриттів сприймають стовпи або колони. Стіни виконують тільки обгорождують функції. У цьому разі вони сприймають горизонтальні вітрові навантаження, що передають їх на конструкції каркаса (балки і колони). Такі стіни сприймають тільки навантаження від розташованих вище стін. Застосування навісних стін, що виконують тільки захи-
сні функції, характерно для каркасних будинків.

За конструкцією і способом зведення кам’яні стіни поділяють на чотири групи: з дрібноштучних елементів (дрібних каменів); з великих каменів (блоків); монолітні й великопанельні.

Кладкою називають конструкцію, виконану з окремих каменів (природних чи штучних), шви між якими заповнюють будівельним розчином.

Для забезпечення нормальної роботи і монолітності стін їх зводять з дотриманням правил, що визначають їх розрізку. Так, кладку стін роблять з розташуванням каменів горизонтальними рядами, щоб вертикальні шви не збігались. Цю розбіжність вертикальних швів називають перев’язкою. Перев’язка швів забезпечує рівномірний розподіл навантаження і залучення до спільної роботи усіх каменів, що утворюють стіну.

Для кладки стін з каменів, а також влаштування стін з великих блоків і панелей використовують вапняно-цементні, цементно-глиняні чи цементні розчини.

Монолітні стіни виконують за допомогою спеціальної опалубки, в яку укладають матеріал стіни. Опалубка в міру зведення стін пересувається за висотою.

5.2. Цегельні стіни

Цегла є одним з основних стінових матеріалів. У сучасному будівництві цивільні будинки зводять з цегли, при цьому створюються великі можливості використання архітектурно-художніх якостей цього матеріалу.

Цегельні стіни виконують з керамічної і силікатної цегли. Стандартна цегла має розміри 120х65х250 мм. Застосовують також полутруну цеглу, що має висоту 88 мм (рис.5.1).

Бічна поверхня цегли, що має розміри 120х65 чи 120х88 мм, називається поперециком цегли. Ряд цеглин, покладений цими поверхнями, називають тичковим.

Поверхню цегли, що має розміри 65х250 чи 88х250 мм, називають ложком. Ряд цеглин, покладений цими поверхнями (по фасаду), називають
Поверхня цегли, що має розміри 250х120 мм, називається постільно.

Поверхню горизонтальних швів цегельних стін приймають рівною 12 мм, а вертикальних – 10 мм. З урахуванням швів однорідні (сучільні) цегельні стіни можуть мати наступну товщину: 120, 250, 380, 510, 640, 770 мм і більше, що відповідає 1/2; 1; 1,5; 2; 2,5; 3 цеглині і більше.

Спосіб розміщення цеглин у кладці стіни з тим чи іншим чергуванням ложкових або поперечикових рядів для досягнення перев'язки швів називається системою цегельної кладки. З численних існуючих систем у практиці сучасного будівництва застосовують дві – ланцюгову (дворядну) і багаторядну (шестирядну). При ланцюговій кладці (рис.5.2, а) поперечикові ряди чергуються з ложковими. Поперечні шви в цій системі перекриваються на 1/4 цеглини, а поздовжні – на 1/2 цегли. При багаторядній кладці (рис.5.2, б) п'ять ложкових рядів чергуються з одним поперечиковим. У кожному ложковому ряду поперечні вертикальні шви перекривають у 1/2 цеглини; подовжні, що утворюються ложками, перев'язують поперечиковими рядами через п'ять ложкових рядів.

У будинках висотою 7 поверхів і більше кладку стін ведуть з установкою сталевих анкерних зв'язків на рівні перекриттів кожного поверху. Зв'язки укладають в кутах зовнішніх стін і в місцях примикання внутрішніх.

Якщо стіна з лицьової поверхні (fasадної частини) не оштукатурювати, то вертикальні й горизонтальні шви між цеглинами повинні бути повністю заповнені розчином для зменшення повітропроникності стін і надання стіні гарного зовнішнього вигляду. З цією метою роблять "розшивання" швів,
тобто шов ущільнують і додають його зовнішньої поверхні визначену форму. Обробку поверхні шва роблять спеціальним інструментом-rozшивкою, що додає шву форму валика, викружки або трикутника. Якщо поверхня стіни буде оштукатурена, то кладку ведуть “упусто-шовку”, залишаючи лицьові шви незаповненями на глибину 10-15 мм з метою забезпечення гарного зв'язку штукатурного шару зі стіною.

Істотним недоліком стін з повнотілої цегли (глиняної чи силікатної) є велика об'ємна маса і велика теплопровідність, що обумовлює необхідність зведення зовнішніх стін у районах середнього кліматичного пояса товщиною 2,5 цегли. У цих випадках доцільне застосування пустотілої цегли, яка володіє меншою теплопровідністю, що дозволяє зменшити товщину стін на 0,5 цеглинин.

З метою економії цегли доцільне застосування так званих полегшених цегельних стін, в яких цегла частково замінена ефективними теплоізоляційними матеріалами (рис.5.3, а, б, в).

![Рис.5.3. Конструкції полегшених цегельних стін: 1 – легкий бетон; 2 – термовкладиш](image)

5.3. Будівництво з монолітного залізобетону

Залізобетон був винайдений у 1867 р. З того часу залізобетонні конструкції швидко ввійшли в практику будівництва і стали основним видом будівельних конструкцій. Залізобетон як будівельний матеріал однаково добре працює на стиск, розтяг і вигин; довговічний і негорючий; до його складу входять доступні матеріали – пісок, щебінь, цемент і сталь. Крім того, застосування залізобетону, особливо монолітного, дозволяє одержувати вироби будь-яких розмірів і форм.

Будівництво з монолітного залізобетону стало одним з напрямків подальшої індустріалізації житлового домобудівництва завдяки застосуванню збірної опалубки багаторазового застосування, арматур-
них каркасів і сіток заводського виготовлення, механізованої подачі й укладання бетону. Використання електротермообробки і хімічних протиморозних домішок дозволяє вести будівництво при будь-яких температурах. У порівнянні зі збірними варіантами при монолітних конструкціях заощаджається до 25% металу і до 15% цементу.

Монолітні будинки зводять різними методами, застосовуючи ковзну, великошитову й об'ємно-переставну опалубку. Усі перераховані види опалубки ліквідують найбільш трудомісткі процеси з обробки і розбирання опалубки. Сучасні типи опалубок мають можливість багаторазового використання. Їх виготовляють на заводі у виді щитів, блоків й об’ємних конструкцій, установлюваних механізованим способом.

Великий економічний ефект дає застосування збірно-монолітних конструкцій. Повторювані елементи в будинку монтують збірними, а окремі вузли і частини будинку, конструктивно складно розв’язувати в збірному варіанті, роблять монолітними.

Несущий кістяк монолітних будинків являє собою нерозрізні елементи зовнішніх і внутрішніх несучих стін, колон, ригелів і плит перекриттів, жорстко зв’язаних між собою в просторову систему, що працює як одне ціле.

Монолітні стіни виконують з легкого бетону товщиною 300-500 мм. Як правило, вони мають захисно-захисну зовнішню і внутрішню шари. Виконання такої шаруватої конструкції в моноліті є складним, тому частіше застосовують збірно-монолітне вирішення стін з двох чи трьох шарів (рис.5.4). Несущий шар виконують з монолітного важкого бетону товщиною не менше 160 мм. Шар, що утеплює, можна розташовувати зовні або зсередини. Його виконують з легкобетонних плит із захисним шаром чи із двошарових плит з ефективним утеплювачем.

5.4. Архітектурно-конструктивні елементи стін

Поверхня стіни має вертикальні й горизонтальні членування, що
є її основними елементами. Горизонтальні членування утворюють за допомогою влаштування цоколя, карнизів і пасків, вертикальні – за допомогою пілястр (потовщень стін) або пристінків у плані. Поверхня стіни має прорізи (віконні і дверні) і простінки (ділянки стіни між прорізами).

Цоколем називається нижня частина стіни, розташована безпосередньо над фундаментом. Верхня грань цоколя називається кордоном; він завжди робиться строго горизонтальним. Це має важливе архітектурне значення, тому що цоколь зорово сприймається як підставка (постамент), на якому зведено будинок. Цоколь немовби захищає будинок від впливу опадів і випадкових механічних ушкоджень, оскільки він найбільш часто піддається їхній дії. Його виконують з міцних довговічних матеріалів, стійких проти атмосферних впливів. Верх цоколя розміщують звичайно на рівні підлоги першого поверху.

Застосування силікатної, пустотілої і легкої цегли, а також легкобетонних каменів для цоколя допускається тільки вище горизонтального гідроізоляційного шару за умови облицювання на висоту не менше 500-600 мм міцними волого- і морозостійкими матеріалами (рис.5.5).

Рис.5.5. Типи конструкцій цоколя:
а – облицьований цеглою; б – облицьований кам’яними блоками; в – те ж плитами; г – оштукатурений; д – з бетонних блоків в підрізку; е – із залізобетонних панелей в підрізку; 1 – фундамент; 2 – вимощення; 3 – обпалена цегла; 4 – стіна; 5 – гідроізоляція; 6 – конструкція підлоги першого поверху; 7 – цокольні кам’яні блоки; 8 – бортовий цокольний камінь; 9 – лицьовальні плити; 10 – штукатурка; 11 – покрівельна сталь; 12 – бетонний блок; 13 – панель фундаментної стіни.
Цоколі будинків улаштовують з бетонних фундаментних блоків; цегельні – з розшівкою швів або оштукатурені цементним розчином (нерідко застосовують добавку у вигляді гранітної крихти); облицьовані природним каменем чи плитами зі штучних чи природних матеріалів.

Карнизами називають горизонтальні профільовані виступи стіни, призначені для відведення вод, що попадають на ограждаючі конструкції будинку. Карниз, розташований по верху стіни, називається вінчальним (або головним). Він додає будинку закінченний вигляд. Форми і конструкції головних карнизів залежать від архітектурно-конструктивного вирішення будинку, його розмірів. У масовому будівництві найчастіше застосовують збірні залізобетонні карнизи (рис.5.6, а) з консольних плит, які зміцнюють в кладці болтами.

При невеликих виступах карниза за поверхню стіни (до 30 см) його влаштовують шляхом поступового випуску декількох рядів цегли по 5-6 см кожний ряд (рис.5.6, б). Проміжні карнизи, що мають менший винос, улаштовують звичайно на рівні міжповерхових перекриттів, а іноді під віконними й дверними прорізами. В останньому випадку вони мають ще меншій винос і називаються пасками. Іноді влаштовують окремі карнизи над прорізами вікон і дверей – сандрики, які виконують зі збірних блоків заводського виготовлення.

Якщо стіна будинку виводиться трохи вище вінчального карниза, то ця частина стіни називається парапетом. Парапет має висоту 0,5-1,0 м і може огороджувати дах по всьому периметрі або по двох чи
трьох сторонах. Влаштування парапету дозволяє сховати виведені на дах димарі, вентиляційні шахти, слухові вікна та інші надбудови і робить більш привабливим зовнішній вигляд будинку. Замість парапету влаштовують легкі металеві огородження на дахах, що здешевлює будівництво і дозволяє спростити водовідвід з дахів.

Трикутна стінка, що закриває простір горища при двосхиліх дахах і обрамлена карнизом, називається фронтоном. Таку ж стінку, але без карниза називають щипцем.

Нерідко в стінах влаштовують нескрізі поглиблення для розміщення в них різного обладнання (вбудованих шаф, труб, батарей опалення та ін.), що називаються нішами.

Якщо стіна по вертикалі має різну товщину (наприклад, у багатоповерхових цегельних будинках), то цей перехід від більшої до меншої товщини виконують у вигляді уступу з внутрішньої сторони і називають обрізом. Уступи, утворені зміною товщини стін по їхній довжині (у плані), звуться раскреповок.

Вертикальні потовщення (виступи) стін прямокутного перетину, що служать для посилення стін і підвищення їх стійкості, називаються пілястрами, а виступи напівкруглого перетину – півколонами. Пілястри і півколони розташовують у плані будинку із заданим кроком (відстанню), що створює певний ритм в інтер’єрі приміщення.

Для підвищення стійкості стін від впливу горизонтальних зусиль на стіну (від ферм, арок та ін.) влаштовують потовщення стіни з похилою передньою гранню. Цей виступ у стіні називають контрфор-сом.

Для прокладання труб, закладень кінців конструкцій і їхнього огляду в стінах влаштовують гнізда. Це малі накрізні й нескрізі отвори в стінах.

Конструкція, що перекриває прорізи в стінах (віконні й дверні) і підтримує розташовану вище частину стіни, називається перемикою. Перемички крім власної маси і маси розташованої вище стіни, сприймають і передають на розташовані нижче елементи стін (простінки) навантаження від елементів перекриття та інших конструкцій. Ненесучі перемички сприймають навантаження тільки від власної маси і кла-дки розташованої вище стіни.

За матеріалом і способом влаштування перемички поділяються на залізобетонні (із брусків і балок), армозглінні й армокам’яні, клінчасті плоскі й аркові перемички з матеріалу стіни. Збірні залізобетонні перемички (рис.5.7) мають маркірування з букв і цифр. Так, ненесучі перемички маркують: брусові – буквою Б, плитні – буквами БП. Цифри позначають довжину перемички в дециметрах. Брускові пере-
мички мають ширину 120 і висоту 65 мм при довжині до 2,0 м і висоту 140 мм при довжині до 3,0 м. Несучі перемички (БУ) мають висоту 220 і 300 мм і ширину 120 і 250 мм при довжині від 1,4 до 3,2 м. Брускові перемички зашпирывують кінцями в стіну не менш ніж на 120 мм, а несучі – на 250 мм.

Рядові перемички застосовують для прорізів шириною до 2 м. Для їхнього пристрою під нижній ряд чи цегли стінових дрібних блоків по опалубці прокладають арматуру з круглої сталі діаметром 6 мм чи смугової прокатної сталі із запуском кінців стрижнів у кладку простінків на 250 мм і заливають цементно-піщаним розчином шаром товщиною 20-30 мм. Якщо для перекриття прорізів у стіні застосовані рядові перемички, то обпирають на стіну чи балок плит перекриттів (покрить) можна допускати не менш ніж на п'ять рядів суцільної чи кладки три ряди каменів, покладених на розчині марки не менше 25.

Армоцегляні й армокам'яні перемички влаштовують при прорізах шириною більше 2 м або при значних навантаженнях. Вони відрізняються від рядових тим, що у вертикальні подовжні шви кладки над прорізами закладають каркаси з арматурної сталі, які включають у роботу з і сприйняття навантаження всю смугу кладки.

Аркові перемички (рис.5.8, а) тепер застосовують в основному при зведення будинків по індивідуальних проектах. Це пов'язано зі значною трудомісткістю їхнього влаштування, необхідністю витримки в опалубці і додатковій витраті лісоматеріалів. Кладку каменів у перемичках ведуть на ребро, похилими рядами з пристроєм між ними клинчастих

Рис.5.7. Збірні залізобетонні перемички:
а, б – брускові (тип Б); в – плитні (тип БП);
г – балкові (тип БУ)

Рис.5.8. Аркова і плоска клинчасти перемички:
1 – замковий камінь; 2 – п'ята перемички.
швів. Число рядів приймають непарне: середній ряд називається замком, тому що при його зруйнуванні арка втрачає міцність. Площини зіткнення арки з опорами називають п'ятами.

Влаштування клинчастих плоских перемичок аналогічне арковим (рис.5.8, б).

5.5. Деформаційні шви. Балкони, лоджії й еркери

Щоб уникнути появи в стінах будинків тріщин від нерівномірного осідання чи фундаментів внаслідок деформації матеріалу стіни при коливаннях температури влаштовують деформаційні шви. Вони можуть бути осадовими й температурними. Осадочі шви влаштовують у разі різної поверхності частин або коли з'єднує арки нерівного фізико-механічного властивості. У цьому випадку шов розрізає будинок на відсіки, які можуть самостійно працювати під навантаженням, що при його розрізні зруйнуванні арка втрачає міцність. Площини зіткнення арки з опорами називають п'ятами.

Влаштування кільчастих плоских перемичок аналогічне арковим (рис.5.8, б).

Щоб уникнути появи в стінах будинків тріщин від нерівномірної осідання чи фундаментів внаслідок деформації матеріалу стіни при коливаннях температури влаштовують деформаційні шви. Вони можуть бути осадовими й температурними. Осадочі шви влаштовують у разі різної поверхності частин або коли з'єднує арки нерівного фізико-механічного властивості. У цьому випадку шов розрізає будинок на відсіки, які можуть самостійно працювати під навантаженням, що при його розрізні зруйнуванні арка втрачає міцність. Площини зіткнення арки з опорами називають п'ятами.

5.5. Деформаційні шви. Балкони, лоджії й еркери

Щоб уникнути появи в стінах будинків тріщин від нерівномірного осідання чи фундаментів внаслідок деформації матеріалу стіни при коливаннях температури влаштовують деформаційні шви. Вони можуть бути осадовими й температурними. Осадочі шви влаштовують у разі різної поверхності частин або коли з'єднує арки нерівного фізико-механічного властивості. У цьому випадку шов розрізає будинок на відсіки, які можуть самостійно працювати під навантаженням, що при його розрізні зруйнуванні арка втрачає міцність. Площини зіткнення арки з опорами називають п'ятами.

Відсіки стін у деформаційному шві сполучаються у вигляді паза (штриби) і гребеня з прокладкою між ними двох шарів толі вугілля, які складають щиток, що приймає його зруйнування і термів, і логасти відповідної будівництва. Відсіки стін у деформаційному шві сполучаються у вигляді паза (штриби) і гребеня з прокладкою між ними двох шарів толі вугілля, які складають щиток, що приймає його зруйнування і термів, і логасти відповідної будівництва.

Важливими конструктивними елементами стін будинків, що збагачують їх архітектурно-композиційні рішення, є балкони, лоджії й еркери. Вони служать необхідними наявними для людини між приміщеннями і навколоїним середовищем. Влаштовування їх створює додаткові зручності, особливо в житлових будинках. Балкон складається з несучої конструкції, найчастіше у вигляді плити, підлоги і огороджі. Несучу конструкцію в сучасному масовому будівництві виконують із залізобетонних плит, затиснених з однієї сторони в стіні і прикреплених зварюванням до сталевих анкерів, забитих у стіни, а також панелі перекриття.

Лоджії являють собою обгороджений в габариті будівлі терасу, відкриту з фасадної сторони й огороджену з трьох інших сторін капітальними стінами. З огляду на те, що лоджії дозволяють захищати приміщення від інсоляції, їх влаштовують здебільшого в південних районах.

Еркери являють собою обгородженну зовнішніми стінами частина кімнати, що виступає за зовнішню площиною фасадної стіни і освітлюється одним оскільки, або кількома вікнами. Влаштовувують еркери переважно
для багатоповерхових будівель, починаючи з першого поверху. У цьому разі стіни, що огороджують еркер, спираються на власний фундамент. У зв’язку з тим, що еркери дозволяють збільшити освітленість і інсоляцію приміщень, їх бажано робити в північних районах і районах з помірним кліматом. Слід відзначити, що еркери значно збагачують композицію будинку.

5.6. Окремі опори. Прогони

Внутрішніми опорами для конструкції перекриттів або покриттів будівель із малорозмірних елементів є окремі стовпи (вимуровані з цегли або каменно), залізобетонні, металеві й азбокементні стояки. Переріз таких вертикальних опор із цегли вибирають залежно від величини передаваного навантаження, відстаней між опорами, кількості поверхів у будівлі, її призначення та загального конструктивного вирішення.

У кожному поверсі на рівні конструкцій перекриттів (прогонів) на кладку стовпа під їхні кінці укладають залізобетонні плити.

При значних навантаженнях замість кам’яних стовпів застосовують залізобетонні колони, які разом з прогонами утворюють каркас будівлі. Колони можуть бути прямокутного і круглого перерізу. Обпірання прогонів на колони здійснюється приварюванням стальних закладних деталей, що є в тілі колони і прогону. Прогони можуть бути залізобетонні, металеві й дерев’яні. У будівлях каркасного типу залізобетонні елементи уніфіковані.

Контрольні запитання

1. Основні вимоги до стін.
2. Види стін за характером роботи і матеріалом.
3. Назвіть основні архітектурно-конструктивні елементи стін, дайте їхнє визначення.
4. Основні системи кладки стін з цегли.
5. Який вид кладки з цегли дозволяє скоротити товщину стін і одержати економію матеріалів?
6. У яких випадках влаштовують деформаційні шви? Їхні види.
6. ПЕРЕКРИТТЯ І ПІДЛОГИ

6.1. Перекриття. Їхня класифікація і вимоги до них

Перекриття поряд зі стінами є основним конструктивним елементом будівлі, вони розділяють їх на поверхні. За розташуванням в будівлі перекриття можуть бути міжповерховими, горищними і надпідвальними. Перекриття повинне бути міцним, тобто витримувати діючі на нього постійні і тимчасові навантаження.

Важливою вимогою, що визначає експлуатаційні якості перекриття, є твердість. Якщо твердість перекриття недостатня, то під впливом навантажень воно дає прогини, що викликає втрату твердості.

Величина твердості оцінюється значенням відносного прогину, рівного відношенню абсолютної прогину до величины прольоту. Його значення не повинне перевищувати 1/200 для горищних перекриттів і 1/250 для міжповерхових.

Теплозахисні вимоги ставляться для горищних і надпідвальних перекриттів опалювальних будівель, а також міжповерхових перекриттів, що відокремлюють опалювальні приміщення поверхів від неопалюваних.

Екологічні вимоги ставляться для горищних і надпідвальних перекриттів опалювальних будівель, а також міжповерхових перекриттів, що відокремлюють опалювальні приміщення поверхів від неопалюваних.

Перекриття повинні мати достатню звукоізоляцію. У зв'язку з цим застосовують шаруваті конструкції перекриттів з різними звуком ізоляційними властивостями, спирають основні конструкції перекриття на звукоізоляційні прокладки, а також регулярно зашпарюють нащільності.

Перекриття повинні також задовольняти протипожежним вимогам, що відповідають класу будинку.

Залежно від призначення приміщень до перекриттів можуть використовуватись також спеціальні вимоги: водонепроникність (для перекриттів у санузлах, душових, лазнях, пралень), неспалюваність (у пожежезахисних приміщеннях), повітронепроникність (при розміщені в нижніх поверхах лабораторій, котельних та ін.).

Незалежно від місця розташування перекриття у будівлі його конструктивне рішення повинне бути економічно і технологічно обґрунтовано.

У залежності від конструктивного рішення перекриття бувають: балкові, в яких основним несучим елементом є балки, на які укладають настили, накати та інші елементи покриття; плитні, що складаються з
несучих плит или настилів, що спираються на вертикальні несучі опори будівлі або на ригелі й прогони; безбалкові, що складаються з плит, зв'язаної з вертикальною опорою несучою капітеллю.

Залежно від застосовуваного матеріалу основних несучих елементів, які безпосередньо передають навантаження на стіни і прогони, перекриття бувають залізобетонні, дерев'яні і по сталевих балках.

6.2. Дерев'яні перекриття

Дерев'яні перекриття застосовують в основному в малоповерхових будинках і в районах, де ліс є місцевим матеріалом. Цей вид перекриття простий у властиванні і має порівняно невелику вартість. До недоліків дерев'яних перекриттів необхідно віднести їхню недостатню довговічність, спаленість, можливість загнивання і малу міцність.

Дерев'яні перекриття складаються з балок, що є несучою конструкцією, міжбалкового заповнення, конструкції підлоги й оздоблювального шару стелі (рис.6.1). Балки виготовляють переважно у вигляді брусів прямокутного перерізу, розміри яких установлюються розрахунком. Найчастіше висота балок становить 130, 150, 180 і 200 мм, а товщина – 75 і 100 мм. Відстань між балками (по осі) приймають 600-1000 мм.

Рис.6.1. Конструкція дерев'яного міжнаслідного перекриття:
1 – черепні бруски; 2 – балка; 3 – паркет; 4 – чорна підлога; 5 – лага; 6 – штукатурка; 7 – накат; 8 – змащення глиною; 9 – засипання.

Для обпирання міжбалкового заповнення до бічних сторін прибивають так звані черепні бруски перерізом 40х50 мм. Глибину обпирання кінців балок у гніздах кам'яних стін приймають 180 мм (рис.6.2, а). Між торцем балки і кладкою необхідно залишати зазор не менше 30 мм, щоб не було зіткнення з кладкою і забезпечувався випар вологи з балки.

Кінці балок антисептують 3%-ним розчином фтористого натрію на довжину 750 мм, а бічні поверхні кінців балок оклеюють толем у два шари на смолі. Для посилення твердості й стійкості кінці балок перекриттів заанкеровують у стіни. Сталевий анкер одним кінцем при-
кріплюють до балки, а інший кінець зашпаровують у кладку.

При обпиранні балок на внутрішні стіні (рис.6.2, б) кінці їх антисептують і обертають двома шарами толю. Зазор між балками і стінками гнізд також рекомендується зашпаровувати розчином з протипожежних і звукоізоляційних міркувань.

Рис.6.2. Обпирання дерев’яних балок на кам’яни стіни:
1 – антисепгована частина балки; 2 – анкер; 3 – закладення розчином; 4 – два шари толю на смолі; 5 – цвях; 6 – два шари толю; 7 – сталева накладка 50х6 мм.

Заповнення між балками складається з щитового накату, змащеної по верху накату глинопіщаним розчином товщиною 20-30 мм і звукоізоляційного шару шлаку. У горищних і надпідвальних перекриттях засипання є теплоізоляцією, товщиною визначають теплотехнічним розрахунком.

Конструкція підлоги по дерев’яному перекриттю складається з дощатого настилу зі струганих шпунтованих дощок, що прикріплюються цвяхами до лагів із пластин, які укладаються поперек балок через 500-700 мм. Якщо підлога паркетна, то настил улаштовують з неструганих дощок (чорна підлога). Завдяки наявності лаг під підлоги під усією площею приміщення створюється суцільний повітряний прошарок, що з’єднується з повітрям приміщення через вентиляційні грати, які влаштовують у кутах кімнат. Це забезпечує вентиляцію підпільного простору і видалення з нього водяних парів. Для зменшення висоти перекриття нерідко підлогу укладають безпосередньо по балках. Однак відсутність лаг погіршує звукоізоляцію перекриття.

Нижню поверхню дерев’яного перекриття, що утворює стелю,
оббивають листами сухої штукатурки або оштукатурюють по шару дранки. З цією метою найчастіше застосовують вапняно-гіпсовий розчин.

6.3. Залізобетонні перекриття

Залізобетонні перекриття є найбільш надійними і довговічними, тому в даний час знаходять широке застосування в цивільному будівництві. За способом влаштування вони бувають монолітними, збірними і збірно-модулінними.

Найпростішим видом монолітного залізобетонного перекриття є гладка одно прогонова плита. Таке перекриття, що має товщину 60-100 мм залежно від навантаження і величини прольоту, застосовується для приміщень з розмірами сторін до 3 м.

При великих прольотах влаштовують безбалкові перекриття, які можуть бути збірними і монолітними. Так, якщо треба перекрити приміщення розміром 8x18 (рис.6.3), влаштовують балки прольотом 8 м із кроком 6 м. Ці балки називають головними. По них через 1,5-2 м улаштовують так звані другорядні балки, що мають прольот 6 м. По верху укладають плиту товщиною 60-100 мм. Таким чином конструкція перекриття виходить ребристою. Висота головної балки орієнтовно може бути прийнята 1/12-1/16 прольоту, а ширина – 1/8-1/12 від відстані між осями.

Якщо висота головних і другорядних балок прийнята однаковою, то такий вид перекриття називають кесонним (рис.6.4). Застосування їх пов’язане в основному вимогами рішення інтер’єра приміщення.

До широкого впровадження в будівництві залізобетону для влаштування важко сплавованих і водостійких перекриттів застосовували металеві балки (із прокатних профілів) (рис.6.5). У даний час конструктивні рішення перекриттів використовують рідко, їх можна

Рис.6.3. Залізобетонне монолітне ребристе покриття: 1 – головна балка; 2 – другорядна балка; 3 – плита
зустріти в основному при виконанні ремонтних робіт і реконструкції будинків. Тут важливо пам'ятати, що балки повинні бути надійно захищені від впливу чи вогню високих температур (більше 140 °С).

Рис.6.4. Загальний вид залізобетонного монолітного кесонного перекриття

Балки розташовують на відстані 1,0-1,5 м одна від одної. Величина обпирання на стіни повинна складати 200-250 мм. Під балки укладають бетонні чи подушки сталеві підкладки. Балки необхідно захищати спеціальним покриттям від корозії.

Безбалкові монолітні залізобетонні перекриття (рис.6.6) являють собою плиту товщиною 150-200 мм, що спирається безпосередньо на колони, у верхній частині яких влаштовані стовщення, що називаються капітелями. Сітка колон при безбалковому перекритті приймається квадратною або близькою до квадрата з розміром сторін 5-6 м. Ефективним є влаштування збірних безбалкових перекриттів.

Найбільше поширення в цивільному будівництві одержали плитні перекриття. Ос-
новими несучими елементами їх є різні види залізобетонних панелей-настилів, виготовлених з бетону. Залежно від конструктивних схем будинків вони бувають (рис.6.7): з панелей, що спираються кінцями на поздовжні несучі стіни або на прогони, покладені уздовж будинку; з панелей, що спираються кінцями на поперечні стіни або прогони, покладені впоперек будівлі; з панелей, що спираються на несучі або стіни прогони по трьох чи чотирьох сторонах; з панелей, що спираються по чотирьох кутах на колони каркаса. Мінімальна глибина закладення настилів у цегельних стінах 120 мм, у блокових і панельних – 100 мм з кожної сторони.

Збірні залізобетонні плити перекриттів у ході їхньої установки жорстко зашпарюються в стінах за допомогою анкерних кріплень і скріплюються між собою зварними або арматурними зв'язками. Шви між плитами замонолічують розчином. Таким чином виходять досить тверді горизонтальні диски, що збільшують загальну стійкість будинків.

Плити перекриття бувають суцільного перетину, ребристі й пустотні.

Суцільні одношарові панелі являють собою залізобетонну плиту постійного перетину з нижньою поверхнею, готовою під фарбування, і верхньою рівною, підготовленою для влаштування підлоги, мають товщину 100-120 мм з багатошаровою конструкцією підлоги і 140 мм з наклейкою по плиті лінолеуму на пружній основі.

Багатопустотні панелі широко застосовують для влаштування перекриттів. Панелі бувають з круглими й овальними порожнинами.

Застосовують також шатрові панелі, що мають вигляд плити, обрамленої по контуру ребрами, спрямованими вниз у вигляді карниза. Виготовлені розміром на кімнату, вони дозволяють виключити з конструктивної схеми будівлі ригелі та інші балкові елементи, а завдяки малій товщині знізити висоту поверху, не зменшуючи висоти приміщення.
Рис.6.7. Конструктивні схеми плитних перекриттів:

а – з поздовжніми лініями опор; б – з поперечними лініями опор; в – з обпиранням по трьох чи чотирьох сторонах (по контуру); м – з обпиранням по чотирьох точках (куті);

1 – панелі перекриття, що спираються на несучі стіни; 2 – внутрішня поздовжня чи поперечна несуча стіна; 3 – зовнішня несуча стіна; 4 – панель перекриття, що спирається на прогон; 5 – прогони; 6 – колони; 7 – панель перекриття розміром на кімнату, що спирається на колони; 8 – зовнішня несуча стіна.
При спорудженні громадських будинків часто виникає необхідність влаштування перекриттів при прольотах 9, 12 і 15 м. Цією метою застосовують ребристі попередньо напружені плити довжиною 9, шириною 1,5 і висотою ребра 0,4 м (рис.6.8, а); попередньо напружені панелі типу ТТ-12 і ТТ-15 для прольотів відповідно 12 і 15 м (рис.6.8, б, в).

Рис.6.8. Плити-настили для прольотів 9, 12 і 15 м:
1 – монтажні петлі; 2 – поздовжні ребра; 3 – поперечні ребра

6.4. Конструктивні рішення надпідвальних і горищних перекриттів

До горищних і надпідвальних перекриттів поряд із загальними вимогами ставляться і спеціальні. У зв’язку з цим їх конструктивні рішення дещо відрізняється від міжповерхових. Так, горищні перекриття, виконані із залізобетонних панелей і настилів (рис.6.9, а), повинні мати шар утеплювача, покладеного по пароізоляції з одного або двох шарів чи пергаміну руберойду, наклеєного на мастці. Як утеплювач, товщина якого визначається з розрахунку, застосовують сипучі матеріали (шлак, керамзит та ін.), плитні (фібролітові або комишитові плити, плити з легких бетонів, мінераловатні плити та ін.). Поверх утеплювача влаштовують захисний шар з чи піску шлаку товщиною 30–40 мм або з розчину.
Перекриття над підвалалями, проїздами і приміщеннями з низькими температурами також повинні мати теплоізоляційний шар, товщиною якого приймається з розрахунку (мал.6.9. б). Пароізоляційний шар у цьому випадку розташовують над утеплювачем.

Слід враховувати, що застосування шлаку і керамзиту як утеплювача горищних перекриттях не відповідає сучасним вимогам будівництва. Крім того, маса 1 м² горищного перекриття, утепленого шлаком і керамзитом, досить велика – понад 500 кг/м². У цьому випадку доцільніше застосування армопінобетонних настилів, у яких сполучені несучі й теплофізичні функції і майже в два рази зменшена маса перекриття.

При влаштуванні залізобетонних перекриттів у санітарних вузлах в конструкцію перекриття вводять гідроізоляційний шар, який піднімають вгору на 100 мм у місцях примикання до стін.

6.5. Підлоги і їхні конструктивні рішення

Підлоги влаштовують по чи перекриттях безпосередньо по грунті (для перших поверхів безпідвальних будинків і підвалів).

Верхній шар підлоги, що безпосередньо піддається експлуатаційним впливам, називають покриттям (або чistoю підлогою).

Матеріал підлоги укладають на спеціально підготовлену поверхню, яку називають підстильним шаром (або підготовкою) під підлоги. Між підготовкою і чистим шаром може бути розташований прошарок – проміжний сполучний шар між покриттям і стяжкою. Стяжка – це шар, що служить для вирівнювання поверхні підстильного шару, а також для надання покриттю необхідного ухилу. Для влаштування стяжки застосовують бетон, цементно-піщаний розчин, асфальт, гіпсобетон.

Підстильний шар розподіляють навантаження від підлоги по основі (грунту), на якому повинен бути покладений підстильний шар. У підлогах по перекриттю основою є несуча частина перекритт-
тя, а підстилаючого шару немає. Додатково в конструкцію підлоги можуть бути включені шар звукоізоляції, а також термо- і гідроізоляційний шар.

Залежно від призначення будівлі й характеру функціонального процесу, що протікає у приміщеннях, підлоги повинні задовольняти наступним вимогам: бути міцними, тобто мати гарний опір зовнішнім впливам; володіти малим теплозасвоєнням, тобто не бути теплопровідними; володіти малим пильноутворенням і легко піддаватися очищенню; бути індустріальними і економічними.

Підлоги в мокрих приміщеннях повинні бути водостійкими і водонепроникними, а в пожежонебезпечних приміщеннях – неспалюваними.

Підлоги в мокрих приміщеннях повинні бути водостійкими і водонепроникними, а в пожежонебезпечних приміщеннях – неспалюваними.

За способом влаштування підлоги можуть бути штучних і рулонних матеріалів (рис. 6.10).

Назва (вид) підлоги визначається матеріалом, з якого вона зроблена (дощата, паркетна, лінолеумова, з керамічних плиток, цементна, із деревно-волокнистих плит і т.д.).

Цементні підлоги влаштовують з цементного розчину складу 1:1 - 1:3 шаром 20 мм по бетонній основі. Цю підлогу застосовують переважно в нежилих приміщеннях, тому що вона курна, теплопровідна і недекоративна.

Терацеву підлогу часто влаштовують в громадських будинках. Вона є двошаровою – нижній шар товщиною не менше 15 мм виконується з цементного розчину по бетонній основі, а верхній – з цементного розчину з мармуровою крихтою складу 1:2. Після затвердіння підлогу шліфують спеціальними машинами до утворення гладкої поверхні, що надає їй красивий зовнішній вигляд.

Асфальтові підлоги виконують у вигляді монолітного шару ли- того асфальту товщиною 20-25 мм по бетонній чи шебеневій підготовці товщиною 100-120 мм. Асфальтові підлоги настилають у підвалах і іноді в комунікаційних приміщеннях (коридорах, сходових клітках, переходах та ін.) суспільних будинків.

Мастикову (наливну) підлогу влаштовують із синтетичних матеріалів. Дрібний пісок з додаванням полівінілацетатної емульсії, що є в’язкою речовиною, утворить високостійке й еластичне покриття підлоги. Мастичне покриття товщиною 2-3 мм влаштовують по шлакобетонній, цементній або ксиолітовій стяжці чи по деревно-волокнистих чи деревно-стружкових плитах.

Мозаїчні підлоги мають велику міцність, водостійкі, легко піддаються очищенню, але тверді і холодні, тому їх застосовують тільки
в нежиліх приміщених. Мозаїчні підлоги влаштовують з цементного розчину товщиною 20-30 мм з додаванням мармурової крихти. Для більшої декоративності до-дають мармурову крихту різних чи відтінків крихту інших кам'яних порід. Крім того, у процесі влаштування підлого в неї вставляють смужки скла або мідні смужки “на ребро”, розділюючи підлогу на окремі ділянки, створюючи визначений малюнок. Поверхня мозаїчної підлоги шліфують.

Підлоги із штучних матеріалів. До них відносяться підлоги плиткові, паркетні й дощаті.

Рис.6.10. Конструкції підлог:

тну стяжку товщиною 10-20 мм. Застосовуються також покриття з киличмової мозаїки, що складаються з дрібних керамічних плиток товщиною 6-8 мм, розмірами 23х23 і 28х28 мм. Підлоги з керамічних плит влаштовують у санітарних вузлах, вестибюлях, на сходових площадках та ін.

Дошаті підлоги влаштовують зі шпунтованих дощок товщиною 29 мм, що прибивають до лагів. Лаги спирають на чи балки ребра перекриттів з обов'язковою прокладкою пружних звукоізоляційних прокладок, а при пристрої підлог першого поверху по грунту на цегляні стовпчики перерізом 250х250 мм, розташовані на відстані 800-1000 мм.

Можуть бути влаштовані й двошарові дошаті підлоги, що складаються з чорної підлоги у вигляді діагонально розташованого настилу з неструганих дощок і чистої підлоги зі струганих шпунтованих дощок товщиною 29 мм.

Паркетні підлоги влаштовують з невеликих прямокутних дощечок (клепок), виготовлених на заводах. Паркетні підлоги настилають по бетонній чи дошатій підставі. Для усунення скрипу паркетних підлог при ходьбі і забезпечення кращої звукоізоляції між паркетом і дерев'яною основою прокладають тонкий картон або два шари товстого паперу.

Підлоги з рулонних матеріалів влаштовують із синтетичних матеріалів: полівінілхлоридного лінолеуму (на тихорецькій основі, безосновний, одношаровий і багатошаровий); поліефірного лінолеуму (на тихорецькій основі); коллоксилинового (безосновного); гумового лінолеума – реліну (двошарового матеріалу); рулонних матеріалів на пористій основі або повстяній основі.

Лінолеумові покриття влаштовують по основах з дощок, твердих деревноволокнистих і деревностружкових плит або по цементних стяжках. Приклеюють лінолеум до основи спеціальним клеєм із синтетичних, кашеїнових або бітумних смол. Основу старанно готують, бо в противному разі лінолеум може відшаруватися (місцеве здуття).

У практиці будівництва усе більше застосування знаходять підлоги з теплоізоляційного лінолеума на м'якій пористій основі. Рулони укладають безпосередньо по залізобетонних плитах. Цей вид покриття має гарні фізико-механічні, гігієнічні й декоративні якості.

Контрольні запитання
1. Основне вимоги до перекриттів, їхня класифікація і види.
2. Заходу для підвищення довговічності дерев'яних перекриттів.
3. Конструктивні рішення балкових перекриттів.
4. Особливості влаштування перекриттів із залізобетонних панелей-настилів.
5. Основні конструктивні схеми перекриттів із плит.
6. Особливості влаштування горищних і надпідвальних перекриттів.
7. Види підлог і вимоги до них.
8. Конструктивні рішення підлог суцільних, зі штучних і рулонних матеріалів.

7. ПОКРИТТЯ

7.1. Види покриттів і вимоги до них

Конструктивний елемент, що огороджує будинок зверху, називається покриттям. Основними видами покриттів є горищні дахи, без-горищні покриття, великокрольтні плоскі й просторові покриття.

Виходячи з основного призначення покриття – захисту будинку від атмосферних опадів у вигляді дощу і снігу, а також від утрат тепла в зимовий час і переріву в літню пору, він складається з несучих конструкцій, що сприймають навантаження від елементів, які лежать вище захисної частини.

До покриттів ставляться наступні вимоги. Конструкція покриття повинна забезпечувати сприйняття постійного навантаження (від власної маси), а також тимчасових навантажень (від снігу, вітру і виникаючих при експлуатації покриття). Захисна частина покриття (покрівлі), що служить для відводу опадів, повинна бути водонепроникною, вологостійкою, стійкою проти впливу агресивних хімічних речовин, що містяться в атмосферному повітрі і при, що випадають у вигляді опадів на покриття, сонячної радіації і морозу, не піддаватися коробленню, розтріскування і розплавлювання. Конструкції покриття повинні мати ступінь довговічності, узгоджений з нормами і класом будинку.

Для забезпечення відводу опадів покриття влаштовують з ухилом. Величина ухилу залежить від матеріалу покрівлі, а також кліматичних умов району будівництва. Так, у районах з сильними снігопадами величина ухилу визначається умовами сніговідкладення і видання снігу; у районах з рясними дощами ухил покрівлі повинен забезпечувати швидке відведення води; у південних районах ухил покриття, а також вибір матеріалу покрівлі визначається з урахуванням сонячної радіації.
7.2. Похилі дахи і їх конструкції

Дахи звичайно виконують у вигляді похилых площин-схилів, покритих покрівлею з водонепроникних матеріалів.

У горищних дахах утворені між несучою частиною і покриттям, що обгороджує, приміщення (горище) використовують для розміщення різного інженерного обладнання (труб центрального опалення, вентиляційних коробів і шахт, машинного відділення ліфтів). Для входу на горище роблять сходи, двері чи вхідні люки. Висоту горища для руху по ньому людей приймають не менше 190 см. Для освітлення і провітрювання горища в даху влаштовують горищні вікна (рис.7.1, д).

Форми схилів дахів залежать від форми будинку й архітектурних міркувань (рис.7.1). **Ухил дахів** виражають у градусах нахилу схилу до умовної горизонтальної площини (рис.7.1, м) через тангенс цього кута у виді чи дробу відсотків.

У будинках невеликої ширини часто влаштовують односхилі дахи (рис.7.1, а). Дах будинку зі стоком води на дві протилежні сторони називається двосхилім. Ребро двогранного кута, утвореного у вершині даху двома схилами, називається **коником** (рис.7.1, б).

Перетинання схилів, що утворюють виступаючий похилий кут, називається **скісним ребром**, а западаючий кут – розжолобком. Нижня частина схилу називається **скуром**, нижній край схилу – **обрізом покрівлі**. Торець двосхилого даху може бути вирішений у вигляді **фронтона** (рис.7.1, д). Фронтон утворюється в тому випадку, якщо схили даху перекривають торцеву стіну будинку і виступають перед нею.

Дах квадратної чи багатогранної в плані будівлі має в плані трикутні схили – **вальми** (рис.7.1, г). Якщо похилій схил зрізує не весь торець двосхилого даху, а тільки верхню чи нижню його частину, то неповний торцевий схил називають піввальмою (рис.7.1, i).

Лінія перетину двох схилів даху, що утворює виступаючий двогранний кут, називається **скісним ребром** (рис.7.1, к). Лінія перетину схилів даху (лінії розжолобок і скісних ребер) проходить по бісектрисах кутів між стінами (рис.7.1, е, ж), тому при побудові плану даху необхідно керуватися цим правилом, якщо будинок має прямі кути, то проекції скісних ребер креслять у плані під кутом 45°.

Усередині горища іноді доцільно влаштовувати житлові мансардні приміщення (рис.7.1, ε), які у кам'яних будинках відокремлюються від горища брандмауерами, а в дерев'яних – важкоспалюваними перегородками.

Для вентиляції використовують слухові вікна і вікна, які улаштовуються у фронталах і напівфронтонах піввальмових дахів, заповню-
ваних стулками типу «жалюзі», добре проникне повітря і не допускають потрапляння на горище дощової води. Слухові вікна розміщують на висоті 1-1,2 м від рівня горищного перекриття.

Рис. 7.1. Основні типи форм горищних скатних дахів:
а – односхила; б – діосхила; в – діосхила; г – двосхила; д – загальний вигляд і план даху будинку; е – приклад побудови схилу даху; ю, юо – напіввальмові порожні діосхилої даху; а, м, к, о – схеми розрізання гориці і повітряних просторів даху; п – схема утворення вікон на карнизі; р – схема слухового вікна; з – позначеннях ухилів даху; 1 – звис даху; 2 – слухове вікно; 3 – тимпан фронтону; 4 – фронтон; 5 – коник; 6 – схил; 7 – щипець; 8 – розжолобок; 9 – скісне ребро; 10 – вальма; 11 – напіввальма; 12 – припливний вентиляційний отвір; 13 – витяжний отвір; 14 – сніг і намерза крига на карнизі; 15 – зали жалюзі

Несучі конструкції скатних дахів складаються з крокв і ресетування. Крокви – основна несуча конструкція даху, що, спираючись на стіни чи окремі опори будинку, визначає кількість схилів і кут їхнього нахилу. Крокви виконують з дерева у вигляді колод брусів чи дощок. Усі сполучення окремих елементів крокв виконують за допомогою врубок і металевих кріпель (скоб, болтів, цвяхів, хомутів). Крокви бувають приставні й висячі. Приставними називають крокви, основні елементи яких – кроквяні ноги – працюють як похило покладені балки. Довжина таких балок повинна бути не більше 6,5 м (максимальна довжина стандартної ділової деревини). Висячі крокви (рис. 7.2) являють собою найпростіший тип кроквяної ферми, де похилі кроквяні ноги передають розпір на затягування (ніжній пояс ферми).

Найпростіший тип приставних крокв застосовують при одно-
схилих дахах (рис. 7.3). Кроквяні ноги спираються на бруси – мауерлати, покладені по верхньому обрізу стін. Мауерлати служать для рівномірного розподілу навантаження від кроквяних ніг на стіну. Їх ізолюють від кам'яної стіни прокладкою толо.

Рис. 7.2. Висячі крокви (кроквяні ферми):

- з піднятим затягуванням; б – із затягуванням, використовуваним для підвіски горищного перекриття; в – з підвісною бабкою; м – з підвісною бабкою і підкосами; д – із двома підвісними бабками; е – метало-дерев'яна ферма; 1 – кроквяна ного; 2 – мауерлат; 3 – затягування; 4 – підвісна бабка; 5 – розпірка; 6 – сталевий стояк ферми; 7 – підкіс; 8 – болт; 9 – коротиш; 10 – дерев'яна накладка; 11 – хомут; 12 – скоба

При наявності у середні будинку опор застосовують і двосхилі приставні крокви. У цьому випадку по внутрішніх опорах укладають лежні (при в внутрішній стіні) чи прогони (при окремо стоячих опорах), по яких через кожні 3-4 м установлюють стойки як опори для верхнього, конькового прогону (рис. 7.3). На верхній прогон і мауерлати спираються кроквяні ноги. Для надання твердості в поздовжньому напрямку від стояків до верхнього прогону підводять підкоси, що, скорочуючи проліт верхнього прогону, дає можливість зменшити його переріз.

При асиметричному розташуванні внутрішніх опор верхній прогон не збігається з коником даху. У цьому разі в загальну конструкти-
вну схему вводять горизонтальну супічку, що надає додаткову твердість у поперечному напрямку і гасить виникаючий у конструкції розпір. Супічку виконують з дощок і розташовують нижче верхнього прогону. При прольоті кроквяної ноги більше 4,8 м під неї підводять підкіс, що дозволяє зменшити переріз кроквяної ноги і надає, так само як і супічка, додаткову твердість у поперечному напрямку.

Рис. 7.3. Наслонні крокви:

а – односхиліх дахів; б – те ж двосхиліх; в – план крокв; 1 – лежань; 2 – мауерлат; 3 – підкіс; 4 – кроквяна ного; 5 – стіна; 6 – горизонтальна перекриття; 7 – стяжка; 8 – прогон; 9 – розпірка; 10 – супічка; 11 – кобилка; 12 – накосна (діагональна) кроквяна ного; 13 – наріжник; 14 – скоба; 15 – болт

Для запобігання зносу даху при сильному вітрі кроквяні ноги (звичайно через одну) кріплять дротовими скрутками до костилів (чи йоржів), що забиваються в стіну.

Вальмовий схил утвориться за допомогою діагональних (скісних) кроквяних ніг і наріжників – укорочених кроквяних ніг, які спираються на мауерлат і діагональну кроквяну ногу. Крок кроквяних ніг вибирають з розрахунку оптимального прольоту для дощок чи брусів. Звичайно його приймають рівним 0,7 м для дощатого решетування і 1,2-1,5 м для брущатого.

Решетування є безпосередньою основою для покрівлі і влаштовується по кроквяних ногах у вигляді настилу з дощок чи брусів. Ха-
рактер настилу – суцільний чи виряджений – залежить від застосовуваного покрівельного матеріалу.

Верхній гідроізоляційний шар даху, що підтримується несучими кроквяними конструкціями і решетуванням, називається покрівлею. Для скатних дахів застосовують різні покрівельні матеріали, кожний з яких вимагає певних ухилів схилу. Покрівлю виконують з листової сталі, азбестоцементних листів, черепиці або рулонних матеріалів (рис.7.4).

Рис.7.4. Покрівлі скатних дахів:

Для підвищення вогнестійкості дерев'яних конструкцій дахів їх звичайно фарбують вапняними чи спеціальними розчинами. Усі дерев'яні конструкції, які працюють у контакті з кам'яними, треба ретельно антисептувати і прокладати між ними толь або руберойд.

Безгорищні (сполучені) покриття виконують з ухилом до 5%. 63
Вони можуть бути **вентильованими** (рис.7.5, в) зовнішнім повітрям через повітряні чи прошарки через канали на верху панелі з метою запобігання конденсату і цевентильованими (рис.7.5, а, б) із суцільних чи багатошарових панелей.

![Diagram](image)

Рис.7.5. Принципові конструктивні схеми сполучення дахів:
1 – захисний шар; 2 – рулонний килим; 3 – стяжка (з чи розчину збірних залізо-бетонних плит); 4 – теплоізоляція; 5 – пароізоляція; 6 – несуча конструкція; 7 – оздоблювальний шар; 8 – теплоізоляційний несучий шар; 9 – повітряний прошарок

Вода зі сполучених дахів виділяється по внутрішніх водостоках (організований водостік). З горизонтних покриттів вода може витікати по водостічних жолобах, водозбірних вирвах і ринвах (організований водостік). Неорганізований водовідвід забезпечує скидання води безпосередньо з обрізу покрівлі. При неорганізованому відводі води варто передбачати звис карниза не менше 550 мм.

7.3. Просторові покриття

Просторові покриття від площинних відрізняються тим, що тонка плита оболонки працює переважно на стиск, а розтягні зусилля раціонально зосереджені в контурних елементах, причому всі ці елементи працюють у різних площинах. Основними видами просторових покриттів є оболонки, складки і шатра висячі й пневматичні.

Оболонки бувають одинарної і двоякої кривизни. Перші явля-
ють собою циліндричні чи конічні поверхні. Оболонки двоякої кривизни можуть бути або оболонками обертання з криволінійною твірною (купол, гіперболічний параболоїд, еліпсоїд обертання та ін.).

За структурою оболонки бувають гладкі, хвилясті, ребристі й сітчасті (рис.7.6). Вони можуть бути виконані як монолітними, так і збірними. У збірних конструкціях крім залізобетону використовуються азбестоцемент, метал і пластик. Ребристими є оболонки, в яких тонка криволінійна стінка зміцнена ребрами. Сітчасті оболонки складаються тільки з чи ребер зі стрижнів, проміжки між який заповнюють матеріалом, що не несе (склопластика, пільва та ін.). Гладкі залізобетонні оболонки виконують монолітними. При виготовленні монолітних оболонок найбільш складним є підготовка криволінійної опалубки і влаштування риштування, що спричиняє значну витрату матеріалів і необхідність великих трудовитрат. Залізобетонні і металеві оболонки застосовуються для пристрою покрити прольотом до 100 м, а іноді й більше.

![Рис.7.6. Своды-оболонки: a – циліндрична; b – циліндрична багатохвильова; в – суцільна діафрагма жорсткості; c – рамна діафрагма; d – арочна діафрагма; e, ж – бочарне склепіння-оболонка; u – схема монтажу бочарного склепіння; х – сітчасті оболонки; I – оболонка; 2 – діафрагма жорсткості; 3 – ребро жорсткості; 4 – підвіски; 5 – затяжки]

Складки і шатра – це просторові покриття, утворені плоскими взаємно пересічними елементами (рис.7.7). Складки складаються з ряду повторюваних у певному порядку поперек прольоту елементів, що спираються по краях на діафрагми жорсткості. Шатра перекривають прямокутний в плані простір площиною, що змикаються догори з

65
чотирьох боків. Товщина плоского елемента складки повинна бути не менше 1/200 прольоту, висота – не менше 1/20, а ширина грані – не менше 1/5 прольоту. Їх застосовують для будинків прольотом до 40 м.

Рис. 7.7. Складки і намети:
а – складка пилиподібна; б – те ж трійцепсидібного профілю; в – те ж, з однотипних трикутних площин; г – шатро на прямокутній основі з плоским верхом; д – складка складного профілю; е – багатогранний складчасто склепіння; ж – складка-капітель; i – чотирігане шатро; л – складчастий купол; м – збірна складка призматичного типу; н – збірна накладка з затягуваннями.

Висячі покриття відрізняються найбільш економічною витратою металу, що працює тільки на розтягання (рис. 7.8). Витрата сталі на висяче покриття прольотом 70-80 м складає приблизно 10-15 кг/м², тоді як застосування металевих ферм або рам для перекриття такого прольоту вимагало б витрати металу 80-120 кг/м².

Пневматичні покриття (рис. 7.9) дозволяють перекривати прольоти до 30 м, бувають трьох основних видів: повітроопорні оболонки, пневматичні каркаси і пневматичні лінзи. Їх використовують для влаштування спортивних споруд, польових лабораторій та інших відповідних споруд тимчасового і пересувного характеру.
Рис. 7.8. Висячі попередньо напружені покриття полегшеного типу:
а — сідлоподібне по арках; б — те ж з обпиранням на вигнутий контур; в — гіперболічний параболоїд (гіпар) із твердим контуром; м — те ж з конуrom у вигляді троса-підпіору; д — те ж по вертикальних арках; е — покриття з обпиранням на твердий опорний чи диск обсяг і похилу арку; ж — тентове покриття з обпиранням на твердий диск і стійку стінку;
i — те ж з обпиранням на несу чи й стабілізуєчі троси; к — покриття, обереже по поздовж-
ній осі на два головних троси прольотом 126 м; 1 — несу чі троси; 2 — попередньо напру-
жені стабілізуючі троси; 3 — твердий опорний контур; 4 — відтяжка; 5 — стійки-відтяжки;
6 — опорні щогли; 7 — трос-підбір; 8 — опорні арки; 9 — о порний обсяг; 10 — тент; 11 —
стійка стіна; 12 — опорний вузол; 13 — залізобетонні балки-розпірки; 14 — головні троси,
що підтримують сітчасте покриття
Контрольні запитання

1. Види покриттів, основні вимоги до них.
2. Влаштування горищних покриттів з дерев'яних конструкцій.
3. Суміщені покриття. Їхні основні види.
4. Влаштування водовідводу з горищних і суміщених дахів.
5. Класифікація просторових покриттів і особливості їх будови.

8. СХОДИ І ПАНДУСИ

8.1. Сходи, їхні види й основні елементи

Шляхами сполучення між поверхами будинків служать сходи, пандуси і механічні засоби (ліфти й ескалатори). Сходи та пандуси є також шляхами для евакуації людей із будинків і споруд в аварійних умовах.

Відповідно до призначення сходи повинні задовольняти вимогам міцності, довговічності, створення необхідних зручностей і безпеки при русі людей, пожежної безпеки. Якщо сходи служать розрахунковими шляхами евакуації людей з кам'яних будинків, то по вимогах пожежної безпеки їхній обгороджують з усіх чотирьох сторін і зверху вогнестійкими огородженнями, що утворюють окреме приміщення — сходову клітку.

Розміщення сходів у плані будинку, їх кількість і розміри залежать від призначення, габаритів і компонування будівлі з урахуванням забезпечення зручної і в заданий час евакуації людей. Так, у цивільних будів-
лях має бути не менше двох сходів, а для житлових будинків з числом поверхів 10 і більше – забезпечений вихід з кожної квартири на двоє сходів безпосередньо через сполучний перехід.

Сходи складаються з маршів і площадок (рис.8.1). Марш являє собою конструкцію із східців, підтримуючих їх косоурів (розташовуваних під східцями) або тетив (що примикають до східців збоку).

Рис.8.1. Двохмаршові сходи (розріз і плани за поверхами):
1 – цокольний маршрут; 2 – поверхові площадки; 3 – огороження; 4 – сходовий маршрут;
5 – міжповерхова площадка; 6 – вхідний козирок; 7 – вхідна площадка

69
Сходові площадки бувають поверховими (на рівні поверху) і міжповерховими (проміжними). Для безпеки й зручності руху сходові марші і площадки обладнають огородженнями з поручнями висотою 0,9 м.

У східців вертикальну грань називають присідником, а горизонтальну – проступом. Усі східці сходового маршу повинні мати однакову форму, крім верхнього і нижнього, називаних фрізовими.

За призначенням сходи поділяються на основні, чи головні, службові для постійного використання й евакуації, допоміжні – для службового сполучення між поверхами і аварійні (зовнішні евакуаційні сходи, пожежні).

За кількістю маршів у межах висоти одного поверху сход поділяються на одно-, двох-, три- і чотиримаршові. У ряді будівель, коли сходами користується невелика кількість людей (наприклад, у квартирах у двох рівнях), застосовують гвинтові сходи.

Нахил сходових маршів приймають згідно з СНиП (залежно від призначення та кількості поверхів у будівлі) для основних сход 1:2 - 1:1,75, а для допоміжних – до 1:1,25. Число ступенів у марші приймається не більше 16, але не менше 3. Висота проходів між площинами і маршами повинна бути не менше 2 м.

Ширина сходових маршів приймається з урахуванням забезпечення евакуації людей у заданий час. При цьому найменша ширина маршрутів основних сход у двоповерхових будинках має бути 900 мм, а в будинках з числом поверхів 3 і більше – 1050 мм. Між маршем повинен бути забезпечений зазор (у плані) 100 мм для пропуску пожежних шлангів.

Ширина площадок повинна бути не менше ширини маршу (з умови забезпечення однакової пропускної здатності), причому ширина сходових площадок основних сходів приймається не менше 1200 мм.

Висота і ширина ступенів сходів приймаються таким чином, щоб була забезпечення зручність руху людей. При цьому приймають, що нормальний крок людини дорівнює приблизно 600 мм при ходьбі по горизонтальній поверхні і 450 мм при русі по сходах. Виходячи з цього ширина і висота ступенів в сумі повинні скласти 450 мм. Звідси встановлено, що ширина ступенів (проступ) повинна бути 300 мм, але не менше 250 мм (дозвжина ступні людини). Висота ступенів (присідник) приймається найчастіше 150 мм, але не більше 180 мм.

Щоб визначити розміри сходів і сходової клітки, в якій вони будуть розміщені, треба знати висоту поверху і розміри ступенів.

Приклад. Визначити розміри двухмаршових сходів житлового будинку, якщо висота поверху дорівнює 3,3 м, ширина маршу –
1,05 м, ухил сходів – 1:2.

Приймаємо ступінь розмірами 150х300 мм
Ширина сходової клітки
У = 2 у + 100 = 2 х 1050 + 100 = 2200 мм.
Висота одного маршу
Н/2 = 3300 : 2 = 1650 мм.
Число присхідців в одному марші
п = 1650 : 150 = 11.

Кількість проступів в одному марші буде на одиницю менше від кількості присхідців, тому що верхній проступ розташовується на сходовій площадці:

п-1 = 11 - 1 = 10.

Довжина горизонтальної проекції маршу, називана його закладенням, дорівнює

а = 300 (п-1) = 300 х 10 = 3000 мм.

Приймаємо ширину проміжної поверхової площадки 31=1300 мм, 32=1300 мм і одержимо, що повна довжина сходової клітки (у числі тоті) складе

A = a + 31 + 32 = 3000 + 1300 + 1300 = 5600 мм.

Висоту поверху поділяють на число частин, рівне числу присхідців у поверсі, і через отримані точки проводять горизонтальні прямі. Потім горизонтальну проекцію (закладення маршу) поділяють на число проступів без однієї і через отримані точки проводять вертикальні прямі. По отриманій сітці вичерчують профіль сходів (рис.8.2).

Рис.8.2. Схема розбивки сходів: а – у розрізі; б – у плані

8.2. Конструктивні рішення сходів

За способом влаштування сходи можуть бути збірні й монолітні. Збірні бувають з мало- і великорозмірних елементів.
Сходи з малорозмірних елементів (рис.8.3) складаються з окремо встановлюваних залізобетонних косоурів, ступенів, залізобетонних плит площадок і огороджень з поручнями. Для сполучення косоурів з майданчиковими балками в останніх передбачені гніздда, в які заводяться кінці косоурів. Зв’язок між елементами сходів досягається, як правило, зварюванням закладних деталей.

Ступені укладають по косоурах на цементному розчині. На майданчикові балки спираються збірні залізобетонні майданчикові плити (рис.8.4, а, б).

При ремонті й реконструкції раніше споруджених будинків можна зустріти конструкції сходів з кам’яних чи залізобетонних ступенів по косоурах і майданчикових балках із прокатних металевих профілів (швелера або двотавра). Для підвищення вогнетійкості металевих конструкцій їх необхідно оштукатурити по дротяній сітці.

Огородження на сходах улаштовують металеві з дерев’яними чи пластмасовими поручнями. Стояки огородження приварюють до закладних деталей чи запаровують на цементно-піщаному розчині в гнізда в ступенях (рис.8.4, г, д, е).

У дерев’яних сходах сполучення ступенів з тетивою (рис.8.5) у бічній її грані здійснюється шляхом влаштування них пазів, у які входять кінці дощок проступів і присхідців.

Найбільше поширення в будівництві одержали збірні сходи з крупнорозмірних елементів – площадок і маршів заводського виготовлення (рис.8.6) або маршів з двома напівплощадками. Збірні елементи встановлюють на місці кранами і кріплять за допомогою зварювання закладних деталей.

Сходові марші й площадки для житлових будинків виготовляють на заводі з чисто обробленими ступенями і поверхнями. У громадських будинках застосовують марші з накладними проступями, що укладаються після закінчення основних робіт з монтажу будинку. Дуже доцільне застосування збірних маршів зі ступенями складчастого обрису, що дозволяє знизити витрату бетону на 15%.

72
Рис. 8.4. Конструкції сходів:
а – збірна із залізобетонних малорозмірних елементів; б – по сталевих косоурах;
y – монолітна залізобетонна; м – закладення стояків і кріплення дерев'яного поручня;
d, е – кріплення пластмасових поручнів; 1 – ступені; 2 – майданчикова балка; 3 – гніздо для кінця косоура; 4 – косір збірний залізобетонний; 5 – плита сходової площадки; 6 – сталевий косоур; 7 – штукатурка по сталевій сітці; 8 – сталева майданчикова білка; 9 – фризова ступень; 10 – стояк поручня; 11 – сталева смуга; 12 – шурупи; 13 – поручень

Рис. 8.5. Дерев'яні сходи (поперечний розріз)

Рис. 8.6. Сходи з крупнозбірних елементів: 1 – сходові площадки; 2 – сходові марші; 3 – фрагмент огородження
Сходові площадки своїми кінцями звичайно спираються на причалки сходової клітки, а у крупнопанельних будинах — на спеціальні металеві елементи (столики), які приварюють до закладних деталей у стінових панелях сходової клітки.

У внутрішньоквартирних сходах допускається застосовувати забіжні ступені і кручені сходи (рис. 8.7). За противожежними нормами такі сходи не можуть служити шляхами евакуації, тому не застосовуються як основні. При призначенні розмірів клинових забіжних ступенів і ступенів кручених сходів їхні розрахункові величини приймають по середині марші. Кручені сходи можуть бути виконані з дерева, металу, збірного і монолітного залізобетону. Ступені спираються на стіни і на центральній опорній стовп. Вони можуть бути розраховані й у вигляді консолей з обпиранням тільки на стіни чи тільки на опорний стовп.

Рис.8.7. Кручені сходи:
а — з обпиранням ступенів на стіни і центральний стовп; б — з консольним обпиранням на стіни сходової клітки; у — з консольним обпиранням на центральний стовп

Монолітні залізобетонні сходи застосовують рідко, головним чином в унікальних будинах, якщо сходам з архітектурно-планувальних міркувань дається нетипове рішення. Їхнє влаштування вимагає складної опалубки і проведення всіх робіт на будівельному майданчику.

Перед входом у будинок влаштовують площадку, яку розташовують вище рівня землі не менше ніж на 150 мм, щоб не допускати затікання у приміщення атмосферної води. Для захисту вхідної площа-
дки від опадів улаштовують так званий козирок. Якщо перед будинком улаштовують зовнішній ганок, то його ступені спирають на спеціальні стінки, зведені на самостійних фундаментах.

Зовнішні входи в підвал виконують у вигляді одномаршових сходів, розташовуваних у примиках, що примикають до зовнішніх стін будинку й огороджених підпірними стінками. Над примиком зводять прибудову зі стінами, дахом і вхідними дверима або обмежуються влаштуванням парасолі і низької бортової стінки (рис.8.7).

Рис.8.7. Влаштування зовнішнього входу в підвал:
1 – бетонна підготовка; 2 – ущільнена піщана подушка; 3 – залізобетонна плита; 4 – стовпи навісу; 5 – брус; 6 – цегельне огородження; 7 – підпірна стінка; 8 – ступені; 9 – перекриття підвалу

8.3. Пандуси, область їхнього застосування

У громадських будинках, коли необхідно забезпечити високу пропускну здатність комунікаційних шляхів між поверхами, застосовують пандуси. Пандусом називають гладкий похилий евакуаційний шлях, що забезпечує сполучення приміщень, що знаходяться на різних рівнях. Пандусам надають ухил від 5° до 12° (1:12-1:15). Пандуси складаються з похилих гладких елементів і площадок. Можуть бути одномаршові (рис.8. а), двомаршові (рис.8. б), прямо- і криволінійні (рис.8.8. в) у плані. Одномаршові прямоолінійні пандуси утворюються похилими площадками, що спираються на площадки чи конструкції перекриттів. При цьому можна виділити наступні конструкції: прогони, балки, настили. Двомаршові пандуси мають косурні й майданчи-
кові балки, по яких укладають збірні залізобетонні плити чи монолітний залізобетон. Криволінійні пандуси виконують з монолітного залізобетону.

Чиста підлога пандусів повинна мати неслизьку поверхню (асфальт, цемент, релин, килимова доріжка та ін.). Огородження пандусів виконують так само, як і для сходів.

При визначенні доцільності влаштування пандусів треба мати на увазі, що в зв'язку з малими в порівнянні зі сходами ухилами виникають значні втрати корисної площі будинку.

Рис. 8.8. Схеми влаштування пандусів:
1 – похилий елемент пандуса;
2 – огородження; 3 - площадка

8.4. Спеціальні евакуаційні шляхи

Для житлових будинків у 10 поверхів і більше Будівельні норми і правила ставлять додаткові протипожежні вимоги. Так, для забезпечення нормальної евакуації людей у разі пожежі в таких будинках необхідно передбачати влаштування не менше двох евакуаційних шляхів чи так званих «незадимлюваних сходів». Це забезпечується створенням при вході на сходову клітку відкритої повітряної зони (через балкон чи лоджию), що дозволяє запобігти поширенню диму з одного поверху на інший. При такому рішенні замість двох звичайних сходів можуть бути запроектовані одні незадимлювані.
Застосовують також інші прийоми, що забезпечують незадимлюваність евакуаційних шляхів у багатоповерхових будинках: створення штучного підпору повітря, влаштування виносних сходів через холодний шлюз та ін.

Влаштування незадимлюваних сходів дозволяє уникнути необхідності проектування додаткових виходів. В інших випадках передбачають зовнішні пожежні і аварійні сходи.

Пожежні і аварійні сходи в громадських і житлових будинках виносять назовні. Вони служать для виходу на дах будинку під час пожежі (пожежні сходи) і для евакуації людей в аварійних умовах, якщо вихід по основних чи допоміжних сходах виявиться неможливим (аварійні сходи).

Влаштування спеціальних сходів визначається протипожежними нормами. Пожежні сходи на дах роблять прямими і не доводять до рівня землі на 2,5 м (рис.8.9, a). При висоті будинку більше 30 м пожежні сходи повинні мати проміжні площі. Ширина сходів приймається не менше 0,6 м.

Тетиви пожежних сходів виготовляють з кутоків чи швелерів смугоюї стали, ступені – з круглої сталі діаметром 16-18 мм. Кут нахилювати евакуаційних сходів не повинен бути більше 45°. На кожному поверсі передбачаються спеціальні площадки (рис.8.9, б).

У будинках висотою більше 10 поверхів з горищами передбачають входи на горища зі сходових кліток по маршових сходах. При висоті будинку до 5-ти поверхів включно допускається влаштовувати входи на горища зі сходових кліток через люки по закріплені металевих драбинах. Кількість входів на горище повинна бути не менше двох. Входи на горище мають бути захищені протипожежними дверима, а люки розміром 0,6x0,8 м – кришками з межею вогнестійкості не менше 0,7 ч.

8.5. Ліфти й ескалатори

Ліфти й ескалатори відносяться до механічних пристроїв для організації сполучення між поверхами. Ліфти бувають періодичної і безупинної дії. Застосування останніх обмежене. За призначенням ліфти бувають пасажирські, вантажні й спеціальні. Вони відрізняються один від одного розмірами кабін і вантажопідйомністю. Так, вантажні мають вантажопідйомність від 100 до 5000 кг, пасажирські – від 320 до 500 кг. До спеціальних можна віднести лікарняні та ін.

Ліфти застосовують у житлових (більше 5 поверхів) і громадських будинках. Вони складаються з кабіни, підвішеної на сталевих канатах,
перекинутих через шків піднімальної лебідки, що знаходиться в машинному відділенні. Шахта ліфта відгороджується з усіх боків на всю її висоту і внизу має приямок глиною 1300 мм (рис.8.10). У ньому розміщують амортизатори і натяжний пристрій. Машинне відділення може бути розташоване вгорі, над шахтою, чи внизу поряд з нею. У даний час ліфтові шахти виконують із залізобетонних елементів товщиною 120 мм з бетону марки 200 або 250 залежно від поверховості будинку. Розміщують ліфти звичайно поблизу сходової клітки.

Рис.8.9. Евакуаційні сходи:
а – зовнішні металеві; б – пожежні;
в – незадимлювані

Ескалатор являє собою сходи, що рухаються, розташовані під кутом 30° і призначені для організації руху людей з одного рівня на інший (рис.8.11). Їх застосовують у громадських будинках, де одночасно знаходиться велике число людей (універмаги, вокзали, театри та ін.).

Ескалатори володіють високою пропускною здатністю (близько 10 тис. чол./год.). Швидкість руху полотнищ ескалатора приймається 0,5-0,75 м/с. Ширина полотнищ ескалатора – від 0,5 до 1,2 м.
У місцях скупчення великих мас людей (на виставках, вокзалах) широке застосування одержують рухомі тротуари, що створюють комфортні умови руху людей.

![Рисунок 8.10. Пасажирський ліфт із верхнім розташуванням машинного відділення](image)

![Рисунок 8.11. Схеми розташування ескалаторів: a – з рівнобіжними маршами; b – з послідовним розташуванням; u – перехресне розташування](image)

Контрольні запитання

1. Класифікація сходів за призначенням, числом маршів у межах поверху.
2. З яких основних конструкцій складаються сходові клітки?
3. Основні правила побудови сходів і призначення розмірів.
4. Особливості влаштування пандусів.
5. Влаштування спеціальних евакуаційних шляхів.
6. Види ліфтів і спосіб розташування ліфтівих шахт.
7. В яких випадках влаштовують ескалатори?
9. ПЕРЕГОРОДКИ

9.1. Види перегородок і вимоги до них

Перегородками називають вертикальні несучі конструкції, що огороджують, які відділяють одне приміщення від іншого. У цивільних будівлях застосовують також стіни-перегородки, які крім функцій, що обгороджують, виконують і несучі. Такі конструкції спираються на самостійні фундаменти, їхнє рішення аналогічне стінам.

Опорами для перегородок є несучі елементи перекриттів (балки, плити), а для перегородок розташованих у перших поверхах безпідвалних будинків і в підвальних поверхах, – цегельні й бетонні стовпчики чи бетонна підготовка. Перегородки не допускається спирати на конструкції підлоги (крім столярних перегородок).

Відповідно до призначення перегородки повинні відповідати таким вимогам: мати малу масу і невелику товщину; мати гарні звукоізоляційні якості й необхідний опір загорянню; відповідати санітарно-гігієнічним якостям (бути гладкими, піддаватися очищенню, а також не мати щілин); бути індустріальними щодо влаштування.

Для житлових будинків залежно від призначення перегородки підрозділяють на міжкімнатні, міжквартирні й огороджуючі санітарно-кухонні вузли. При цьому міждуквартирні перегородки – у порівнянні з міжквартирними повинні мати підвищену звукоізоляцію. У той же час до перегородок, що огороджують кухні й санвузли, висувають вимоги підвищеної вологостійкості й гігієнічної обробки поверхні (для зручності миття).

За способом влаштування перегородки можуть бути з малорозмірних елементів і виробів і з крупнорозмірних елементів. Перегородки з малорозмірних елементів улаштовують безпосередньо на місці їхньої установки, а з крупнорозмірних елементів, що є збірними, – шляхом монтажу готового виробу.

Залежно від матеріалу перегородки бувають цегельні, з пустотелих керамічних і легкобетонних каменів, дерев'яні, з деревесностружкових і деревесноволокнистих плит, гіпсові й гіпсошлакові, з різних легких і ячеїстих бетонів, зі склоблоків і склопрофіліту.

У малоповерхових будівлях можна влаштовувати перегородки з малорозмірних елементів і виробів, а в будинках зі стінами з міцневих матеріалів (черепашника, туфу, дерева та ін.) перегородки доцільно зводити з цих матеріалів.
9.2. Конструктивні рішення перегородок

При влаштуванні перегородок з метою поліпшення їхньої звукоізоляючої здатності необхідно враховувати наступні правила: у капітальних будинках їх не можна встановлювати на чисті підлоги чи лаги; їх треба спирати на ригелі, укріплені між балками, а при залізобетонних перекриттях ставити на розчин безпосередньо на бетон (рис.9.1, а); у місцях примикання підлоги до перегородок треба прокладати звукоізоляючі прошарки з пружного матеріалу; при розташуванні перегородок поперек балок і наявності в конструкції перекриття підпільного простору необхідно для усунення передачі повітряного шуму з одного приміщення в інше влаштовувати під низом перегородки спеціальні діафрагми з щільних матеріалів з ретельним закладенням усіх щілин; при сполученні перегородок зі стінами і між собою треба забезпечувати щільність швів, для чого треба проконопачувати зазори і зашпаровувати шви розчином; перегородки не слід доводити до стелі на 10-15 мм, зазор необхідно ретельно проконопачувати, а потім зашпаровувати розчином на глибину 20-30 мм; панелі кріпити доцевельних стін за допомогою сталевих йоржків, що забиваються в закладені в стіну дерев'яні антисептовані вкладиші (рис.9.1, б).

Кріплення перегородок до стелі здійснюється спеціальною скобою, що закладається в шов між панелями перекриття або за допомогою сталевих пластин. З цією метою в плиті роблять зарубку глинистою 10-15 мм, а вгорі панелей-перегородок для пластин влаштовують пази глинистою 6-7 мм (рис.9.1, в). Пластини поміщують у підготовлені для них пази і верхній кінець вводять у зарубку в плиті перекриття, а потім цвяхом чи шурупом кріплять до бруска верхньої обв'язки каркаса панелі. З кожної сторони перегородки ставлять по 2-3 пластинки. Використовують також і монтажні петлі, коли шви між плитами збігаються з віссю перегородки (рис.9.1, г). У цьому випадку сталевий дріт зав'язують за монтажну петлю, пропускають у шов між плитами і закріплюють по верху плит.

Якщо перегородку встановлюють під прогоном (рис.9.1, д), то кріплення здійснюють за допомогою фігури сталевих планок, що охоплюють прогін з двох сторін. Планки з'єднують між собою болтами. Панелі-перегородки, що примикають один до одного, поверху скріплюють між собою сталевими накладками (рис.9.1, ж). Поряд з великопанельними перегородками розміром на кімнату застосовують перегородкові плити висотою на поверх і ширинною 0,3; 0,6; 0,8 і 1,2 м (рис.9.2). Плити роблять з легкого чи ячейстого бетону, з гіпсоволокнистої маси, шаруватими каркасної і безкаркасної конструк-
Каркас виконують з дерев'яних рейок, алюмінієвих чи сталевих профілів трубчастого прямокутного чи швелерного перерізів. Каркас обшивають гіпсокартонними листами. Порожнини заповнюють мінераловатними матеріалами. Товщину плит залежно від матеріалу приймають від 40 до 100 мм. Плити встановлюють по напрямних зі сталевих чи дерев'яних рейок, які пристрілюють дюбелями до підлоги й стелі. Шви здійснюють у шпунт з прокладкою рейкою, що входить у пази вертикальних обв'язок, і зашпаровують розчином.

Іноді при плануванні квартир передбачають рухливі перегородки, що трансформують внутрішній простір квартири. Рухливі перегородки розділяють на складчасті, відкатні й піднімальні (рис.9.3).
Рис. 9.2. Плітні перегородки:
1 – конструкція підлоги; 2 – антисептирований брус; 3 – прокладка з толо

Рис. 9.3. Спеціальні типи перегородок:
a – м’яка складчаста (перегородка-завіса); b – тверда складчасти одинарна; в – те ж по
dвійна; г – відкатна суцільна; d – те ж складена; е – піднімальна; ж – перегородка з вбудоваными штами (перегородка-штам); з, к – деталі м’якої складчастої перегородки; i, l – деталі твердої одинарної складчастої перегородки; l – вертикальний брус, що обрамляє; 2 - синтетична шільна тканина; 3 – торцевий елемент; 4 – гумова трубка діаметром 16 мм; 5 – рейка; 6 – смуга гуми; 7 – притискна рейка; 8 – пристінний щит з під'ятни
cом; 9 – петлі навісу; 10 – основний щит перегородки; 11 – напрямний палець; 12 – ма
lій щит; 13 – щит притвору з двома каретками і напрямними пальцями; 14 – напрямна в підлозі; 15 – несучі ролики; 16 – верхній напрямний брус; 17 – чотийохроликовий візок з поворотною вертикальною віссю

Складчасті перегородки виконують з м’яких чи твердих матеріалів. Конструкція м’яких складчастих перегородок має вертикальні
дерев'яні рейки, обшиті з двох сторін штучною шкірою або іншими аналогічними матеріалами. Рейки підвішеної за допомогою роликів до верхніх напрямних. У нижньому кінці рейок роблять шип, що входить у напрямну щілину в підлозі. Тверді складчасті перегородки можуть бути подвійними й одинарними. Їх виконують з дерев'яних столарних, фанерних чи деревностружкових щитів. Ходову частину подвійних перегородок влаштовують внизу у вигляді ролика з напрямним ножем, а нагорі роблять лише напрямні, що входять у паз стояків. Ходову частину одинарних перегородок звичайно влаштовують нагорі, посередині кожного щита. Для підвищення звукоізоляції подвійної перегородки між її щитами вміщують додатковий шар звуковбирної тканини, а напрямні перегородок виконують подвійними чи потрійними з прокладкою пористих матеріалів у глибині пазів. Такі “гребінки” значно підвищують герметичність перегородки і її звукоізоляційні властивості.

Відкатні перегородки використовують як суцільні, так і складні. Опорні ролики можуть знаходитися нагорі (підвісні перегородки) або внизу (опорні перегородки). Складені перегородки можуть мати і криволінійні напрямні. Щити відкатних перегородок виконують із столарних суцільних чи каркасних щитів (висотою до 3 м) або з металевим каркасом. У каркасних щитах передбачають багатошарове заповнення для підвищення звукоізоляції конструкції.

Піднімальні перегородки застосовують тільки в громадських будинках, зокрема як противогорні перешкоди (наприклад, протипожежні завіси театрів).

Контрольні запитання

1. Види перегородок, основні вимоги до них.
2. Основні правила влаштування перегородок.
3. Особливості влаштування збірних великопанельних перегородок.
4. Перегородки, що трансформуються.

10. ВІКНА І ДВЕРИ

10.1. Вікна і їхні конструктивні рішення

Природне освітлення приміщень може бути забезпечено через вертикальні й горизонтальні проризи в стінах і покриттях. Відповідним розрахунком природної освітленості приміщень, а також за СНиПами визначають розміри вікон і їхне розташування. Так, для житлових будинків площа вікон має бути в межах від 1/8 до 1/5 від площі підлоги приміщення.
Вікна й вітражі є основними вертикальними конструкціями для забезпечення природної освітленості приміщень. Конструкції засклень є, крім того, важливим елементом, що впливає як на зовнішній вигляд будинку, так і на інтер'єр приміщень. Необхідною вимогою, якій повинні задовольняти вікна, є їх теплозахисні властивості, що дозволяє уникнути необґрунтованих втрат теплоти і забезпечити звукоізоляцію приміщень.

За матеріалом конструкції вікон їх поділяють на дерев'яні, металеві, залізобетонні й пластмасові. За способом відкривання і конструктивним рішенням вікна поділяються на стулчасті (одно-, дво-, триствулкові), глухі, розсувні, верхньопідвісні, нижнепідвісні, з плетінням на цапфах, жалюзійні та ін. (рис.10.1).

За числом стекол вікна бувають з одинарним, подвійним і потрійним засклением. Вікна з одинарним засклением застосовують у південних районах і неопалюваних будинках. Для районів з помірним кліматом для цивільних будинків застосовують вікна з подвійним засклением з повітряним прошарком між стеклами. У районах із суворим кліматом застосовують вікна з потрійним засклением. Розміри вікон уніфіковані і наведені у відповідному ДСт.

Віконні блоки складаються з віконних коробок, засклених плетінь і підвіконних дощок.

Віконні блоки забезпечені віконними приладами – петлі навішування, засувки (шпінгалети), ручки, кватиркові завертки, прилади для відкривання фрамуг та ін.

Віконні прорізи можуть бути заповнені декількома віконними блоками в різних комбінаціях, у тому числі разом з балконними дверима. Зазори між блоками коноплять і захищають дошками по обидва боки. Один з одним блоки скріплюють болтами. При великих прорізах між окремими блоками вставляють наскрізні дерев'яні бруси (вітрові імости), що сприймають вітрове навантаження від блоків і передають її на стіни.
При установці віконних блоків у кам'яних стінах їх ізоляють від стін шаром толю чи пергаміну (рис.10.2). Блок розкріплюють у прорізі за допомогою дерев'яних клинів і кріплять цвяхами, що забиваються в дерев'яні антисептовані пробки, закладені в цегельну кладку укосів. Зазори між коробкою і укосами коопатять ключами або ущільнюють пружними прокладками, забезпечуючи теплоізоляцію стику, його не- продувність і можливість деформації при осіданні будинку. Зовні цей зазор перекривають наличником або оштукатурюють укоси. Нижній укос прорізу цементують і покривають оцинкованою сталлю з капельником для забезпечення водозливу. Замість оцинкованої сталі можна застосувати бетонні чи з природного каменно плита. У дерев'яних будинках зливи роблять дерев'яними.

В практиці все більше поширення одержали вітражі. Вони можуть бути з одинарним, подвійним і потрійним заскленим. Вітражі й вітровки можуть змінювати стіну і поєднуватися у стрічкові горизонтальні й вертикальні смуги. Вітражі бувають вбудованими і приставними. Зовнішнє засклення може бути вертикальним і похилої (не більше

Рис.10.2. Установка віконних блоків у прорізі:

і - віконний блок з роздільними плетіннями марки ОР у цегельній стіні; 2-і - віконний блок зі спаренними плетіннями марки Ос у панельній стіні; 3-е - примикання віконного блоку до балконних дверей; 4 - цементний розчин; 5 - зливи з оцинкованої стали; 6 - коопатка бігу мізованим ключом; 7 - толь; 8 - підвіконна плита; 9 - антисептована пробка (по двох на висоту прорізу); 10 - штапик; 11 - рейка; 12 - дерев'яний імпост.
10-15% від вертикалі). Вітрини і вітражі з металевих чи дерев'яних конструкцій можуть бути виконані на місці будівництва із загалом гід нарізаних окремих елементів каркаса чи плетінь і зібрані з виготовлених коробок і рам плетінь.

Теплозахисні якості вітражів забезпечують влаштуванням повітряних прошарків між подвійними чи потрійними заскленими, а також застосуванням склопакетів. Завдяки своїй конструкції і використанню склопакетів вікна не мають потреби в продовольственному розбиранні. Їхні внутрішні площини не треба очищати від пилу і бруду. Внутрішній простір повністю герметичний і не піддається впливу зовнішнього середовища. Використання одно- і двокамерних вакуумних склопакетів різної конфігурації з можливістю заповнення їх інертним газом (аргоном), із застосуванням вітчизняного й імпортного скла, низько-елемісійного теплого скла, скла триплекс, захисних піляв різної товщиної та класу захисту дозволяє домогтися максимального тепло- і звуко-захисту. Самі стекла можуть бути різними: дзеркальними, тонованими, різних колірних відтінків, декорованими колірними рамками, більш прохолодними і т.д. Від якості скла, з якого виготовлені склопакети, залежить захист від ультрафіолетового й інфрачервоного випромінювання.

Для захисту від перегріву вікон і вітражів сонячними променями влаштовують різного типу пристрої, що затінюють, навісі і козирки, вертикальні й горизонтальні жалюзі, стаціонарні жалюзі—“brisolі”, “маркізи”, тверді штори і т.д. (рис.10.3).

Рис.10.3. Типи сонцезахисних пристроїв:
а — рераціональний пієм; б — вітрина, наклонена назовні, що зменшує блиск скла стосовно глядача; в — навіс глухої чи гратчастої (brisolі); г — брисолі з гратами; д — вертикальні поворотні жалюзі; е — тіньові грати на відкосі; ж — “маркізи”; з — вбирні жалюзі між стеклами
10.2. Двері і їхні конструктивні рішення

Для ізоляції один від одного прохідних приміщень і входу в будинки служать двері. Їхне розташування, кількість і розміри визначаються з урахуванням числа людей, які знаходяться в приміщеннях, виду будинку та інших факторів. Двері складаються з коробок, що мають вигляд рам, укріплених в дверних прорізах стін, або перегородок і полотнищ, що навішуються на дверні коробки.

За числом полотнищ двері можуть бути одно- і двопольні й полуторні (з двома полотнищами нерівної ширини). За положенням в будинку двері можуть бути внутрішні, зовнішні й щафові. Однопольні двері звичайно приймають шириною 600, 700, 800, 900 і 1100 мм, двопольні – 1200, 1400 і 1800 мм. Висота дверей 2000 і 2300 мм. Двері службових та інших спеціальних приміщень, що не є евакуаційними (підвалні, щафові та ін.), можуть мати висоту 1200 і 1800 мм.

Дверні коробки мають чверті глибиною 15 мм для навішування полотнищ, ширина яких повинна відповідати ширині полотнищ. Іноді над дверима влаштовують фрамуги (для другого освітлення). У цьому випадку в дверні коробку вводять додатково горизонтальний серединник. Для внутрішніх дверей нижній брус обв'язки звичайно не роблять. Дверні коробки в прорізах кам'яних стін кріпляться цвяхами чи йоржами, які забиваються в спеціально встановлені в конструкції прорізів дерев'яні пробки. Коробка повинна бути антисептована й оббити толем. У перегородках зазор між коробкою і конструкцією огородження закривають наличником (рис.10.4).

За конструктивним рішенням дверні полотнища можуть бути щитовими чи фільончастими. Щитова дверна полотнина (рис.10.4, в) складається з рамки, утвореної обв'язувальними бруськами, суцільного чи гратчастого щита (каркаса) і облицювання з двох сторін з фанери, деревоволокнистих плит чи пластиків. Фільончаста дверна полотнина складається з обв'язок, розташованих по периметру полотнища, серединників (проміжних елементів) і заповнення між ними, називаного фільонками (рис.10.4, 2). Фільонки виготовляють з дощок, фанери, деревоволокнистих плит, пластиків. Зовнішні двері повинні бути надійно утеплені повстю, мінеральною ватою чи іншими теплоізоляційними матеріалами.

У тимчасових будинках влаштовують плотницькі двері (рис.10.3, 6, м) на шпонках чи планках. Двері, розташовувані в брандмауерних стінах, сходових клітках і горищах, повинні бути важкоспалаюваними. З цією метою в їхню конструкцію вводять азбестові про кладки і оббивають з усіх боків покрівельною сталлю.
Основними дверними приладдями є начіпні металеві петлі, дверні ручки, врізні замки і засувки.

Застосування в ряді громадських будинків дверей з товстого загартованого скла (10-15 мм) без обв'язки дуже ефективне, але обв'язково повинне відповідати вимогам безпеки евакуації.

Забороняється влаштовувати дзеркальні двері. Скляні двері встановлюють на підп'ятниках, які кріплять до скла болтами, що проходять у спеціальні отвори.

Рис.10.4. Конструкції дверей:
а - коробки в прорізі кам'яної стіни; б - те ж у прорізі пере-городки; в - дверна полотнина щитова; г - те ж фільончаста; д - деталь щитової полотнини з рамками; е - те ж без рамок; ж, з - дощаті фільонки; і - дощаті з розкладками; к - наплавна; л - плотницька на планках; м - те ж на планках; н, п - наличники; о - тумбочка; п - столярна плита; р - листова фанера; с - рамка; т - наличник; у - коробки; ф - нагель на клеї; х - фільонка; 1 - розкладка; 11 - наличник; 12 - шпонка; 13 - планка

Контрольні запитання

1. Види вікон, особливості їхнього конструктивного вирішення.
2. Від яких факторів залежить розмір вікон?
3. Види вітрин і вітражів. Особливості їхнього конструктивного рішення.
4. Основні види дверей. Особливості влаштування дверей у стінах.
5. Конструкції щитових і фільончастих дверей.
РОЗДІЛ ІІІ
ЗАГАЛЬНІ ВІДОМОСТІ ПРО ПРОЕКТУВАННЯ ПРОМИСЛОВИХ БУДІВЕЛЬ

11.1. Загальні положення

Об’ємно-розпланувальне вирішення промислової будівлі, як зазначалось раніше, залежить передусім від технологічного процесу, що відбувається в ній. Технологічний процес, у свою чергу, визначається виробничо-технологічною схемою. Технологічну частину розробляють технологи. Завдання на будівельне проектування повинне містити такі основні матеріали:

• схему, що визначає послідовність операцій виробництва;
• план розстановки технологічного устаткування, прив’язаний до уніфікованої сітки колон, із зазначенням габаритів устаткування, проходів і проїздів, технологічних площадок, дільниць складування, а також підземних споруд;
• висотні параметри будівлі: висоту від рівня підлоги до низу основаних несучих конструкцій покриття для безкранових будівель і від рівня підлоги до позначки головки кранової рейки для цехів, устаткованих кранами; висоту поверху для багатоповерхових будівель. Крім того, мають бути зазначені позначки робочих і технологічних площадок й етажерок;
• дані про засоби внутрішньоцехового підйомно-транспортного устаткування;
• дані про виробничі шкідливі відходи, що можуть виділятись (гази, дим, пил та ін.), та їх джерела, а також про відповідний вологотемпературний режим в окремих приміщеннях;
• характер робіт з точки зору санітарної характеристики й ступеня їх точності;
• чисельність робітників та адміністративно-управленського персоналу по кожній зміні (чоловіків і жінок) й окремо за санітарною характеристикою виконуваних робіт;
• категорію виробництва за ступенем пожежної небезпеки;
• дані про район і ділянку будівництва;
• топографічний план території будівництва;
• матеріали гідрогеологічного дослідження й випробування грунтів;
• особливі умови (сейсмічність, вічна мерзлота, наявність гірничих виробок та ін.).
Наявність цих даних дає змогу приступити до будівельного проектування, основним завданням якого є:
• розробка й вибір найраціональнішого об’ємно-розпланувального й конструктивного вирішення будівлі в цілому й окремих її елементів з урахуванням здійснення будівництва індустrielними методами. При цьому широко використовують уніфіковані типові секції (УТС) й уніфіковані типові прольоти (УТП), здійснюють розрахунки та обґрунтування усіх виробів і деталей, беручи до уваги район будівництва і клас будівлі;
• забезпечення пожежної безпеки відповідно до ступеня вогнестійкості будівлі;
• створення найсприятливіших умов праці (організація робочих місць, волого-температураньй режим у приміщеннях, умови безпеки й гігієни, освітленість);
• розрахунок і проектування адміністративних та побутових приміщень;
• опрацювання питань технології та організації будівництва, його кшторисної вартості. питань охорони праці та навколишнього середовища.
Розроблений проект має відповідати усім діючим нормам, каталогам і ГОСТам, а також вказівкам щодо проектування промислових будівель.

11.2. Проектування виробничих будівель

Виробничі будівлі повинні мати просту конфігурацію в плані, при цьому доцільно уникати прибудов до корпусу, що надалі ускладнює розширення та реконструкцію виробництва.
Сучасна практика показує, що виробництва з однотипними, а іноді й різними технологічними процесами доцільно блокувати в одній будівлі. Звичайно, таке об’єднання не повинне суперечити санітарно-гігієнічним вимогам, пожежно- та вибухобезпеки.
Сучасні методи типізації грунтуються на застосуванні єдиної модульної системи і наскрізної уніфікації всіх будівельних параметрів будівель і споруд: розпланувальних і конструктивних виробів та ін.
Розробки комплексних типових проектів, типових проектних вирішень, креслень типових конструкцій і виробів, типових монтажних й архітектурних деталей дають змогу в більшості випадків при виконанні конкретних проектів обмежуватися складанням монтажних
схем з посиланнями на відповідні робочі креслення типових конструкцій, виробів і деталей.

Для кожної галузі промисловості визначено на цій основі оптимальні розміри блоків, з яких можна компонувати виробничі будівлі потрібних розмірів. Так, для підприємств машинобудування рекомендовано такі типи УТС (рис.11.1):

- розмірами в плані 144х72 і 72х72 м з сіткою колон – 24х12 і 18х12 м;
- висота прольотів безкранових і з підвісним транспортом вантажопідйомністю до 5 т включно – 6 і 7,2 м;
- висота прольотів з мостовими кранами вантажопідйомністю до 30 т включно – 10,8 і 12,6 м.

Прийнято також і додаткові секції. На рис.11.2 наведено приклад УТС.

УТС багатоповерхових будівель розроблено для будівель у 2, 3, 4, 5 поверхів, слід брати сітку колон 6х6 і 6х9 м.

Висота поверху має бути кратною 1,2 м, залежно від технологічних умов та габаритів устаткування вибирають 3,6; 4,8; 6,0 м. В одній будівлі допускається не більше двох висот.

Одним з важливих питань під час проєктування виробничих будівель є організація людських і вантажних потоків та евакуації людей з будівлі.

Цех треба проєктувати так, щоб люди мали можливість переміщуватись найкращим, зручним і безпечним шляхом. Робочі місця повинні мати вільний доступ. Не слід допускати пересічення в одній площі напружених вантажних і людських потоків. У місцях неминучих пересічень передбачають тунелі, переходи і проходи. Для переходу робітників на інший бік конвеєрів, рольгангів та інших рухомих пристроїв передбачають перехідні містки.

При проектуванні й спорудженні виробничих будівель обов’язково передбачають шляхи вимушені (аварійні) евакуації людей із приміщень. Час евакуації визначається нормами і залежить від характеру виробництва. Аварійна евакуація людей із будівель звичайно відбувається в умовах високих температур, задимлення й загазованості. Для швидкої і безпечної евакуації людей потрібна достатня кількість вихідів, певна протяжність і ширина шляхів евакуації та евакуаційних вихідів. При цьому враховують, що час евакуації залежить від щільності потоку, тобто кількості людей (або суми площ їхніх проекцій, м²) на одиницю площі (м²), а також довжини шляху евакуації.

92
Рис. 11.1. Приклади габаритних схем уніфікованих типових секцій одноповерхових виробничих будівель:

а – при сітці колон 24х12м; б – те саме 18х12м; в – варіанти компонування будівель з типових секцій блоків; 1 – основні секції; 2 – добірні

Шляхи евакуації повинні бути по можливості прямыми й без пересічення іншими потоками. Двері на шляхах евакуації мають відчинятися в напрямі виходу з будівлі.

Звичайно розробляють спеціальну схему евакуації людей із будівлі, а всіх працюючих у будівлі людей попередньо оповіщають про порядок евакуації в разі можливих аварійних умов.

Проектуючи виробничі будівлі, поряд з технологічними факторами треба враховувати низку фізико-технічних питань, що відіграють під час експлуатації будівлі винятково важливу роль. До них належать питання: будівельної теплотехніки, вентиляції, в тому числі аерації; освітленості, боротьби проти надмірної інсоляції; боротьби з сніговими заметами; ізоляції від агресивних впливів; боротьби з виробничими шумами й вібрацією.

При надмірній інсоляції, коли пряме й відбите сонячне проміння, потрапляючи в очі, заважає роботі і буває причиною травматизму, а також, нагріваючи опромінювані поверхні, спричинює перегрівання приміщень орієнтовують відповідним чином або будівлі в цілому або передбачають влаштування засклених поверхонь, а також вживають конструктивних заходів проти інсоляції.

Важливим питанням є захист конструкцій від агресивних хімічних впливів раціональним вибором матеріалів, а також покриттям спеціальними фарбами.
Рис. 1.2. Приклад універсальної типової секції (УТС):
а – план; б – поздовжній розріз і приклад вирішення фасаду; в – поперечний розріз
Шуми і вібрації, що виникають від роботи машин і транспорту, шкідливо позначаються на організмі людини, знижують її працездатність і можуть спричинити деформації в конструкціях будівлі.

Основними заходами боротьби з ними є:

- встановлення устаткування на самостійних, відособлених від конструкцій будівлі опорах і фундаментах;
- влаштування під машинами в товщі фундаменту пружних прокладок і "екранів" із шпунтованих паль або траншей, засипаних пухким матеріалом; надійна ізоляція приміщень зі значними струмами й вібраціями від інших приміщень і розміщення їх на перших поверхах або в крайніх прольотах та ін.

Як уже зазначалось, промислові будівлі проектують на основі УТС і УТП. Типові проекти прив'язують до конкретних умов будівництва.

Проектування виробничих будівель має дві стадії: проектне завдання і робочі креслення. Прив'язку основних конструкцій будівель до координаційних осей роблять з додержанням правил, викладених далі.

11.3. Прив'язування конструктивних елементів до координаційних осей

Прив'язка визначає відстань від модульної, координаційної осі до грані або геометричної осі перерізу конструктивного елемента. За-стосовувані правила прив'язування дають змогу встановити взаємозамінність конструкцій і значно скоротити кількість добірних елементів.

Нижче розглянуто основні правила прив'язування конструктивних елементів до координаційних осей. Основні з них такі. В одноповерхових виробничих будівлях колони середніх рядів розташовують так, щоб геометричні осі перерізу колон збігалися з поздовжніми й поперечними модульними координаційними осями (рис.11.3). Винятки допускаються щодо колон біля температурних швів і перепадів висот.

При використанні як несучих конструкцій кроквяних ферм і балок колони крайніх рядів і зовнішні стіни прив'язують до поздовжніх координаційних осей за такими правилами:

- зовнішню грань колон суміщують з координаційною віссю (нульова прив'язка), а внутрішню площу стіни зміщують на 30 мм (рис.11.3,б) у будівлях таких типів: у будівлях без мостових кранів зі збірним залізобетонним каркасом при кроці край-
ніх колон б або 12 м, а також у будівлях із стальним або мішаним каркасом при кроці колон крайніх рядів 6 м; у будівлях з кранами вантажопідйомністю до 20 т і зі збірним залізобетонним або мішаним каркасом при кроці крайніх колон 6 м і при висоті не більше як 14,4 м; у будівлях з ручними мостовими кранами;
• зовнішню грань колон зміщують назовні з координаційної осі на 250 мм, а між внутрішньою площиною стіни й гранню колон передбачають зазор 30 мм (рис.11.3, в) у таких будівлях: без мостових крайних із стальним або мішаним каркасом при кроці крайніх колон 12 м; з кранами при кроці колон крайніх рядів 12 м у будівлях з стальним каркасом при кроці колон 6 м, а також у будівлях з кранами вантажопідйомністю по над 20 т і збірним залізобетонним або мішаним каркасом при кроці крайніх колон 6 м та висоті 12 м і більше; коли є проходи уздовж підкранових шляхів.

Колони й зовнішні стіни із панелей прив’язують до крайніх по- перечних координаційних осей по лініях поперечних температурних швів з додержанням таких вимог:
• у торцях будівель геометричні осі перерізу колон основного каркаса зміщують усередину на 500 мм з координаційної осі, а внутрішні поверхні стіни - назовні на 30 мм з тієї самої осі (рис.11.3, г);
• по лініях поперечних температурних швів геометричні осі перерізу колон зміщують по 500 мм в обидва боки від осі шва, що суміщається з поперечною координаційною віссю (рис.11.3, е).

При влаштуванні поздовжніх температурних швів або перепаді висот паралельних прольотів на парних колонах слід передбачити парні модульні координаційні осі з вставкою між ними.

Залежно від розміру прив’язки колон у кожного із суміжних прольотів розміри вставок між парними координаційними осьми по лініях температурних швів у будівлях з прольотами однакової висоти і з покриттями по кроквяних балках (фермах) дорівнюють 500, 750, 1000 мм (рис.11.3, е-з).

Розмір вставки між поздовжніми координаційними осьми по лінії перепаду висот паралельних прольотів у будівлях з покриттями по кроквяних балках (фермах) повинен бути кратним 50 мм (рис.11.3, і-і):
• прив’язки до координаційних осей граней колон, поверхних у бік перепаду;
• товщини стіни з панелей і зазору 30 мм між її внутрішньою площиною і гранню колон вищого прольоту;
• зазору не менш е як 50 мм між зовнішньою площиною стіни й гранню колон нижчого прольоту.
Рис. 11.3. Прив'язка колон і стін одноповерхових будівель до координаційних осей:
а – прив'язка колон до середніх осей; б, в – те саме, колон і стін до крайніх поздовжніх осей; г–е – те саме до поперечних осей у торцях будівель і місцях поперечних температурних швів; е–з – прив'язка колону поздовжніх температурних швів будівель з прольотами однакової висоти; и–і – те саме при перепаді висот паралельних прольотів; й, к – те саме при взаємно перпендикулярному примиканні прольотів; 1–о – прив'язка несучих стін до поздовжніх координаційних осей; 1 – колони підвищених прольотів; 2 – колони знижених прольотів, що примикають торцями до підвищеного поперечного прольоту

При цьому розмір вставки має бути не менше 300 мм. Розміри вставок у місцях примикання взаємно перпендикулярних прольотів (нижніх поздовжніх до вищого поперечного) становлять від 300 до 900 мм (рис. 11.3, й, к).

Коли є поздовжній шов між прольотами, що примикають до перпендикулярного прольоту, цей шов подовжується у перпендикулярний прольот, де він буде поперечним швом. При цьому вставка між координаційними осями у поздовжньому й поперечному швах дорівнює
500, 750 і 1000 мм, а кожну з парних колон по лінії поперечного шва треба зміщувати з найближчої осі на 500 мм.

Якщо на зовнішні стіни спираються конструкції покриття, то внутрішню площину стіни зміщують усередину від координаційної осі на 150 (130) мм (рис.11.3, л).

Колони до середніх поздовжніх і поперечних координаційних осей багатоповерхових будівель прив'язують так, щоб геометричні осі перерізу колон збігалися з координаційними осями (рис.11.4,а), за винятком колон по лініях температурних швів.

У разі прив'язки колон і зовнішніх стін із панелей до крайніх поздовжніх координаційних осей будівлі зовнішню грань колон (залежно від конструкції каркаса) зміщують назовні з координаційної осі на 200 мм або суміщають з цією віссю, а між внутрішньою площею стіни і гранями колон передбачають зазор 30 мм (рис.11.4, б,в).

По лінії поперечних температурних швів будівель з перекриттями із збірних ребристих або гладеньких багатопорожнинних плит передбачають парні координаційні осі з вставкою між ними розміром 1000 мм, а геометричні осі парних колон суміщають з координаційними осями (рис.11.4, г).

Рис.11.4. Прив'язка колон і стін багатоповерхових будівель до координаційних осей: а – прив'язка колон до середніх осей; б,в – прив'язка колон і стін до крайніх поздовжніх осей; г,д – те саме, у торцях будівель; е,е – прив'язка колон по лініях поперечних температурних швів

У разі прибудови багатоповерхових будівель до одноповерхових не допускається взаємно змішувати координаційні осі, перпендикулярні до лінії прибудови і спільні для обох частин зблокованої будівлі.

98
Розміри вставки між паралельними крайніми координаційними осями по лінії прибудови будівель призначають з урахуванням використовування типових стінових панелей - подовжених, рядових або добірних.

12. ЕЛЕМЕНТИ Й КОНСТРУКТИВНІ СХЕМИ ПРОМИСЛОВИХ БУДІВЕЛЬ

12.1. Класифікація промислових будівель

Промислові підприємства поділяють на галузі виробництва, що є складовою частиною народного господарства. Промислові підприємства складаються з будівель, які призначені для здійснення виробничих технологічних процесів, прямо або посередньо зв'язаних з випуском певного виду продукції.

Незалежно від галузі промисловості будівлі поділяють на чотири основні групи: виробничі, енергетичні, будівлі транспортно-складського господарства і допоміжні будівлі або приміщення.

До виробничих належать будівлі, в яких здійснюється випуск готової продукції або напівфабрикатів. Вони поділяються на багато видів відповідно до галузей виробництва. Серед них механоскладальні, термічні, ковальсько-штампувальні, ткацькі, інструментальні, ремонтні та ін.

До енергетичних належать будівлі ТЕЦ (теплоелектроцентраля), котельних, електричних і трансформаторних підстанцій та ін.

До будівель транспортно-складського господарства належать гаражи, склади готової продукції, пожежні депо та ін.

До допоміжних будівель належать адміністративно-конторські, побутові, пункти харчування, медичні пункти та ін.

Характер об'ємно-розпланувального й конструктивного вирішення промислових будівель залежить від їх призначення та характеру технологічних процесів.

Будівлі поділяють на чотири класи, причому до I класу відносять ті, до яких ставляться підвищені вимоги, а до IV класу - будівлі з мінімальними вимогами. Для кожного класу визначено свої експлуатаційні властивості, а також довговічність і вогнестійкість основних конструкцій будівель.

Є три ступені довговічності промислових будівель: I ступінь - не менше 100 років; II - не менше 50 років і III- не менше 20 років.
За ступенем вогнестійкості будівлі і споруди поділяють на п’ять ступенів. Ступінь вогнестійкості, що характеризується групою загоряння і граніцею вогнестійкості основних будівельних конструкцій, устанавливають: для будівель I класу - не нижче II ступеня, для будівель II класу – не нижче III ступеня. Для будівель III і IV класів ступінь вогнестійкості не нормується.

За архітектурно-конструктивними ознаками промислові будівлі поділяють на одноповерхові, багатоповерхові й змішаної поверхності.

Виробництва, в яких технологічний процес відбувається по горизонталі і вони характеризуються важким і громіздким устаткуванням, великогабаритними виробами й значними динамічними навантаженнями, доцільно розміщувати в одноповерхових будівлях.

Залежно від кількості прольотів одноповерхові будівлі можуть бути одно- і багатопрольотними (рис.12.1). Прольотом називається об’єм промислової будівлі, обмежений по периметру рядами колон і перекриттів за однопрольотною схемою. Відстань між поздовжніми рядами називають шириною прольоту.

Рис.12.1. Основні типи одноповерхових промислових будівель: а – однопрольотна безліхтарна; б – те саме, з мостовим краном; в, г – багатопрольотні з ліхтарями; д – загальний вигляд будівлі
У багатоповерхових будівлях розміщують виробництва з вертикально спрямованими технологічними процесами для підприємств легкої, харчової, радіотехнічної та аналогічних їм видів промисловості, їх, як правило, споруджують багатопрольотними (рис.12.2). На перших поверхах розміщують виробництва, що мають важче устаткування, виділяють агресивні стічні води, у верхніх - виробництва, які виділяють газові шкідливі відходи, пожежонебезпечні та ін.

Рис.3.2. Основні типи багатоповерхових промислових будівель:
а-в – схеми поперечних розрізів; 3 – загальний вигляд будівлі

За розташуванням внутрішніх опор промислові будівлі поділяють на коміркові, пролітні, зальні й комбіновані.
У будівлях коміркового типу звичайно використовують квадратну сітку опор з відносно невеликим поздовжнім і поперечним кроком. У цих будівлях технологічні лінії розміщують у двох взаємно перпендикулярних напрямках..
У будівлях прольотного типу, які найпоширеніші, ширина прольотів переважає над кроком опор.
Будівлі зального типу характерні для виробництв, що потребують значних вільних площ без внутрішніх опор. Будівлі комбінованого типу являють собою поєднання переліченних вище типів.

За наявністю підйомно-транспортного устаткування будівлі бувають кранові (з мостовим або підвісним транспортом) і безкранові.

За матеріалом основних несучих конструкцій будівлі можна поділити на такі різновиди: із залізобетонним каркасом (збірним, збірно-монолітним і монолітним); із стальним каркасом; з цегляними стінами і покриттям із залізобетонних, металевих або дерев’яних конструкціях.

Крім перелічених факторів промислові будівлі класифікують і за іншими ознаками: за системою опалення, вентиляції, освітлення, за профілем покриття. Нижче розглядаються особливості проєктування будівель з урахуванням цих ознак.

12.2. Вимоги до промислових будівель

До промислових будівель ставлять технологічні, технічні, архітектурно-художні й економічні вимоги.

Технологічні вимоги обумовлюють цілковиту відповідність будівлі своєму призначенню, тобто будівля повинна забезпечувати нормальне функціонування розміщеного в ній технологічного устаткування, нормальний хід технологічного процесу в цілому. З цією метою при проєктуванні будівлі складають технологічну частину проєкту й вирішують усі питання, пов’язані з вибором способу виробництва, типів устаткування, його продуктивності та ін. До цієї частини проєкту входить так звана технологічна схема, що визначає послідовність операцій у технологічному процесі і, отже, послідовність розставлення устаткування та компонування виробничих приміщень.

З урахуванням технологічних вимог вибирають вид і матеріал несучих і захисних конструкцій, тип і вантажопідйомність внутрішньоцехового підйомно-транспортного устаткування, забезпечують відповідні санітарно-гігієнічні умови працюючим у цеху, якість і характер опорядження.

Розв’язуючи питання об’ємно-розпланувального та конструктивного вирішення будівлі, треба враховувати перспективи розвитку цього технологічного процесу, що дасть змогу змінювати й удосконалювати виробництво без реконструкції самої будівлі.

До технічних вимог належать забезпечення потрібних міцності, стійкості й довговічності будівель, протипожежних заходів, а також спорудження будівель індустріальними методами. Перелічені якості,
що забезпечуються під час проектування і спорудження будівлі, характеризують її надійність. Під надійністю будівлі або її окремих конструктивних елементів звичайно розуміють безвідмовну роботу їх у заданих умовах і всього розрахункового періоду експлуатації.

До технічних вимог відносять також вимоги до пожежної, вибухо- і вибухової небезпеки. Слід мати на увазі дедалі зростаюче значення цього фактора у зв'язку з ускладненням технології виробництва, застосуванням дорогої устаткування.

Архітектурно-художні вимоги передбачають потребу надання промисловій будівлі гарного зовнішнього і внутрішнього вигляду, що не впливає естетичні попити людей з урахуванням значення будівлі. При цьому особливу увагу приділяють комплексності забудови, виявленню цілісного архітектурного промислового ансамблю.

Економічні вимоги висувають завдання оптимальної, науково обґрунтованої витрати коштів на будівництво і експлуатацію будівлі, яку проектують. З цією метою беруть кілька варіантів об'ємно-розпланувальних і конструктивних вирішень і порівнюють їх за основними техніко-економічними показниками.

12.3. Одно- і багатоповерхові промислові будівлі.
Уніфікація

Одноповерхові будівлі можуть мати в плані прості й складні форми. В основному переважає прямокутна форма, а складні форми характерні для виробництв із значними тепло- газовідведеннями, коли потрібна організація припливу й видалення повітря.

Залежно від характеру технологічного процесу одноповерхові будівлі за об'ємно-розпланувальним вирішенням можуть бути прольотного, зального, коміркового й комбінованого типу.

Будівлі прольотного типу проектують у тих випадках, коли технологічні процеси спрямовані узгоджено прольоту й обслуговуються кранами або без них.

Основними конструктивними елементами сучасної одноповерхової пролітної будівлі є (рис.12.3): колони, які передають навантаження на фундаменти; конструкції покриття, які складаються з несучої частини (балки, бетон, арки) і захисної (плити й елементи покриття); підкранові балки, що встановлюються на консолі колон; ліхтарі, що забезпечують потрібний рівень освітленості й повітрообмін у цеху;
вертикальні захисні конструкції (стіни, перегородки, конструкції за-скління), причому конструкції стін спираються на спеціальні фунда-ментні й обв’язувальні балки; двері й ворота для руху людей і транс-порту; вікна, які забезпечують потрібний світловий режим у цеху.

Рис.12.3. Конструктивне вирішення одноповерхової багатопрольотної промислової будівлі:
1 – бетонний підлів для опирання фундаментних балок; 2 – підкранова балка; 3 – колона середнього ряду; 4 – підкранова залізобетонна ферма; 5 – залізобетонна безро-скісна ферма; 6 – залізобетонна плита покриття; 7 – пароізоляція; 8 – шар утеплювача; 9 – цементна стяжка; 10 – багатошаровий рубероїдний килим; 11 – конструкція заскління; 12 – стінова панель; 13 – цокольна стінова панель; 14 – колона крайнього ряду; 15 – металевий хрестовий вертикальний зв’язок між колонами; 16 – залізобетонна фундаментна балка; 17 – залізобетонний фундамент під колону
Одноповерхові промислові будівлі проекнують найчастіше за каркасною системою, утвореною стояками (колонами), вмонтированими у фундамент, і ригелями (фермами або балками).

Спеціальні зв'язки (горизонтальні й вертикальні) забезпечують просторову жорсткість каркаса.

Габарити збірних елементів для промислових будівель уніфіковані, відповідно уніфіковані й габарити конструктивних елементів на основі укрупненого модуля.

Прольот будівель (поперечна відстань між колонами) становить 12, 18, 24, 30, 36 та ін.

Висота від підлоги до низу несучої конструкції покриття кратна модулю 0,6 М (від 3,6 до 6,0 м), укрупненому модулю 1,2М (від 6,0 до 10,8 м) і модулю 1,8 М (від 10,8 до 18,0 м).

Будівлі зального типу застосовують тоді, коли технологічний процес пов’язаний з випуском великорозмірної або великорозмірного устаткування (ангари, цехи складання кіл, головні корпуси мартенівських і конверторних цехів та ін.). Прольоти будівель зального типу можуть бути 100 м і більше.

Розвиток і впровадження засобів автоматизації і механізації технологічних процесів створює потребу пересування транспортних засобів у двох взаємно перпендикулярних напрямах. Потреба частої модернізації технологічного процесу легше здійснюється в одноповерхових будівлях суцільної забудови з квадратною сіткою колон. Таке об’ємно-розпланувальне вирішення дістало назву коміркового, а будівлі - гнучких, або універсальних.

У будівлях комбінованого типу поєднуються основні ознаки будівель зального, прольотного або коміркового типу.

Багатоповерхові промислові будівлі переважно застосовують у легкій, харчовій, електротехнічній та інших видах промисловості.

За конструктивною схемою багатоповерхові промислові будівлі бувають з неповним каркасом і несучими зовнішніми стінами або з повним каркасом (рис.12.4). Основними елементами каркаса є колони, ригелі, плити перекриттів і зв’язки. Міжповерхові перекриття виконують із збірних залізобетонних конструкцій двох типів: балкові й безбалкові.

Збірні каркаси можуть бути вирішені за рамною, рамно-зв’язовою або зв’язовою системою. За рамною системою каркаса просторова жорсткість будівлі забезпечується роботою самого каркаса, рами якого сприймають як горизонтальні , так і вертикальні навантаження. При рамно-зв’язовій системі вертикальні навантаження сприймаються рамами каркаса, а горизонтальні - рамами й вертикаль-
ними зв'язками (діафрагмами). У разі зв'язкової системи вертикальні навантаження сприймаються колонами каркаса, а горизонтальні-вертикальними зв'язками.

Рис.3.4. Конструктивне вирішення багатоповерхової будівлі:
1 – колона; 2 – монтажний столик для оперті стінових панелей; 3 – вертикальний металевий портальний зв'язок між колонами; 4 – балка (ригель); 5 – плита перекриття залізобетонна ребристя; 6 – залізобетонна підкранова балка; 7 – залізобетонна двосхила балка покриття; 8 – залізобетонна підкранова балка; 9 – стінова панель; 10 – конструкції віконного заскління; 11 – вимощення; 12 – фундаментна балка (ряд-балка); 13 – бетонний прилив для оперті фундаментних балок; 14 – піщана підготовка
Сітку колон багатоповерхових будівель беруть 6х6 або 6х9 м, а останнім часом розроблено проекти з сіткою 6х12, 6х18 і навіть 6х24 м.

Висоти поверхів багатоповерхових виробничих будівель уніфіковані і можуть бути 3,6; 4,8; 6,0 м, а для перших поверхів допускається висота 7,2 м (модуль 12 М).

Для вертикального транспорту в багатоповерхових будівлях передбачають вантажні й пасажирські ліфти, які разом зі сходами об’єднуються у вузли.

Вибираючи конструктивні вирішення промислових будівель, треба мати на увазі економічну значущість вартості окремих конструктивних елементів у загальній кошторисній вартості будівлі. Для багатоповерхових будівель найбільше впливають на вартість стіни, каркас, підлога й прорізи, в одноповерхових - каркас, конструкції покрівлі, підлога й стіни.

13. КАРКАСИ, ЇХ ВИДИ Й ЕЛЕМЕНТИ

13.1. Каркас промислової будівлі

Каркас одноповерхових і багатоповерхових промислових будівель складається з поперечних рам, утворених колонами й несучими конструкціями покриття (балки, ферми, арки та ін.), і поздовжніх елементів: фундаментних, підкранових і обв’язувальних балок, підкрокованих конструкцій, плит покриття й перекриттів та зв’язків. Якщо несучі конструкції покриттів виконують у вигляді просторових систем – склепінь, куполів, оболонок, складок та інших, то вони водночас є поздовжніми і поперечними елементами каркаса.

Каркаси промислових будівель монтоють в основному із збірних залізобетонних конструкцій, сталі й рідше з монолітного залізобетону, деревини й пластмас.

Вибираючи матеріал, треба враховувати розміри прольотів і крок колон, висоту будівель, величину й характер діючих на каркас навантажень, параметри повітряного середовища виробництва, наявність агресивних факторів, вимоги вогнестійкості, довговічності й техніко-економічні передумови.

Несучий каркас найчастіше виконують із залізобетону або сталі і змішаним. Влаштування залізобетонного каркасу порівняно з стальним дає змогу економити до 60% сталі. Елементи каркасу зазнають ком-
плексу силових і несилових впливів (рис.13.1). Силові впливи виникають від сталіх і тимчасових навантажень. У зв'язку з цим елементи каркасу повинні відповідати вимогам міцності й стійкості.

Рис.13.1. Зовнішні впливи на елементи каркаса: 1 – сталі навантаження; 2 – тимчасові навантаження; 3 – температура внутрішнього повітря; 4 – теплові удари; 5 – рідка і пароподібна волога; 6 – агресивні хімічні речовини; 7 – мікроорганізми; 8 – блискучі струми; 9 – звук

Під дією несилових впливів навколишнього і внутрішнього середовища у вигляді позитивних і негативних температур, теплових ударів, рідкої і пароподібної вологи, повітря і наявних у повітрі хімічних речовин елементи каркасу повинні відповідати вимогам довговічності.

Одноповерхові промислові будівлі з типовими уніфікованими конструкціями з усуванням сіткою колон можуть мати конструктивні схеми із застосуванням підкроквяних конструкцій або без них (рис.13.2).

При виборі каркасу із сталевих елементів слід враховувати величину прольотів, режим роботи кранів, величину навантажень від кранів і покриття та інші фактори. Сталеві конструкції елементів каркасу застосовують головним чином у цехах заводів, в яких використовують крани важкого й неперервного режиму роботи. При цьому треба широко застосовувати легкі конструкції масового виготовлення.

Каркаси багатоповерхових будівель влаштовують також з уніфікованих заготовлених сталевих елементів заводського виготовлення з балковими або безбалковими перекриттями (рис.13.3). Балкові перекриття, як простіші й більш універсальні, застосовують частіше. Безбалкові перекриття використовують при більших корисних навантаженнях і коли є потреба мати гладеньку поверхню степі для влаштування підзвітного транспорту, розв'язування в різних напрямах комунікацій, а також для поліпшення санітарно-гігієнічних якостей приміщень.
13.2. Фундаменти й фундаментні балки

За способом влаштування фундаменти бувають збірні й монолітні. Під колони каркасу передбачають окремі фундаменти з підколонниками стаканного типу (рис.13.4), а стіни спирають на фундаментні балки.

Залежно від величини навантаження на колони, її перерізу та глибини закладення фундаментів застосовують кілька типорозмірів фундаментів. Висота фундаментних блоків 1,5 і від 1,8 до 4,2 м з градацією через 0,6 м; розміри підошви блоків у плані від 1,5х1,5 м і більше з модулем 0,3 М; розміри підколонника в плані від 0,9х0,9 до 1,2х7,2 м з модулем 0,3 М. Глибина стакана становить 0,8; 0,9; 0,95 і 1,25 м, а висота сходів – 0,3 і 0,45 м.

Збірні фундаменти можуть складатися з одного блоку (підколонника з стаканом) або бути складеними з підколонника й опорної фундаментної плити. Влаштування збірних фундаментів за витратою бетону, вартістю й працевитратами більш економічне від монолітних.
Рис.13.3. Каркаси багатоповерхових промислових будівель:

а – балковий, при оперті ригелів на консоль колон (І – варіант перекриттів з оперттям ребристих плит на поліці ригелів; ІІ – те саме, з опертим плит по верху ригелів); б – балковий, при безконсольному оперті ригелів (ІІІ – перекриття з ребристими плитами; IV – те саме, з багатопустотними); в – безбалковий з надколонними плитами, розташованими у двох напрямках; г – те саме, з надколонними плитами, розташованими в одному напрямі; 1 – ригель поздовжньої рами; 2 – сантехнічна панель.

Для зменшення маси і зниження витрат сталі застосовують збірні ребристі або порожнисті фундаменти (рис.13.4).

Фундаменти з підколонниками пенькоподібного типу влаштовують під залізобетонні колони великого перерізу або під стальні колони (рис.13.4,е). Пеньок, що є елементом колони, влаштовують під час роботи нульового циклу. Пеньок з фундаментом і колону з пеньком з’єднують зварюванням випусків арматури й бетоном, який нагнітають у шви.

Пальові фундаменти влаштовують при заляганні біля поверхні землі слабких грунтів і наявності грунтових вод (рис.13.4,в). Головні частини паль зв’язують монолітним або збірним залізобетонним ростверком, який водночас є підколонником.

Для скорочення типорозмірів колон верх фундаментів незалежно від глибини закладення підошви рекомендується розташовувати на позначці 0,15 м, тобто на 15 см нижче від позначки чистої підлоги це-
ху. Їх установлюють на підмазку з цементного розчину завтовшки 20мм.

Навісні панелі стін допускається спирати на шар набетонки, передаючи їхню масу безпосередньо на підколонники.

По фундаментних балках укладають 1-2 шари гідроізоляційного матеріалу, щоб запобігти деформації балок внаслідок можливого здимання грунтів, знизу і з боків передбачають підсипку з шлаку, крупнозернистого піску або цегляного щебню.

Несучі стіни в будівлях безкаркасних або з неповним каркасом спирють на стрічкові фундаменти, які рекомендується робити із збірних елементів аналогічно громадським будівлям. Це дає змогу вести монтаж колон при засипанні котлованах після влаштування підготовки під підлогу й прокладання підземних комунікацій, тобто після робіт нульового циклу.

Колони з фундаментами з'єднують різними способами. Найпоширенішим є жорстке кріплення за допомогою бетону.

Стіни каркасних будівель спирають на фундаментні балки, укладені між підколонниками фундаментів на спеціальні залізобетонні сто-
впічки або на консолі колон. Фундаментні балки захищають підлогу від продування в разі осідання вимощення. Залізобетонні фундаментні балки при кроці колон 6 м залежно від розмірів підколонників і способів оперття мають довжину від 5,95 до 4,3 м, а переріз – тавровий і трапецієвидний.

Висоту балок під самонесучі стіни з цегли, малих блоків і панелей беруть 450 мм, а під навісні панелі – 300 мм.

Якщо крок колон 12 м, застосовують в основному балки трапецієвидного перерізу 400 і 600 мм заввишки та 11,95-10,2 завдовжки. Балки монтують так, щоб їхній верх був на 30 мм нижче від рівня підлоги.

13.3. Колони. Підкранові і обв'язувальні балки

Для влаштування каркасів одноповерхових і багатоповерхових промислових будівель застосовують залізобетонні й стальні колони.

Залізобетонні колони одноповерхових промислових будівель (рис.13.5) можуть бути з консолями й без них (якщо немає мостових кранів). За розташуванням у плані їх поділяють на колони середніх і крайніх рядів.

Залежно від поперечного перерізу колони бувають прямокутні, таврового профілю і двовіткові. Розміри поперечного перерізу залежать від величини діючих навантажень. Застосовують такі уніфіковані розміри перерізів колон 400х400, 400х600, 400х800, 500х500, 500х600 і 500х800 мм – для прямокутних; 400х600, 400х800 мм – для таврових і 400х1000, 500х1300, 500х1400, 500х1500, 600х1400, 600х1900 і 600х2400 мм для двовіткових. Колони можуть складатися з кількох частин, які збирають на будівельному майданчику.

Колони з консолями складаються з надкранової й підкранової віток. Переріз надкранових віток найчастіше квадратний або прямокутний: 400х400 або 500х500 мм.

Крім основних колон для влаштування фахвірків використовують фахверкові колони. Їх установлюють уздовж будівлі при кроці крайніх колон 12 м і довжині панелей стін 6 м, а також у торцях будівель.

Для влаштування каркасів багатоповерхових будівель використовують залізобетонні колони на один, два і три поверхи заввишки. Переріз колон 400х400 і 400х600 мм (рис.13.6). З’єднання ригелів з колонами може бути консольним і безконсольним. Стики колон влаштовують на 600-1000 мм вище від перекриття.
Рис.13.5. Основні типи залізобетонних колон одноповерхових промислових будівель:

а – прямокутного перерізу для будівель без мостових кранів при кроці 6м;
б – те саме, при кроці 12м;
в – двовіткові для будівель без мостових кранів;
г – прямокутного перерізу для будівель з мостовими кранами;
д – те саме двотаврового перерізу;
е – двовіткові для будівель з мостовими кранами;
є – загальний вигляд колони;
1 – закладна деталь для кріплення несучої конструкції покриття;
2, 3 – те саме підкранової балки;
4 – те саме стінових панелей.

Рис.13.6. Типи залізобетонних колон багатоповерхових промислових будівель при оперті ригелів на консоль колон
Якщо колони в основному працюють на центральний стиск, застосовують колони суцільного перерізу. Для виготовлення суцільних колон використовують широколицьовий прокатний або суцільний двотавр, а для наскрізних колон – також двотаври, швелери і кутики.

Роздільні колони влаштовують у будівлях з важкими мостовими кранами (125 т і більше). У нижній частині колон для з'єднання з фундаментами передбачають сталіні бази (башмаки). Бази до фундаментів кріплять анкерними болтами, що закладаються у фундамент при виготовленні їх. Нижню опорну частину колони разом з базою покривають шаром бетону.

Жорсткості й стійкості будівель досягають установленням системи вертикальних і горизонтальних зв’язків. Так, для зниження і перерозподілу зусиль, що виникають в елементах каркасу від температурних та інших впливів, будівлю поділяють на температурні блоки і в середині кожного блоку роблять вертикальні зв’язки між колонами: при крокі колон 6 м – хрестові; при крокі колон 12 м – порталіні (рис.13.8). Зв’язки виконують з кутиків або швелерів і приварюють до закладних частин колон.

Для забезпечення роботи мостових кранів на консолі колон монтують підкранові балки, на які укладають рейки. Підкранові балки також забезпечують додаткову просторову жорсткість будівлі. Підкренові балки можуть бути залізобетонні й сталіні.

Залізобетонні підкранові балки застосовують при крокі колон 6 і 12 м, але порівняно рідко, бо вони мають значну масу, витрату бетону й арматури. Балки можуть мати тавровий (для довжини 6 м) і двотавровий переріз з потовщенням стінок тільки на опорах.
Рис.13.8. Вертикальні зв'язки між колонами і влаштування температурного шва:
1 – хрестовий зв’язок; 2 – портальний зв’язок

До колон залізобетонні підкранові балки кріплять зварюванням закладних деталей і анкерними болтами. Після старанного встановлення і вивірення гайки на анкерних болтах зварюють. Рейки до балок приєднують притискними лапками, які розташовують через 750 мм. На кінцях підкранових колій установлюють стальні упори – обмежники, обладнані амортизаторами – буферами з дерев’яного бруса.

Ефективніші порівняно із залізобетонними стальні підкранові балки, що поділяються на розрізні й нерозрізні. Вони простіші у виготовленні і для монтажу. За типом перерізу підкранові балки можуть бути наскрізними (решітчастими) й суцільними.
Висоту балок визначають за допомогою розрахунку, вона може бути від 650 до 2050 м з градацією розмірів через 200 мм.

Кріплення рейок до балок може бути нерухомим і рухомим. Нерухоме кріплення здійснюють приварюванням рейки до верхньої поверхні балки при кранах вантажопідйомністю до 30 т. Рухоме кріплення, яке застосовують найчастіше, роблять за допомогою скоб і притискних лапок.

Інколи як матеріали для стін застосовують цеглу або малі блоки для обпирання їх, а також у місцях перепаду висот суміжних прольотів використовують обв’язувальні залізобетонні балки (рис.13.9,а). Їх звичайно влаштовують над віконними прорізами або стрічками заскління.

Обв’язувальні балки 5950 мм завдовжки мають висоту перерізу 585 мм і ширину 200, 250 і 380 мм. Їх встановлюють на опорні сталіні столики й кріплять до колон за допомогою сталінних планок, які прибивають до закладних елементів (рис.13.9,б).

Рис.13.9. Обв’язувальні балки:
а – загальний вигляд; б – вузол кріплення до колони; 1 – сталіні опорний столик;
2 – сталіна планка

13.4. Несучі конструкції покриття

Несучі конструкції покриття, що є важливим конструктивним елементом будівлі, вибирають залежно від величини прольоту, характеру і значення діючих навантажень, виду вантажопідйомногого устаткування, характеру виробництва та інших факторів.
За характером роботи несучі конструкції покриття бувають площинні й просторові. За матеріалом конструкції покриття поділяють на залізобетонні, металеві, дерев’яні й комбіновані.

У зв’язку з характером роботи ці конструкції повинні відповідати вимогам міцності, стійкості, довговічності, архітектурно-художнім й економічним. Тому при виборі несучих конструкцій покриття виконують стараний техніко-економічний аналіз кількох варіантів. Так, залізобетонні конструкції вогnestійкі, довговічні й часто більш економічні порівняно з стальними. Сталіні ж мають відносно невелику масу, прості у виготовленні й монтажі, мають високий ступінь збірності. Де-рев’яні конструкції характеризуються легкістю, відносно невеликою вартістю і при відповідному захисті – прийнятною вогнестійкістю та довговічністю. Дуже ефективні й комбіновані конструкції, що складаються з кількох видів матеріалів. При цьому важливо, щоб кожний матеріал працював у тих умовах, які найбільш сприятливі для нього. Нижче розглянуто основні види несучих конструкцій покриттів.

Залізобетонні балки (рис.13.10) застосовують при прольотах до 18 м. Вони можуть бути одно- й двосхилими. Для виготовлення їх використовують попередньо напружене армування. На верхньому погоні балок передбачають закладні деталі для кріплення панелей покриття або прогонів. Балки кріплять до колон зварюванням закладних деталей (рис.13.10, d).

Ефективніші порівняно з балками залізобетонні ферми, які використовують у будівлях прольотом 18, 24, 30 і 36 м (рис.13.11). Вони можуть бути сегментні, аркові з паралельними поясами, трикутні та ін. Між нижнім і верхнім поясками ферм розміщують систему стояків і розкосів. Решітку ферм передбачають так, щоб плити перекриттів 1,5 і 3,0 м завширшки спирались на ферми у вузлах стояків і розкосів.

Широкого застосування набули сегментні безроскосні залізобе-тонні ферми прольотом 18 і 24 м. Для зменшення похилу покриття для багатопролітних будівель передбачають влаштування на верхньому пояси таких ферм спеціальних стояків (стовпчиків), на які спирають панелі покриття.

Міжфермний простір рекомендується використовувати для про-пустання комунікацій та влаштування технічних і міжфермних поверх-хів.

Кріплять ферми до колон болтами і зварюванням закладних еле-ментів. При кроці кроквяних ферм і балок 6 м і кроці колон середніх ря-дів 12 м використовують підкроквяне залізобетонні ферми і балки.
Рис. 13.10. Залізобетонні балки покриття:
a, г — односхилій плоскі двотаврового перерізу; б — те саме, для багатосхилі покриттів; в — решітчасті для багатосхилій покриттів; д — вузол опирання на колону; 1 — анкерний болт; 2 — шайба; 3 — опорна плита

Більш ефективними несучими конструкціями покриттів є стальні кроквяні підкроквяні ферми (рис. 13.12). Кроквяні ферми застосовують для прольотів 18, 24, 30, 36 і більше при кроці 6, 12, 18 і більше.

Пояси і решітку ферм конструюють з кутків або труб і з’єднують між собою зварюванням за допомогою фасонок з листової сталі. Перерізи поліць поясів, стояків і розкосів вибирають за розрахунком.

Для багатоповерхових промислових будівель застосовують балкові й безбалкові перекриття. Балки перекриттів (ригелі) виготовляють з бетону марок 200-400 координаційними прольотами 6 і 9 м і уніфікованою висотою перерізу 0,8 м. Балки можуть мати прямокутний і тавровий переріз (рис. 13.13). Ригелі прямокутного перерізу застосовують
при великих навантаженнях. З’єднання з колоною здійснюється опиранням ригеля на консоль колони.

Рис. 13.11. Залізобетонні ферми покриття:
а – сегментна; б – аркова безроскісна; в – з паралельними поясиами; г – трапеційна;
д – фрагмент розрізу покриття будівлі із застосуванням підкровяних ферм

Для багатоповерхових будівель зі збірним безбалковим каркасом з сіткою колон 6х6 м застосовують плоскі плити перекриттів суцільного перерізу (надколонні і пролітні) 150 або 180 мм завтовшки. Надколонні плити встановлюють виступами в гнізда капітелі, передбачені по її периметру, з утворенням після замонолічування залізобетонних шпонок.
Рис. 13.12. Стальні кроквяні ферми:
а – стальні типи ферм; б – вузол опирання на колону ферми з паралельними поясами при "нульовій" прив'язці; в – те саме полігональної при прив'язці 250 і 500 мм; г – те саме трикутної при "нульовій" прив'язці; 1 – надпорний стояк; 2 – колона; 3 – ригель фахверка

Для приміщень значних розмірів використовують конструкції покриттів великопрольотні й просторові. Покриття у великопрольотних будівлях бувають площинні, просторові й висячі.

Великопрольотними площинними покриттями є залізобетонні й стальні ферми (рис. 13.14). Залізобетонні ферми прольотом до 96 м виготовляють із бетону М500 з попередньо напруженим нижнім поясом. Використовують також збірні й монолітні рами й арки, що мають різні прольоти.
13.5. Просторові покриття

Виконують із площинних елементів, що монолітно зв’язані між собою і працюють як суцільна конструкція, або у вигляді оболонок (рис.13.15). Оболонки, що можуть перекрити великі прольоти, мають незначну товщину – 30-100 мм, бо бетон у цьому разі працює в основному на стиснення.

Оболонки можуть бути циліндричні, купольні, параболоїдні та ін. Добрі показники має покриття з довгих циліндричних оболонок, що застосовуються при сітці колон 12х24 м і більше.
Рис. 13.14. Великопрольотні площинні покриття:
а – із залізобетонними фермами прольотом 96 м;
б – з металевими рамами прольотом 80 м

Рис. 13.15. Приклади покриттів у вигляді оболонок:
а – щедове з діафрагмами у вигляді залізобетонних арок;
б – те саме у вигляді сільських ферм криволінійного обрису
Роблять також висячі покриття, які працюють на розтяг (рис. 13.16). Висячі конструкції поділяються на вантові й власне висячі.

Несучими елементами у вантових покриттях є троци й вантові прямолінійні елементи. Як настили використовують алюмінієво-пластмасові панелі, коробчасті настили із стеклопластиков і стільникові панелі. Вантові покриття можуть бути прольотом 100 м і більше.

Рис.13.16. Висячі покриття:
а – однопоясне прольотом 12+78+12 м; б – двопоясне прольотом 9+50+9 м

У висячих покриттях несучими конструкціями є мембрани й гну-чуку нитки, криволінійно окреслений під дією прикладеного до них навантаження.

У промисловому будівництві широко використовують і пневматичні конструкції. Принцип зведення їх грунтується на тому, що у внутрішній замкненій просторі м’яких оболонок нагітують атмосферне повітря, яке розтягує оболонку, надаючи їй заданої форми, стійкості й несучої здатності. Матеріал оболонок цих будівель повинен бути повітронепроникним, еластичним, міцним, легким, довговічним і надійним в експлуатації.

Контрольні запитання
1. Технологічний процес як основа об’ємно-розпланувального й конструктивного вирішення промислових будівель.
2. Назвіть, які прольоти й кроки колон використовують при розробці UTS. Чому?
3. Особливості розпланувальних і конструктивних вирішень одно- і багатоповерхових виробничих будівель.
4. Основні правила прив’язування колон і стін до координаційних осей.
5. Основні види промислових будівель, вимоги, що ставляться до них.
6. Принципи об’ємно-розпланувальних вирішень одноповерхових промислових будівель.
7. Принципи об’ємно-розпланувальних вирішень багатоповерхових промислових будівель.
8. Визначення каркаса будівлі, основні елементи каркасів одно- і багатоповерхових промислових будівель.
9. Особливості конструктивних вирішень фундаментів промислових будівель.
10. Фундаментні балки.
11. Конструктивні вирішення колон промислових будівель.
12. Підкранові балки, їх види й конструктивні вирішення.
13. У яких випадках застосовують обв’язувальні балки?
14. Залізобетонні несучі конструкції покриттів.
15. Металеві несучі конструкції покриттів.
16. Великопрольотні й просторові покриття.

14. СТІНИ

14.1. Типи стін і вимоги до них

Стіни як важливий конструктивний елемент будівлі у загальній вартості одноповерхових будівель становлять 10%, в багатоповерхових – до 20%. Стіни повинні задовольняти такі основні вимоги: забезпечити підтримання потрібного волого-температурного режиму в будівлі; бути міцними і стійкими під дією статичних і динамічних навантажень; вогнестійкими і довговічними; технологічними у влаштуванні й мати добрі експлуатаційні властивості; мати якомога меншу масу й добрі техніко-економічні показники.

Стіни будівель з вибухонебезпечними виробництвами повинні легко скидатись від дії вибухової хвилі. До них належать захисні конструкції з азбестоцементних, алюмінієвих і стальних листів. Товщина матеріалу стіни визначають розрахунком, при цьому треба брати до уваги особливості району будівництва. Так, для районів Північні вони повинні надійно захищати приміщення від переохолодження, а для районів Півдня – від перегрівання в літню пору.

За характером роботи стіни поділяють на несучі, самонесучі й навісні.

Несучі стіни влаштовують у будівлях безкаркасних і з неповним
каркасом і виконують із цегли, малих і великих блоків. Враховуючи специфіку розпланування промислових будівель, коли проекнують приміщення великих розмірів, стіни мають значну довжину. Для стійкості їх влаштовують пілястри із зовнішнього або в внутрішнього боку. Для підвищення стійкості стін при значному кроці колон роблять фахверк (система стояків і ригелів), що є немовби зв’язуючим каркасом стіни на окремі ділянки.

Ненесучі (самонесучі) стіни виконують в основному захисні функції і несуть тільки свою масу, спираючись на фундамент. Вони можуть бути цегляні, з малих і великих блоків і панелей.

Навісні стіни виконують тільки захисні функції і передають свою масу на колони каркаса, за винятком стін нижнього ярусу (цокольного), який спирається на фундаменти.

14.2. Стіни з малорозмірних елементів, великих блоків і панелей

Стіни з малорозмірних елементів (цегли й малих блоків) влаштовують для будівель, що мають невеликі розміри і багато дверей та технологічних прорізів, а також зв’язаних з виробництвом, де підвищена вологість й агресивне середовище.

Влаштування стін промислових будівель із цегли і малих блоків аналогічне розглянутому раніше. Для забезпечення стійкості стін у їхнє тіло при спорудженні закладають кріпильні деталі, які прикріплюють до колон каркаса.

Якщо в стінах є стрічкові прорізи, до каркаса вводять обв’язувальні балки, що розміщуються над прорізами і є суцільними перемичками.

Стіни з великих блоків, які виготовляють з легких бетонів з щільністю 900-1600 кг/м³, мають значно кращі техніко-економічні показники. На рис.14.1 показано фрагмент стіни з великих блоків і деталі кріплення блоків.

Рядові блоки можуть мати довжину від 750 до 3250 мм, а перемичкові або блоки-перемички – 6000 мм. Висота наріжних і рядових блоків становить 1200 і 1800 мм, а перемичкових – 600 мм. Товщино блоків вибирають на основі теплотехнічного розрахунку, вона дорівнює 400 і 500 мм.

Стіни з блоків проектують найчастіше самонесучими. Кладку ведуть на розчині марки не нижче від 25 з розшиванням швів і кріплять блоки гнучкими T-подібними анкерами із стержнів діаметром 10 мм.
Стіни з великих блоків:

а – фрагмент стіни з великих блоків; _б_ – кріплення блоків до колон; 1 – закладна деталь; 2 – колона; 3 – стіновий блок; 4 – анкер

Стіни із залізобетонних і легкобетонних панелей найбільш індустріальні, їх влаштовують в опалюваних і неопалюваних будівлях незалежно від матеріалу конструкцій каркаса при крокі колон 6 і 12 м. Висота панелей 1,2 і 1,8 м, використовують також панелі 0,9 і 1,5 м заввишки.

На рис.14.2 показано схеми розкладання панелей за висотою. При цьому низ першої (цокольної) панелі суміщують, як правило, з позначкою підлоги будівлі. Верхній ряд панелей у межах висоти приміщення рекомендується встановлювати нижче від несучих конструкцій покриття на 0,6 м.

Для неопалюваних будівель застосовують залізобетонні ребристі, часторебристі й плоскі панелі з бетону марок 200-400 із звичайною і попередньо напруженю арматурою. Розрізування стін із панелей визначається характером заскління (рис.14.3), яке може бути стрічковим або прорізовим.
Рис. 13.2. Схеми розкладки панелей у стінах одноповерхових будівель:
а – у поздовжніх стінах; б – у торцевих; 1-3 – при залізобетонних фермах і балках по-криття; 4, 5 – при стальних фермах

У малоповерхових будівлях найефективніше застосовувати стінові панелі (рис. 14.5). Якщо стіни навісні, то їх спирають на стальні столики і кріплять до колон, як в одноповерхових будівлях. Якщо стіни розташовані з виступом від колон (зазор залишають для розміщення комунікацій), панелі кріплять до колон розпірними болтами (рис. 14, б) без застосування зварювання під час монтажу.
Рис. 14.3. Варіанти розрізки стін одноповерхових будинків:

а – при стрічковому засклінні; б – те саме при суцільніому; в-д – при прорізах: 1 – дерев’яні або сталеві віконні панелі розміром 1,2х6 м; 2 – віконні панелі з труб 1,8х6 м; 3 – те саме із гнутих профілів; 4, 5 – дерев’яні віконні панелі
Рис.14.4. Деталі кріплення панелей до колон:
\(a\) – на опорний столик; \(b\) – на кутиках; 1 – колона; 2 – закладні деталі; 3 – опорний столик; 4 – панель; 5 – зварні шви; 6 – елементи кріплення; 7 – закладна деталь панелі стіни

Рис.14.5. Стіни з панелей багатоповерхових будівель:
\(a\) – розкладка панелей; \(b\) – деталь кріплення до колон; 1 – панель; 2 – кронштейн розпірного болта; 3 – розпірний болт; 4 – упор; 5 – колона

14.3. Полегшені вертикальні захисні конструкції

У зв’язку з тим, що сучасні промислові будівлі в основному споруджують каркасними, доцільно застосовувати полегшені вертикальні захисні конструкції.
Для неопалюваних будівель і будівель з надлишковим тепловиділенням як конструкції полегшених стін використовують азбестоцементні, алюмінієві і сталеві листи.

Азбестоцементні листи застосовують: посиленого профілю 1200 і 2500 мм завдовжки, 994 завширшки, з висотою хвилі 50 і 8 мм завтовшки; уніфіковані хвилісті від 1750 до 2500 завдовжки і 6 і 7,5 мм завтовшки; хвилісті з профілем періодичного перерізу від 6 до 8 мм, від 1750 до 2500 завдовжки і з висотою хвилі 32, 50 і 54 мм.

Листи навішують рядами знизу вгору на стальні або дерев'яні ригелі (рис.14.6,а,б) з напуском один на одного 100 мм і по ширині – на одну хвилю. Листи до ригелів кріплять таками або шурупами з прокладанням шайб для водонепроникності й еластичності кріплень.

Рис.14.6. Стіни з азбестоцементних листів і панелей:
1 – азбестоцементні листи; 2 – гак; 3 – столик; 4 – стальний ригель; 5 – дерев'яний ригель; 6 – шуруп; 7 .в. – шайби; 9 – пінопласт; 10 – дерев'яний каркас; 11 – мінераловатні напівжорсткі плити

Хвилісті, ребристі й плоскі алюмінієві й сталеві листи 0,7-1,8 мм завтовшки мають довжину від 2 до 12 м. Кріплять їх так само, як і азбестоцементні, або за допомогою самонарізних гвинтів.
Для опалюваних будівель застосовують азбестопінопластові, азбесто-дерев’яні, азбестометалеві, алюмінієві, каркасні й безкаркасні (типу “сендвіч”) панелі.

Азбестопінопластові панелі (рис.14.6,в) мають розміри 1180х5980 і товщиною 136 мм і складаються з азбестоцементних листів, обрамлюючого профілю й пінопласти з повітряним прошарком. Місця стиків панелей старанно проклеюють і промазують водостійкою мас- тикою.

Азбестодерев’яні панелі (рис.14.6,г) складаються з азбестоцементних листів, дерев’яного каркаса, утеплювача й пароізоляції.

Азбестометалеві панелі складаються з алюмінієвого каркаса, азбестоцементних обшивок й утеплювача з мінераловатних напів-жорстких плит і пароізоляції. Розміри панелей 1190х5980х147 мм.

Алюмінієві панелі застосовують розміром 1190х5990х102 мм. Вони складаються з рами, плоских обшивних листів 1 мм завтовшки й ефективного утеплювача.

Успішно використовують каркасні панелі 3 м завширшки й 3-12 м завдовжки. Вони складаються з стальної рами, обшивки з профільованих листів й утеплювача з пінопласти.

Влаштовування стін із безкаркасних панелей типу “сендвіч” дуже ефективне. При цьому обшивки з профільованих листів з’єднують між собою утеплювачем. Панелі кріплять до ригелів болтами за внутрішньою обшивкою.

Контрольні запитання
1. Основні типи стін промислових будівель, вимоги до них.
2. Конструктивні особливості влаштування стін із малорозмірних елементів, великих блоків і панелей.
3. У якому разі влаштовують полегшені конструкції стін? Їх види й особливості рішень.

15. ВІКНА, ДВЕРІ Й ВОРОТА

15.1. Вікна промислових будівель та їх конструктивні вирішення

Характер заскління, форму й розміри вікон вибирають на основі світлотехнічного розрахунку, виходячи з умов забезпечення потрібного світлового режиму для працюючих, які обслуговують технологічний процес.
Світлові прорізи можуть мати вигляд окремих вікон і стрічок. Може бути й суцільне заскління, яке, так само як і стрічкове, застосовують у приміщеннях, де потрібне добре природне освітлення.

Проектуючи віконні прорізи, треба обов’язково враховувати, що надмірна площа заскління є причиною перегрівання приміщень влітку й переохолодження взимку. Суцільне заскління доцільне в основному для будівель з надмірним тепловиділенням і вибухонебезпечними виробництвами.

Конструкції для заповнення віконних прорізів виробничих будівель виготовляють із дерева, сталі, залізобетону, легких металахвистих сплавів, пластмас і пресованих матеріалів. Використовують також склоблоки й склопрофіліт.

Заповнення віконних прорізів звичайно складається з коробок, рам із засклінням і підвіконної дошки.

Заскління може бути одинарне і подвійне. Подвійне заскління на висоту 4 м застосовують звичайно тоді, коли робочі місця розташовані зовнішніх стін на відстані не менше 2 м, а також у районах з розрахунковою температуруюю зимовою – 30° і нижче при будь-якому розміщенні робочих місць. Розміри віконних прорізів кратні: шириною – 600 і 300 мм, за висотою – 600 мм.

За конструктивним вирішенням віконні рами бувають глухі й стулкові. Стулкові рами, що відчиняються в середину й назовні, застосовують у будівлях, де потребна природна вентиляція. Прорізи, призначени на тільки для освітлення, заповнюють глухими віконними рамами.

У будівлях з панельними стінами часто застосовують стрічкове заскління, номінальна висота якого 600 мм. Цей вид заскління може бути з стулками, що відчиняються, або стрічками стрілок. Для відчинення стулок і стрічок застосовують пристрої дистанційного або автоматичного керування.

Металеві рами виготовляють із прокатних і гнутых профілів (рис. 15.1). Стальні рами доцільно робити з окремих блоків-рам або панелей. Дерев’яні рами застосовують для будівель з нормальних вологотемпературним режимом приміщень (рис. 15.2).

Залізобетонні рами роблять глухими. Стулки виконують із сталі або дерева (рис. 15.3). У будівлях з стіновими захисними конструкціями з асбестоцементних хвилястих листів віконні прорізи заповнюють склом або склопластиком.

Для миття і заміни шибок на рівні парапету стін взаємують кронштейни, до яких накріплять монорейку. По монорейці пересувається візок з підвішеною до нього колескою.
Рис. 15.1. Стальные рамы из прокатных и гнутых профилей:

а – схемы рам; б – вертикальные разрезы заполнения профилей; в – горизонтальный разрез; г – вилючные панели из гнутых профилей; д, е – горизонтальный и вертикальный разрезы прореза с панельным заполнением; 1 – злив; 2, 3 – кутки; 4 – стальной лист; 5 – стойк-импост; 6 – колонна; 7 – крепильный кутник (панели до колонны); 8 – розчин; 9 – стопка; 10 – скло; 11 – гумовий профіль; 12 – клямер
Рис.15.2. Дерев'яні віконні блоки і панелі:

а – схеми рам блоків із зовнішнім відчиненням стулок; б – те саме з внутрішнім відчиненням стулок; в – переріз блока без наплаву з одинарними рамами і зовнішнім відчиненням стулок; г – переріз блока з наплавом із спареними рамами і внутрішнім відчиненням стулок;

d – глуха і стулкова віконні панелі; e – заповнення прорізу глухими панелями; е – те саме з стулками, що відчиняються; 1 – стінова панель; 2 – просмолене ключчи; 3 – колона; 4 – заскління; 5 – пружна прокладка; 6 – дерев’яна прокладка

Перспективним видом заповнення віконних прорізів є безрамне із склоблоків і склопрофіліту (рис.15.4). Для заповнення прорізів до 3,6 м заввишки використовують склопрофіліт 300 мм завширшки із висотою полиці 50 мм. Склопрофіліт швелерного типу кріплять у прорізі
кламерами, а коробчастого типу – притискними накладками 1,5 м завдовжки на самонарізних гвинтах. Стики між склопрофілітом ущільнюють за допомогою стрічок або шнурів пористої гуми або герніту.
Тип заскління вибирають на основі старанного техніко-економічного аналізу.

Рис.15.3. Залізобетонні віконні рами:
 a – схеми рам; b – вертикальні розрізи заповнення прорізів; в – те саме горизонтальні;
 1 – стержень діаметром 8 мм; 2 – закріпки

15.2. Ворота і двері, їх види й конструктивні вирішення

Для пропускання наземного транспорту в зовнішніх стінах промислових будівель роблять ворота. Їх розташування і кількість визначають з урахуванням специфіки технологічного процесу, характеру об’ємно-розпланувального вирішення будівель.
Розміри воріт визначають з умови забезпечення пропускання транспортних засобів, які обслуговують технологічний процес. Величина їх повинна перевищувати габарити транспорту у навантаженому стані за шириною не менше на 600 мм і за висотою на 200 мм.
Розміри прорізів воріт кратні модулю 600 мм. Установлено такі типові розміри воріт: 2,4x2,5; 3x3,3,6x3; 3,6x3,6; 3,6x4,2 і 4,8x5,4 м. В
окремих цехах, що випускають великорозмірні види продукції, ворота можуть мати розмір до кількох десятків метрів. Зовні будівлі перед воротами передбачають пандуси з нахилом 1:10.

Щоб уникнути великих тепловтрат опалюваних будівель і появи в них протятів, ворота обладнують повітротепловими завісами.

За конструктивним вирішенням ворота, можуть бути двостулкові, розсувні, підйомні, відкотні та ін. (рис.15.5). Полотна двостулкових і розсувних воріт можуть бути металевими і металодерев’яними. Обв’язку виконують з металевих профілів. Часто в полотнах воріт роблять двері для пропускання людей.
Рис. 15. Основні види воріт промислових будівель:

а – двостулкові; б, в – розсувні; г – підйомні; д – підйомно-поворотні; е – відкатні

Рами воріт, що обрамляють проріз, можуть бути збірними й монолітними залізобетонними. У межах колон, між якими розташовані ворота, фундаментну балку не укладають.

Доцільне влаштування воріт хитного типу. Полотна таких воріт роблять із гуми або прозорого пружного пластиків, що натягується на раму. У цьому разі транспорт пропускається без затримки, а також до мінімуму скорочуються тепловтрати.

Двері промислових будівель роблять одно- і двопільними, двостулковими й відкатними. За матеріалом дверні полотна бувають металеві, дерев’яні й скляні. Номінальні розміри прорізів такі: ширина 1; 1,5; і 2 м і висота 1,8; 2; 2,3 і 2,4 м. Ширину і розташування їх визначають розрахунком з урахуванням створення безпеки евакуації людей із приміщень і будівлі в цілому. Біля зовнішніх дверей роблять тамбури, глибина яких на 0,4-0,5 більша від ширины дверного полотна.

Дверні прорізи обрамляють коробками. Дерев’яні коробки кріплять у прорізах цвяхами і йоржами, які забивають у дерев’яні пробки. Коробки стальних полотен виготовляють з кутів 75х75 мм, а полотна штампують із стальних листів 2 мм завтовшки. Обрамлення прорізів при скляних дверях виконують з алюмінієвих профілів з пластмасовими наличниками. Скляні двері роблять хитного типу.

Контрольні запитання

1. Основні фактори, що впливають на характер і тип заскління промислових будівель.
2. Основні типи віконних конструкцій.
3. Типи воріт і дверей промислових будівель.
4. Які фактори визначають характер розміщення і розміри воріт і дверей промислових будівель?

16. ПОКРИТТЯ Й ЛІХТАРІ

16.1. Типи покриттів.
Покриття з великорохозмірних елементів

Покриття промислових будівель складаються з несучої і захисної частин. До складу захисної частини покриття можуть входити:
- несучий настил, що підтримує захисні розташовані вище елементи;
- пароізоляція, що захищає розташований вище теплоізоляційний шар від зволоження водяною парою, яка проникає в захисну конструкцію покриття з приміщень;
- теплоізоляційний шар, що влаштовується для захисту приміщень від тепловтрат узимку і перерізання влітку. Товщину теплоізоляційних матеріалів (легких бетонів, мінераловатних плит та ін.) визначають розрахунком;
- вирівнювальний шар (стяжка), призначений для вирівнювання розташованого нижче шару з цементного розчину або асфальту;
- покрівля (водоізоляційний шар з рулонних або листових матеріалів), призначена для захисту приміщень від атмосферних опадів;
- захисний шар, що влаштовується з крупнозернистої піску або дрібнозернистого гравію на бітумному змащенні для захисту покрівлі від дії прямого сонячного проміння.

Залежно від конструктивного вирішення покриття можуть бути з великорохозмірних елементів, що укладаються по несучих конструкціях, і балкові, в яких плити розташовують по балках, які спираються на несучі конструкції покриття.

Залежно від волого-температурного режиму приміщення покриття можуть бути утеплені й холодні (рис.16.1).

Утеплені покриття влаштовують в опалюваних приміщеннях, а також у будівлях з незначними надлишковими тепловиділеннями (тепмічні цехи, цехи гарячого штампування та ін.), коли тепловиділення не перевищують 23 Вт/(м²·0С).

Над неопалюваними приміщеннями, а також у гарячих цехах зі значними тепловиділеннями влаштовують холодні покриття, в яких немає теплоізоляційного шару й пароізоляції (рис.16.1,a).
Рис. 16.1. Основні типи покриттів із залізобетонними плитами й рулонною покрівлею:
а-в – невентильовані; е, ж – частково вентильовані; е-ж – вентильовані; 1 – захисний шар; 2 – водоізоляційний килим; 3 – стяжка; 4 – несучі плита; 5 – утеплювач; 6 – пароізоляція; 7 – комплексна плита; 8 – канали і борозни; 9 – перфорований рулберойд з гравієм; 10 – повітряний прошарок

Залежно від експлуатаційного режиму захисна частина покриттів може бути вентильованою, частково вентильованою й невентильованою. Призначенням вентиляційних продухів є відведення водяної пари з-під покрівельного килима.

Вентильовані покриття влаштовують також у південних районах для захисту приміщень від перегрівання. Крім того, вентиляційні продухи підвищують надійність й експлуатаційні властивості покриттям.

Найбільшого поширення набули покриття по залізобетонних настилах. Як несучі елементи застосовують попередньо напруженні залізобетонні ребристі плити розмірів 1,5х6; 1,5х12; 3х6 і 3х12 м (рис.16.2).

Дедалі ширше застосовують комплексні панелі (рис.16.3), коли в заводських умовах виконують всі роботи щодо влаштування покриття, а на будівельному майданчику тільки замонолічують шви між панелями настилу (рис.16.3,б).

Високі техніко-економічні показники, добри експлуатаційні властивості має профільований настил (рис.16.4), який виготовляють із сталевого оцинкованого ребристого профілю 1 мм завтовшки, утеплений шаром пінополістеролу 50 мм завтовшки. Висота настилу 80 мм, ширина 600 мм, довжина до 12 м. Настіл кріплять до стальних конструкцій покриття болтами діаметром 6 мм. Порівняно з настилом із залізобетонних плит стальний настил дає змогу знизити трудомісткість виготовлення і монтажу покриття на 25-40%.
Рис.16.2. Великорозмірні залізобетонні панелі покриттів:
а – розміром 1,5х6 м; б – розміром 3х6 м; в – прокатна розміром 3х6 м;
г – армоцементна двоякої кривизни; д – попередньо напружені розміром 1,5х12 і 3х12 м;
е – двоконсольні розміром 3х6 і 3х12 м

Перспективні є великорозмірні панелі покриттів з використанням пластмас. До них належать азбестоцементні, азбестопластмасові й алюмінієво-пластмасові панелі.

16.2. Покриття по прогонах

Покриття по прогонах (балках) проектують у тих випадках, коли настилами є ефективні армоцементні й пористобетонні плити, а також азбестоцементні й металеві мати і плити.

Малорозмірні настили укладають по стальних або залізобетонних прогонах (рис.16.5).
Рис. 16.3. Конструкція комплексної панелі покриття:
a – загальний вигляд; б – деталь сполучення панелей; 1 – гідроізоляційний шар; 2 – теплоізоляція; 3 – пароізоляція; 4 – підвал; 5 – стяжка; 6 – керамзитовий гравій; 7 – смуга руберойду; 8 – бетон на дрібному заповнювачі; 9 – комплексні плити

Рис. 16.4. Стальний профільований настил:
a – профіль настилу; б – загальний вигляд; 1 – захисний шар із гравію; 2 – водоізоляційний килим; 3 – підвал з пінополістиролу; 4 – шар руберойду; 5 – стальний настил
Стальные прогони в изготовляют из прокатных або гнутых профилей, а железобетонные прогони — швелерного або таврового перерезу (рис. 16.5, а, б). Довжина прогонів звичайно становить 6 м, що відповідає кроку несучих конструкції покриття, а при кроці 12 м застосовують решітчасті прогони (рис. 16.5, в, 2).

По прогонам укладают армоцементные, легкобетонные асбестоцементные листы и т. д. (рис. 16.5, д, е, э). Армоцементные плиты 1,5 и 3 м завдовжки і 495 мм завширшки виготовляют із бетону марки М300 й армують стальною сіткою. Легкобетонні плити з бетону марок 40-150 виготовляют тих самих розмірів 120-160 мм завтовшки. Асбестоцементні хвилісті листи укладають до стальных або залізобетонних прогонів на відстані 1500 мм один від одного при довжині листів 1750 мм (рис. 16.5, е).
Неутеплені покриття з азбестоцементних хвилястих листів по стальних прогонах і фермах більш економічні порівняно із залізобетонними покриттями. Так, при прольоті 24 м вони в 5-6 раз легші г в 1,5-2 рази дешевіші.

16.3. Покрівлі промислових будівель. Водовідведення з покриттів

У промисловому будівництві для похилих і малопохилих покриттів застосовують рулонні покрівлі, хвилясті азбестоцементні й алюмонієві листи. Для опалювальних будівель найбільш економічні рулонні або мастикові покрівлі, які влаштовують по покриттях з нахилом від 1,5 до 12%.

Перевагою плоских рулонних покрівель є водонепроникність; стійкість проти розтріскування у зв'язку із застосуванням пластичних приклеюючих мастик; стійкість проти механічних та атмосферних впливів. Матеріалом для влаштування рулонних покрівель є толь, рутеройд, гідроізол, склоруберойд, пергамін, які наклеюють на бітумні або дьогтьові мастики.

Для забезпечення водонепроникності покрівлю укладають у кілька шарів, кількість яких залежить від нахилу покриття; при нахилі понад 15% – двошарові без захисного шару; від 10 до 15% – тришарові без захисного шару; від 2,5 до 10% – тришарові із захисним шаром; до 2,5% – чотиришарові (і більше) із захисним шаром.

Полотнища рулонних матеріалів при нахилах до 15% розташовують паралельно, а при нахилах понад 19% – перпендикулярно до гребеня з напуком полотнищ одне на одне 50-100 мм.

У місцях примикання рулонних покрівель до виступаючих елементів (рис.16.6) і в місцях влаштування температурних швів у покритті (рис.16.7) укладають додаткові шари водоізоляційного килима. Килим заводять на виступаючі елементи, прикріплюють до них цвяхами або дюбелями, а стики захищають промазуванням або оббивають оцинкованою сталлю. На ділянках розжолобків усіх похилих покриттів укладають захисний гравійний або слюдяний шар (рис.16.6,а,б). У районах з розрахунковими температурами зовнішнього повітря о 13 годині найжаркішого місця +25°C і вище доцільно застосовувати водонаповнені покрівлі. Шар води до 300 mm забезпечує надійний захист будівель від перегрівання. Узимку воду спускають у спеціальні воронки, які роблять на покритті (одна воронка на 1000 m² площі).
Рис.16.6. Деталі покриттів з різними видами покрівлі:

а-г – рулонної; д – мастикової; е – водонаповненої; 1 – стіна; 2 – костилі через 0,5 м; 3 – оцинкована сталь; 4 – мастика; 5 – сталева стрічка 40х3 мм; 6 – дюбель; 7 – розчин; 8 – воронка; 9 – захисний шар; 10 – додаткові шари покрівлі; 11 – основний килим; 12 – вирівнюючий шар; 13 – утеплювач; 14 – плита; 15 – паропетна плита; 16 – пароізоляція; 17 – мастикові шари; 18 – шар води

Рис.16.7. Деталі будови температурних швів у покриттях:

а – при поперечному шві в покрітті; б – те саме при поздовжньому; в – в місці перепаду висот суміжних прольотів; 1 – настили покриття; 2 – сталевий компенсатор; 3 – дахова сталь; 4 – скломатерию; 5 – цегляна стінка; 6 – стінова панель.
Водовідведення з покриттів промислових будівель буває зовнішнє і внутрішнє. Зовнішнє водовідведення роблять неорганізоване при висоті будівлі не більше 10 м, а також організоване через водостічні воронки (рис.16.8,a,b). Для неопалюваних будівель проєктуєть вільне скидання води з покрівлі. Внутрішнє відведення води з покриттів неопалюваних будівель допускається при наявності виробничих тепло­виділень, які забезпечують позитивну температуру в будівлі, але при спеціальному обігріванні водостічних воронок і труб.

Рис.8.8. Конструкції водовідведення з покриттів промислових будівель:
1 – карнизна плита; 2 – антисептований брусок; 3 – фартух з оцинкованої стали; 4 – верх фартуха (буртик); 5 – додаткові шари покрівлі; 6 – основний рулонний килим; 7 – цементна стяжка; 8 – утеплювач; 9 – пароізоляція; 10 – залізобетонна плита покриття; 11 – водоприймальна воронка; 12 – лоток; 13 – настінні жолоби; 14 – патрубок ринви; 15 – хомут із півкілець; 16 – комір (чаща) воронки; 17 – притискне кільце; 18 – захисний ковпак; 19 – шпилька М-12; 20 – керамзитобетонний блок

При влаштуванні внутрішнього водовідведення (рис.16.8,в) водоприймальні воронки, відвідні труби й стояки, що збирають і відводять воду в зливову каналізацію, розташовують відповідно до розмірів площі покриття й поперечного профілю.
При влаштуванні покриття треба створити нахил у бік водоізоляційних воронок укладанням у жолобках шару легкого бетону змінної товщини.

Водонепроникності покрівель у місцях установлення водостічних воронок досягають наклеюванням на фланець чаші воронки шарів основного гідроізоляційного килима з підсиленням трьома мастиковими шарами, армуванням склополотном або склосіткою.

Воронки мають бути рівномірно розміщені на плані покрівлі. Максимальна відстань між ними не повинна перевищувати 48-60 м. У поперечному напрямі будівлі на кожній поздовжній розбивочній осі будівлі розміщують не менше двох воронок.

16.4. Ліхтарі. Принципи проектування, конструктивні вирішення

Ліхтарями називають засклені або частково засклені надбудови на покритті будівлі, призначені для верхнього освітлення виробничих площ, віддалених від віконних прорізів, а також для повітрообміну в приміщеннях.

За призначенням ліхтарі поділяють на світлові, аераційні й комбіновані (світлоаераційні).

За профілем перерізу ліхтарі бувають (рис.16.9) прямокутні, трапецієвидні, трикутні, M-подібні, щедові й зенітні.

Рис.16.9. Основні профілі світлових і комбінованих ліхтарів:
а – прямокутний; б, в – трапецієвидний; г – трикутний, д – M-подібний; е – щедовий;
е-з – зенітні
Потреба влаштування ліхтарів має бути обґрунтована старанним техніко-економічним порівнянням і з урахуванням технологічних та санітарно-гігієнічних вимог, а також природно-кліматичних умов району будівництва. Так для захисту приміщень від потрапляння прямого сонячного проміння треба застосовувати щедові ліхтарі із за-склінням, поверхутим на північ. Комбіновані ліхтарі для багатопро-льотних будівель слід влаштовувати переважно однакової висоти в усіх прольотах. У неопалюваних будівлях із зовнішнім водовідведенням не рекомендується застосовувати М-подібні ліхтарі.

Звичайно ліхтарі розташовують уздовж будівлі, вони не дохо-дять до торців зовнішніх стін на 6 або 12 м.

У світлових ліхтарях передбачають розриви по довжині не рід-ше ніж через 84 м, не менше 6 м завширшки. Коли немає можливості зробити такий розрив, ліхтарі обладнують перехідними пожежними драбинами.

Відведення води з ліхтарів проєктують зовнішнє і внутрішнє. Зовнішнє водовідведення влаштовують при ширині ліхтаря до 12 м в разі вертикального заскління й до 6 м – при похилому.

Якщо водовідведення зовнішнє, то у відповідних місцях треба захистити покриття від пошкодження водою, що стікає з ліхтаря, грав-війною засипкою по мастиці або спеціальними бетонними плитами.

Ліхтарі (крім зенітних) виготовляють із сталі. Залізобетон засто-совують рідко.

Несучий каркас ліхтаря складається з поперечних конструкцій (ферм) і бічних панелей. Для підвищення поперечної жорсткості до контура ліхтаря вводять розкоси й установлюють зв’язки між рамами (рис.16.10).

Рами застосовують в основному сталеві 1250, 1500 і 1750 мм за-ввишки при кроці 6000 мм, які по довжині ліхтаря утворюють стрічко-ве заскління. Здебільшого ліхтарні рами обладнують пристроями для механічного відчинення всієї стрічки рам або окремих блоків.

Рами повинні відчинятись до 70°. При похилих рамках доцільно застосовувати армоване листове скло, яке встановлюють на місці. Крі-плять його спеціальними клямерами (рис.16.11).

Враховуючи, що рамні ліхтарі мають складну будову, потребу-ють великих експлуатаційних затрат, а будівлі багато втрачають тепла, такі ліхтарі не завжди забезпечують потрібну освітленість внаслідок забруднення шибок або великих снігових відкладень у міжфермних зонах. Останнім часом розроблені ефективні конструкції зенітних ліх-тарів (рис.16.12), що являють собою конструкцію для світлопропус-кання в покритті. Світлопрозорі конструкції, які виконують із пласт-
мас, індустріальні у виготовленні, мають незначну масу, високу міцність, прості для монтажу і зручні в експлуатації.

Зенітні ліхтарі бувають точкові (їх установлюють окремо по площі покриття) і секційного типу. Секції до несучих елементів прикріплюють шурупами. Куполи зенітних ліхтарів мають розміри 1400х1600 мм, а панелі з органічного скла – 1600х6200 мм.

Рис.16.10. Конструкції стального ліхтаря:
а – ліхтарна панель; б – ліхтарні ферми; в – панелі торців; г – ліхтарна рама; 1 – вісь вузла кроквяної ферми; 2 – ліхтарна панель; 3 – монорейка; 4 – гумовий профіль; 5 – металевий профіль; 6 – клямери
Рис.16.11. Деталь прямоугольного ліхтаря:
1 – дахова оцинкована сталь; 2 – шар теплоизоляції; 3 – бортовий елемент; 4 – дерев’яні бруски; 5 – рама; 6 – азбестоцементна карнизна панель; 7 – залізобетонна плита; 8 – кріпильний анкер; 9 – швелери; 10 – ліхтарна ферма; 11 – ліхтарна панель

Враховуючи, що надходження і видалення повітря при аерації відбувається внаслідок різниці тисків по один і другий бік припливних і витяжних отворів, проєктують аераційні ліхтарі (рис.16.13). Для за-береження одночасної роботи витяжних отворів з обох боків ліхтаря застосовують так звані незадувні аераційні ліхтарі з вертикальним за-
склінням. Установлюють також спеціальні вітрооберігаючі панелі (щити) на деякій відстані від ліхтаря.

Рис.16.12. Конструкції зенітного ліхтаря з куполом із склопластика:
а – поздовжній розріз; 6 – деталь опорного вузла; 1 – купол; 2 – плита покриття; 3 – керамитобетонна плита; 4 – обрамлююча металева рама; 5 – гумова прокладка; 6 – болти кріплення; 7 – опорна рама; 8 – фартух з оцинкованої сталі; 9 – утеплювач

Рис.16.13. Типи аераційних ліхтарів:
a – світловий ліхтар з вітрооберігаючими панелями; б – ліхтар КТИС; в – ліхтар ПСК-2;
г – ліхтар Діпромеза; д – ліхтар Батурина

Незадувні аераційні ліхтарі працюють на витяжку при будь-якому напрямі вітру або з підвітряного боку їх створюється розрідження повітря завдяки зриванню струмінів вітру з вітрооберігаючих панелей. Висота прорізів ліхтарів дорівнює 1,25; 1,75; 2,4 і 3,4 м.

150
Для аерації можна використати зенітні ліхтарі, в яких ковпаки відкриваються, або в стаканній частині передбачають щілини з регу-льованими жалюзі.

Контрольні запитання
1. Захисна частина покриття промислової будівлі та її основні шари.
2. Особливості влаштування утеплених і холодних покриттів.
3. Влаштування покриттів із великоштучних елементів і по прогонах.
4. Покрівлі промислових будівель.
5. Види організації водовідведення з покриттів.
6. Основні види ліхтарів промислових будівель, особливості їх будо-ви.

17. ІНШІ ЕЛЕМЕНТИ ПРОМИСЛОВИХ БУДІВЕЛЬ

17.1. Перегородки

Для поділу великих площ виробничих будівель на окремі приміщення, коли виробничий або волого-температурний режим на окремих ділянках мав різні параметри, ставлять роздільні перегородки на всю висоту приміщення. В окремих випадках застосовують так звані вигороджуючі перегородки, які не доходять до стелі. Вони призначені для відокремлення цехових складів, службових приміщень та інших оббувовуючих і підсобних приміщень. Перегородки повинні бути міцними, стійкими й відповідати протипожежним вимогам.

За матеріалом перегородки поділяються на цегляні, залізобетонні, деревяні, металеві й скляні, при цьому перевагу віддають індустріальним конструкціям заводського виготовлення. У зв’язку з цим влаштування цегляних перегородок (1, 1/2 або 1/4 цеглини завтовшки) менш прийнятне, бо утруднюється модернізація технологічного процесу, а також значні трудомісткість і вартість.

Залізобетонні перегородки (рис.17.1) виготовляють із важкого, легкого й пористого бетону. Панельні перегородки кріплять безпосередньо до колон або стояків фахверка за допомогою закладних деталей.

Панельні перегородки роблять із легких бетонів, фіброліту в де-рев’яній обв’язці з облицюванням, гіпсобетону, а також каркасно-щитової конструкції. Каркасно-обшивні панелі можуть бути розміром 1,2x6,0x0,08 і 1,8x6,0x0,08 м.
Рис. 17.1. Перегородки для промислових будівель:

а – дерев’яні; б – залізобетонні; 1 – напрямна рейка; 2 – верхня обв’язка; 3 – скло або сітка; 4 – плінтус; 5 – хомут; 6 – стояк-вкладиш; 7 – несучий стояк; 8 – обв’язка; 9 – глиний щит

Каркасно-щитові перегородки з дерев’яним каркасом і обшиті листами плоского азбестоцементу або гіпсової штукатурки застосовують для одноповерхових будівель з шумним виробництвом. Як заповнювач може бути використана мінераловатна повсть. Кріплять перегородки за допомогою дюбелів.

Дерев’яні вигороджуючі перегородки складають із столярних щитів 446, 946 і 1946 мм завширшки й стояків-вкладишів перерізом 54х50 мм (рис. 17.1, а). Щити і стояки установлюють на напрямний брус, що прикріплюється до підлоги, а по верху щитів укладають брус жорсткості, який кріплять до стіни або колон. Якщо протяжність перегородок понад 6 м, стійкість їх забезпечують установленням щитів-ребер 446 мм завширшки.

Стальні вигороджуючі перегородки складаються із стояків, які встановлюють з кроком 1,5 м, основних щитів розмірами 1,5х1,8 і 1,5х2,4 м та добротних щитів розмірами 1,0х1,8 і 1,0х2,4 м, які навішують на стояки, виготовлені з труб або кутиків.
Щити заповнюють сталую сіткою, а нижню частину – оцинкованими профільованими листами, скріпленими між собою заклепками.

У герметизованих будівлях перегородки можна монтувати з листових матеріалів з ущільнювачем із спеціального гумового профілю.

17.2. Внутрішньоцехові конструкції і сходи

Для створення потрібних умов експлуатації та ремонту технологічного устаткування в промислових будівлях влаштовують технологічні обслуговуючі площадки, антресолі й етажерки.

Технологічні площадки призначені для обслуговування в цеху устаткування, складування матеріалів і сировини. Найчастіше такі площадки потрібні в цехах, технологічний процес в яких організований по вертикалі (харчове, хімічне та інші види виробництва). Площадки можуть спиратися на основні конструкції каркаса будівлі, на самостійні опори або технологічне устаткування й нерідко являють собою багатоповерхові яруси.

Антресо́лі призначені для розміщення устаткування, допоміжних пристроїв (службових і побутових). Вони являють собою навмисно піповерх, що дає змогу збільшити виробничу площу цеху.

Етажерки (рис. 17.2) – це найчастіше багатоярусні споруди всередині виробничої будівлі, на яких розміщують великихабаритне устаткування.

Усі ці види пристроїв можуть бути виконані із залізобетонних, металевих збірних або монолітних конструкцій. Просторову жорсткість їх забезпечують установленням сталевих зв’язків. На рівні кожного ярусу обов’язково роблять огорожу не менше 1,0 м заввишки. Сполучаються яруси металевими сходами.

Сходи промислових будівель призначені для зв’язку між поверхами багатоповерхових будівель, та також антресольних поверхів, обслуговуючих площадок й етажерок. Відповідно до призначення сходи бувають основні, службові, пожежні й аварійні.

Основні сходи за своїм конструктивним вирішенням аналогічні сходам громадських будівель. Сходові марші й площадки (рис. 17.3) виготовляють у вигляді суцільних залізобетонних елементів і рідше з окремих сходів по косоурах і плошних площадкових плит. Нахил маршів найчастіше роблять 1:2 з розмірами сходів 300х150 мм. Марші мають ширину 1350, 1500 і 1750 мм, а висоту підйому - від 1,2 до 2,1 м. Поряд із сходовими кліпами влаштовують пасажирські й вантажні ліфти. Якщо сходи призначені для евакуації людей із будівлі, то від-
стань від найвіддаленішого робочого місця до найближчого евакуаційного виходу має становити від 30 до 100 м залежно від категорії виробництва, ступеня вогнестійкості будівель та кількості поверхів у будівлі. Двері, що ведуть з виробничих приміщень назовні або у сховову клітку, повинні відчинятись у бік виходу.

Рис. 17.2. Етажерка промислової будівлі:
1 – колона; 2 – ригель; 3 – робоча площадка; 4 – технологічне устаткування

Службові сходи влаштовують для огляду та обслуговування устаткування і найвідповідальніших будівельних конструкцій. Найчастіше їх роблять із металевих профілів (швелерів і кутиків) і кріплять до будівельних конструкцій, підлоги та устаткування. Службові сходи для інтенсивного користування ними монтують із маршів і перехідних площадок. Кут нахилу до горизонту 45 і 60°, ширина маршів 600-1000 мм і крок проступів 200 і 300 мм. Висота маршів від 600 до 6000 мм. Марші мають огороджі з поручніями. Якщо сходи призначені для індивідуального користування, то роблять вертикальні драбинки 600 мм завширшки. Крок проступів із стержнів 300 мм.
Рис.17.3. Сходи багатоповерхових будинків:
а – двомаршові з суцільними маршрутами; б – тримаршові з окремими ходами по косо-урах; 1 – косоур; 2 – огороження; 3 – балка; 4 – ліфт

Пожежні драбини роблять для будівель понад 10 м заввишки, а також у місцях перепадів висот суміжних прольотів. Їх звичайно розміщують на глуших ділянках стін через 200 м по периметру будівлі. Для будівель до 30 м заввишки ці драбини розміщують вертикально, а при більшій висоті – похило з маршрутами під кутом не більше 80°, 0,7 м завширшки й проміжними площадками не рідше ніж через 8 м по висоті. Драбини обладнують поручнями. Кріплять драбини до стін або каркаса анкерами з кутків або швелерів через 2,4-3,6 м за висотою.

Аварійні сходи призначені для евакуації людей із будівлі під час пожежі або аварії, їх розміщують ззовні будівлі. Сходи мають бататомаршову конструкцію і сполучаються з приміщеннями через площадки або балкони, влаштовані на рівні евакуаційних виходів. Ширина сходів не менше 700 mm, нахил маршрутів – не більше 1:1. Огорожа повинна мати висоту не менше 0,8 м. Роблять її із сталі або залізобетону, як і пожежні драбини.
17. 3. Протипожежні перепони

Щоб запобігти поширенню вогню під час пожежі по всій виробничій будівлі, влаштовують протипожежні перепони. До них належать протипожежні стіни (брандмуєри), зони й перекриття.

Протипожежні стіни споруджують на всю висоту будівлі із неспалимих матеріалів з границею вогнестійкості не менше 2,5 год. Ці стіни спираються на самостійні фундаменти. Якщо є потреба робити прорізи в протипожежних стінах, то вони повинні мати площу, яка не перевищує 25% площі стіни. Заповнюють прорізи неспалими або важкоспалими елементами з межею вогнестійкості не менше 1,2 год. Прорізи обладнують самозакривними пристроями й водяними завісами.

Матеріалом для заповнення прорізів дверей і воріт є сталеве полотно з прошарком із повітря або мінеральної повсті. Віконне заповнення влаштовують з порожнинних скляних блоків з армуванням швів стержньовою арматурою або з армованого скла, яке вставляють у сталеві або залізобетонні рами.

Протипожежні стіни повинні бути вищими за покрівлю на 30-60 см.

Протипожежні зони влаштовують у тих випадках, коли з технологічних міркувань протипожежні стіни ставити не можна. Протипожежні зони являють собою неспалиму смугу (вставку) у стінах і покриттях, обмежену виступаючими гребенями.

Неспалімі перекриття влаштовують здебільшого над підвала-ми й цокольними поверхнями, а також над поверхнями, в яких підвищена пожежна небезпека виробництва. Люки в таких перекриттях передбачають із неспалими або важкоспалими матеріалами з межею вогнестійкості не менше 1,5 год.

Контрольні запитання
1. Особливості влаштування перегородок виробничих будівель та їх види.
2. Сходи промислових будівель, особливості конструктивних вирішень.
3. Влаштування протипожежних перепон.
18. СУТЬ АРХІТЕКТУРИ ТА ЇЇ ЗАВДАННЯ

18.1. Поняття про архітектуру

Архітектурую називається галузь людської діяльності, спрямована на створення будівель і споруд та їхніх комплексів для задоволення соціально – побутових та духовно – естетичних потреб суспільства.

Таким чином, архітектура визначається як мистецтво проектувати і будувати. Разом з тим, як частина матеріальної культури суспільства, споруди архітектури можуть бути і творами мистецтва. У зв'язку з цим архітектура не можна повністю ототожнювати з утилітарним будівництвом, яке, звичайно ж, відіграє провідну роль. Крім того, не можна розглядати архітектуру виключно як мистецтво.

Саме слово „архітектура” походить від старогрецького слова „архітектор”, що в перекладі означає „головний будівничий”. Раніше архітектор, проектуючи будівлю, споруду чи комплекс їх, брав участь також і в будівництві їх. З урахуванням сьогоденнях завдань при проектуванні архітектор посилає провідне місце, але в процесі створення проекту беруть участь також фахівці багатьох профілів, кожний із яких вирішує свої питання і вносить конкретні пропозиції щодо змісту проекту.

Це підтверджує те, що вирішення практичних завдань створення будівель і споруд, які відповідають своєму призначеню, зручних функціонально, виконаних з урахуванням технічних й економічних вимог, має відповідати й ідейно – художньому змістові. Будівля або споруда як твір мистецтва своїм виглядом повинні так впливати на свідомість і почуття людей, щоб у них з'являлися позитивні емоції.

У своєму розвитку архітектура завжди була її під впливом розвитку суспільства, рівня розвитку продуктивних сил, характеру продуктивних відносин, потреб суспільства певної доби, соціально політичного ладу і рівня розвитку науки, техніки й культури сучасності.

Ці умови, що впливають на зміст архітектурних творів, надають їм певних рис, характерних для архітектури й будівництва того чи іншого народу, в ту чи іншу історичну епоху. Суконність цих характерних рис та художніх прийомів визначає стиль і зміст архітектури.

Розвиток архітектури залежить також від природно – кліматичних умов країни, побуту населяючого її народу, місцевих будівельних ресурсів і традицій народної художньої творчості, від вироблених будівельних прийомів та ін.
18.2. Архітектура й розвиток будівельної техніки.
Засоби архітектури

Рівень розвитку архітектури, використовуваний нею засоби і методи завжди завжди залежав від рівня будівельної техніки. Ця залежність у різні часи проявлялася по − різному. До другої половини XIX ст., тобто до часу найбільшого впливу на архітектуру формоутворення наслідків промислового перевороту в країнах, стан будівельної техніки характеризувався певними піднесеннями і спадами. Технічні досягнення звичайно йшли поряд з розвитком архітектури і взаємо збагачувались, хоч і при досить слабких та обмежених будівельно-технічних можливостях. Про це свідчить архітектура Стародавньої Греції, романська й середньовічна архітектура.

Рівень розвитку будівельної техніки став головним у визначенні форми й засобів творів архітектури. Ось чому, розглядаючи історію архітектури, виділяють два етапи: перший − від найдавніших часів до середини XIX ст.; другий − з другої половини XIX ст. до наших днів.

Перший етап характеризується порівняно обмеженистю технічних засобів і можливостей архітектури, їх повільним і нерівномірним розвитком у різні історичні періоди. Це була епоха дерева і каменю та споруджуваных із них конструктивних елементів і систем − стояковобалкових, каркасних, арково-склепінчастих. Для цього етапу характерні примітивні методи будівництва й ручна праця. Поряд із цим відбуваються значні досягнення в пошуку конструктивних форм.

Потреба у великих внутрішніх просторах була стимулом у розвитку і вдосконалення стояково-балкових і арково-склепінчастих систем.

Проте можливості будівельної техніки були дуже обмежені, і лише в другій половині XIX ст. почався бурхливий етап розвитку будівельно-технічних засобів. Він характеризується використанням нових матеріалів − металу, залізобетону, скла та ін. Можливості цих матеріалів виявились дуже широкими. Завдяки цьому розробляється багато нових конструктивних систем. Потреби суспільства в нових функціональних типах будівель і споруд знаходять своє вирішення у використанні досягнень будівельної техніки.

Одним з найважливіших етапів в архітектурі став заводський метод виготовлення будівельних матеріалів і конструкцій, впроваджена в процес зведення будівель і споруд будівельних механізмів. З'являються великопрольотні конструкції, можливості зведення висотних будівель і споруд.
Розвиток науки й техніки відкриває воістину широкі можливості для архітектури.

Багатоманітність форм і конструктивних систем (склепінь, оболонок, складчастих конструкцій, вахтових і пневматичних конструкцій) дає можливість архітекторові не тільки максимально виразити в композиції пластiku й просторовий характер цієї форми, а й використати технічні можливості їх.

До процесу створення архітектурної композиції входять розробка об’ємно – розпланувального вирішення й конструктивної схеми будівлі, вирішення її інтер’єрів та зовнішніого вигляду, установлення взаємозв’язку між зовнішнім виглядом й інтер’єром, між зовнішнім виглядом будівлі й навколишнім середовищем. Таким чином, архітектурна композиція будівлі в цілому включає до себе композицію усіх її складових елементів: зовнішніх об’ємів і внутрішніх просторів, фасадів і інтер’єрів, окремих частин будівлі, деталей та ін.

Треба, щоб усі видимі частини будівлі, її деталі й окремі об’єм пропорційно, узгоджено поєднувалися між собою, утворюючи в художньому відношенні нерозривне ціле.

Композиції зовнішніх об’ємів будівель поділяють на три групи: прості, що складаються з одного об’єму; складні, що складаються з двох (і більше) різних об’ємів, пов’язаних між собою; комплексні, що складаються з кількох окремих будівель, зв’язаних у єдиний архітектурний комплекс.

Є кілька прийомів побудови композицій зовнішніх об’ємів: центрчина, фронтальна, глибинна й склепінчаста.

При центрчній композиції навколо центрального об’єму групують однакові за розміром підпорядковані один одному об’єми.

Фронтальна композиція характеризується розширенням об’ємів в одному напрямі. Така композиція характерна для будівель театрів.

Вільна композиція звичайно не підпорядкована точним геометричним закономірностям. Різні за розмірами й формою об’єми поєднуються між собою, підділяючи низку різних функціональних зв’язку між приміщеннями. При цьому будівля немов вписується в навколишнє середовище, вільно розташовуючись по рельєфу, повторюючи його обриси.

Співвідношення основних розмірів будівлі по вертикалі й горизонталі визначає висотний або горизонтально-протяжний характер композиції.

Важливими засобами архітектури є симетрія й асиметрія, ритм, пропорції, масштаб, масштабність, колір, фактура, синтез образотворчих мистецтв та ін.
Симетрією називається закономірне розташування окремих елементів будівлі щодо осі або площини, що проходить через центр. Якщо симетрія стосується об’єму будівлі в цілому, то її називають центрічною.

У більшості будівель розташування архітектурно – конструктивних елементів (вікон, дверей, пристінок та ін.) має бути визначене відносно осі з додержанням законів симетрії. Велике значення симетрія має при створенні архітектурних ансамблів.

Застосовують й асиметричні композиції. При цьому додержують гармонічної й закономірної побудови архітектурних форм. Асиметрична композиція характерна для будівель із складним функціональним процесом. При цьому створюються умови зручного функціонального взаємозв’язку приміщень, використання рельєфу місцевості та ін.

Ритм в архітектурі означає закономірне чергування однакових і однопропорційних архітектурних форм і членувань або інтервалів між ними. Ритмічна побудова може бути розвинута як по горизонталі, так і по вертикалі. Прикладом ритмічних побудов є розміщення вікон і простиokin у житловому будинку, що однаково повторюються по горизонталі й вертикалі.

Пропорціями в архітектурі називають співвідношення геометричних розмірів (довжини, ширини й висоти) елементів і членувань архітектурних форм між собою і з цілім. Від пропорцій багато в чому залежить художня виразність твору архітектури. Розміри приміщень, віконних і дверних прорізів, форми й загальні габарити об’ємів будівлі вибирають з урахуванням функціональних вимог. Проте художньо осмислюється вони в результаті таких співвідношень які створюють враження про будівлю як про закінчений твір архітектора.

Серед числових пропорційних систем виділяють цілочисельні пропорції, „золотий переріз” і геометричну подібність.

Цілочисельні пропорції групуються на співвідношеннях простих чисел (1 : 2, 1 : 3, 2 : 5 і т.д.). У практиці застосування цілочисельних пропорцій за одиницю беруть відрізок, пропорційний величині якого-небудь, що повторюється в будівлі, будівельного елемента або деталі. Цей відрізок називається пропорційним модулем. Раніше як модуль брали розмір обтесаного каменя або ним був нижній діаметр колони. Тепер модуль звичайно збігається з величиною будівельного модуля.

Друга пропорційна система грунтується на геометричній побудові, що дістала назву „золотий переріз” (рис.18.1). При цьому ціле ділять на дві частини, з яких менша так відноситься до більшої, як більша частина – до цілого. Коли взяти ціле за 1, то більша частина
наближено дорівнюватиме 0,618, а менша – 0,382:
0,382 : 0,618 = 0,618 : 1.

Головною властивістю цього співвідношення є те, що при діленні за тим самим принципом добутої більшої частини (0,618) нова більша частина дорівнює меншій частині першого ділення (0,382). В результаті можна мати нескінчений пропорційний ряд в обидва боки вид 1, а саме: ...4,236; 2,618; 1,618; 1; 0,618; 0,382; 0,236; 0,146; ...

У цьому ряду усі розміри є пропорційними, а різниця – наступному. Кожний наступний член ряду можна дістати множенням попереднього на число 0,618, що дістало назву модуля „золотого перерізу”.

Поєднання членів ряду золотого перерізу дає найсприятливіші для ока пропорції й набуло широкого застосування в побудові архітектурних композицій.

Метод геометричної подібності ґрунтується на застосуванні подібних прямокутників, при цьому оцінюють паралельність або перпендикулярність їхніх діагоналей. У такому разі досягають подібності прямокутних членувань елементів і деталей, тобто єдності архітектурного вирішення.

Масштабність дає змогу співвідносити розміри проектованої будівлі або споруди зі зростом людини і є своєрідною якісною характеристикою для оцінки сприймання людиною композиції. Враження про величину будівлі складається не тільки безпосереднім порівнянням її з розміром людини, а й у результаті часто підсвідомого порівняння з розмірами звичайних для людини елементів (вікон, дверей, цегли та ін.). Звичайно, оцінка сприйняття характеризується й масштабом середовища, що оточує будівлю. Поняття про сприйняття величину будівлі (її масштабність) відносне. Тому масштабність архітектор часто використовує як важливий композиційний засіб для підкреслення ве-
личини проектованої будівлі або споруди залежно від архітектурної значущості її.

Масштаб характеризує ступінь розчленованості композиції, крупність її форм як щодо самої будівлі, так і щодо навколишньої забудови.

Будівля, велика за розмірами, але розчленована на дрібні елементи, сприймається як масштабніша порівняно з гладенькою поверхнею тих самих розмірів. Крім того, введення вертикальних або горизонтальних елементів (колон, пілястр, лоджій, балконів, карнизів, поясків тощо) створює враження висотності або, навпаки, масивності будівлі. Такі будівлі добре поєднуються з великими міськими просторами й тому є немов центрами, або домінантами, в міській забудові. Навколо них формуються міські комплекси й ансамблі (рис.18.2).

Рис.18.2. Масштаби співвідношень:
a – багатоповерховий будинок між вищими; b – те саме між нижчими; в – малоповерховий будинок з невеликими членуваннями; г – багатоповерховий будинок з дрібними членуваннями між багатоповерховими з великими членуваннями

Дуже важливий засіб архітектури – тектоніка – визначає конструктивну будову архітектурної споруди і є своєрідним художнім втіленням конструктивної форми.

Будь-яка будівля або споруда може створити в людини відчуття важкості, масивності або, навпаки, легкості, повітряності. Наприклад, залізобетонна конструкція сучасної будівлі, що сприймає навантажен-
ня є основним елементом, що визначає художню виразність споруди (рис.18.3).

Якщо казати про тектоніку окремого конструктивного елемента будівлі, то дуже важливо, щоб конструктивна система (структура) була добре тектонічно осмислена. Наприклад, сучасна полегшена стіна будівлі (рис.18.4) виявляє її справжнє призначення як захисної конструкції.

Важливими засобами композиційного вирішення будівлі, споруди, групи їх або окремих частин мають колір, освітлення, світлотіньові ефекти, а також твори образотворчого мистецтва та їх синтез з архітектурою.

Рис.18.3. Тектоніка споруди, в якій основний несучий елемент визначає художню виразність (будинок виставочного павільйону)

Рис.18.4. Приклад сучасної будівлі з полегшеною стіною. Будинок проектних організацій у Москві
Контрольні запитання
1. Визначення поняття „архітектура”.
2. Які фактори впливають на розвиток архітектури?
3. Вплив розвитку будівельної техніки на архітектуру.
4. Композиція в архітектурі, її основні засоби.

КОРОТКИЙ СЛОВНИК
ОСНОВНИХ АРХІТЕКТУРНИХ І БУДІВЕЛЬНИХ ТЕРМІНІВ

Ампір – стиль в архітектурі й декоративному мистецтві перших трьох десятиріч XIX ст., що завершив розвиток класицизму. Характеризується масивністю, підкреслено монументальними формами й багатими декором. У своєму розвитку спирається на художню спадщину Риму, Стародавнього Єгипту та ін. Складся в період імперії Наполеона I у Франції, де його характеризувала парадна пишність меморіальної архітектури й палацового інтер'єру. У Росії ампір став вираженням ідей державної незалежності, що відстоювалась у боротьбі проти Наполеона. Зразки південної життя, громадських споруд, міських і садибних будинків створили архітектори А.Д.Захаров, А.Н.Вороніхін, К.І.Россі, В.П.Стасов.

Аерація – організований і керований природний повітрообмін через вікна й ліхтарі будівель. Використовується головним чином у цехах виробничих будівель з підвищеними тепловиділеннями (ковальські, ливарні та ін.), хімічних підприємств та ін.

Антаблемент – верхня частина споруди, що звичайно лежить на колонах. Складова частина елемента архітектурного ордера. Членується на архітрав, фриз, карниз.

Антресоль – півповерх, що займає верхню частину об'єму високого приміщення будівлі. Призначена для збільшення корисної площі приміщення. Зв'язок з основним приміщенням здійснюється через сходи або пандуси.

Анфілад не розпланування – коли приміщення з'єднується одне з одним вхідними прорізами, розташованими на одній осі.

Аркада – низка однакових за розміром і формою арок, що спираються на стовпи або колони.

Архітектура – будівлі і споруди, а також комплекси їх, що створюють матеріально організоване середовище, потрібне людям для їхнього життя і діяльності, вміняння проектувати і будуєти споруди та комплекси їх відповідно до призначення, сучасних технічних можли-
востей, естетичних поглядів суспільства. Як частина засобів виробництва (промислові будівлі) і як частина матеріальних засобів існування суспільства (житлові будинки, громадські будівлі) архітектура є галуззю матеріальної культури. Разом з тим як вид мистецтва архітектура входить до сфери духовної культури, естетично формує оточення людей, виражає суспільні ідеї в художніх образах. В архітектурі взаємозв'язані функціональні, технічні й естетичні засади (користь, міцність і краса).

Архітектура малих форм – невеликі споруди, що використовуються для організації відкритих просторів і доповнюють архітектурно-містобудівну й садово-паркову композицію. Мають функціонально-декоративне (фонтани, сходи, огорожі) або меморіальне (стелі, обеліски) значення, а також є елементом благоустрою території (ліхтарі, кіоски) або носіями інформації (реклама та ін.).

Архітектура акустика вивчає поширення звуку в приміщенні, вплив відбивання і вбирання звуку захисними конструкціями на чутливість мови й музики.

Архітектурний ансамбль – узгоджене розташування будівель, споруд, монументів, що утворюють єдину архітектурно-просторову композицію, створену на основі певного ідейно-художнього задуму з урахуванням функціональних потреб, практичної доцільності, природного й архітектурного оточення, які забезпечують єдність зорового сприйняття.

Архітрав – нижня з трьох горизонтальних частин антаблемента, що являє собою балку, яка спирається на колону.

База – основа, підніжжя колони або стовпа.

Балка – конструктивний елемент у вигляді бруса, що працює головним чином на згин. Балки бувають залізобетонні, металеві й дерев'яні.

Блок об'ємний – конструктивний монтажний елемент, що є частиною об'єму споруджуваної будівлі.

Блокована виробнича будівля – укрупнена на основі уніфікованих типових секцій (УТС) промислова будівля, в якій розміщені різні виробництва.

Блокований житлової будинок – тип малоповерхового будинку з ізольованими входами до кожної квартири й приквартирними ділянками.

Брандмауер – протипожежна стіна, призначена для відокремлення суміжних приміщень будівлі або суміжних будівель з метою не дати поширитись пожежі.
Волют – архітектурна деталь у формі спіралеподібного завитка з кружком у центрі. Волута є характерною частиною капітелі іонічної колони.

Галерея – у житлових і громадських будівлях довге крите світле приміщення, в якому звичайно одну з поздовжніх стін замінюють колони або стовпи, а іноді ще й банюстрада. Галерея об’єднує низку судимих входів, зв’язує між собою основні приміщення або частини будівлі.

Готика – архітектурний стиль XII - XV ст., що поширився в багатьох західно-європейських країнах. Характеризується переважанням спрямованих увисочин архітектурних форм, характерною конструктивною системою кам’яного каркаса з стрілчастими склепіннями, великою кількістю різьблення по каменю й скульптурних прикрас, кольоровими вітражами (собори в Мілані, Кельні та ін.).

Еклектизм в архітектурі – поєднання різних архітектурних стилів в одній будівлі або комплексі їх. Особливо характерний в оформленні інтер’єрів у другій половинні XIX ст. У ньому відобразилось некритично використання інших стилів.

Єдина модульна система (ЄМС) у будівництві – правила координації розмірів будівлі і споруд, їх елементів, конструкцій, деталей та уставування на основі кратності цих розмірів прийнятому основному модулю, що дорівнює 100 мм. ЄМС визначає також похідні (укрупнені й дробові) модулі, розташування модульних розбивочних осей і прив’язування до них конструктивних елементів, вимоги щодо уніфікації об’ємно-розподілових параметрів і моделей та ін.

Захисні конструкції – елементи конструкцій, з яких складається зовнішня оболонка будівлі або які поділяють будівлю на окремі приміщення; можуть водночас бути й несучими конструкціями.

Звуковбирні конструкції і пристрої для вбирання падаючих на них звукових хвиль; до цих конструкцій входять звуковбирні та інші матеріали.

Інженерна підготовка територій населених місць – комплекс інженерних заходів з метою освоєння територій для доцільного містобудівного використання, поліпшення санітарно-гігієнічних і мікрокліматичних умов населених місць. До складу інженерної підготовки територій входять вертикальне розпланування територій, організація поверхневого стоку й видалення застійних вод, спорудження й реконструкція водойм, берегозміцнюючих споруд, зниження рівня грунтових вод, захист територій від затоплення й підтоплення, освоєння ярів, боротьба з карстовими явищами, зсувами та ін. Інженерна підготовка територій є невід’ємною частиною містобудування.
Інтер’єр – внутрішній простір будівлі або окремого приміщення.

Канелюри – вертикальні жолобки на стовбурі колони або пілястри.

Капітель – верхня частина колони або пілястри, розташована між стовбуром й антаблементом.

Каркас – несуча конструкція з вертикальних стояків і колон та опертіх на них горизонтальних елементів (балок, ригелів, прогонів, ферм); вона сприймає основні навантаження й забезпечує міцність та стійкість споруди в цілому.

Класицизм – стиль у мистецтві Західної Європи XVII - XVIII ст. і Росії XVIII - початку XIX ст., що використовував художні принципи класичного античного мистецтва. Архітектура класицизму характеризується чіткістю планів, структурою симетрично-осьових композицій і форм, стриманістю декоративних оздоб. До видатних творів російського класицизму належать будинок Пашкова (старий будинок Державної бібліотеки ім.Леніна, арх.В.І.Баженов), Колонний зал Будинку Спілок (арх. М.Ф.Казаков).

Композиція архітектурна – (складання, зв'язування, з'єднання, влаштування) - побудова архітектурного твору, з'єднання його окремих частин і елементів, зумовлене ідейно-образним змістом, характером і призначенням споруди або ансамблю.

Конструктивізм – творчий напрям, що розвивався в радянській архітектурі в 20-х роках минулого століття у зв'язку з соціальними перетвореннями в суспільстві, змінами в техніці будівництва й виробництва, потребою створення нових типів будівель. Основним творчим завданням конструктивізму була вимога конструктивної і функціональної виправданості архітектури. Конструктивісті допустили й низку помилок. Серед них – абстрактний схематизм деяких архітектурних вирішень, недооцінка природно-кліматичних умов та ін.

Лоджія – приміщення (ніша), заглиблення на фасаді житлової або громадської будівлі, звичайно закрите з одного боку, з дверними й віконними прорізами. Лоджія може мати різні глибину й протяжність по фасаду й використовується як балкон, схований у будівлі, або терацса.

Мікрорайон – первинний елемент селітебної території міста (селища), що включає житлову забудову й комплекс установ повсякденного культурно-побутового обслуговування населення.

Модерн – напрям в архітектурі кінця XIX - початку XX ст. Характеризується нарочито манерними формами, підкресленою асиметрією, стилізаторством, вільним від історичних запоцічень. Використо-
вуючі нові конструкції і матеріали й звільняючись від звичних композиційних схем, модерн є важливим етапом на шляху до „нової архітек-тури”.

Неф – витягнуте в довжину приміщення, найчастіше – частина приміщення, відокремлена рядом колон або стовпів. Розрізняють середній, бічний, поперечний.

„Нова архітектура” – провідний напрям архітектури більшості капіталістичних країн XX ст. її виникнення пов’язане з швидким розвитком будівельної індустрії в другій половині XIX - початку XX ст. Із застосуванням нових будівельних конструкцій, матеріалів (метал, скло, залізобетон та ін.) і композиційно-розпланувальних принципів (вільне розпланування, чітка функціональна організація простору, відома від традиційно класичних симетричних схем).

Органічна архітектура – напрям у зарубіжній архітектурі початку XX ст., що вплинув на розвиток сучасної архітектури капіталістичних країн. Характеризується відповідністю кожній споруді індивідуальним завданням і умовами конкретного будівництва, урахуванням місцевих побутових і будівельних традицій, „вільними просторами", не поділеними всередині будівлі на ізольовані приміщення й по можливості об’єднані з навколишнім зовнішнім простором.

Ордер архітекурний – система архітектурних засобів і прийомів композиції, що ґрунтується на первинних поєднаннях і пластичній обробці несучих (колона з капітеллю, базою з п’єдесталом) і несених (архітрав, фриз і карниз, які утворюють антаблемент) частин стоякової балкової конструкції, розрізняють ордери: доричний, іонічний, коринський (за назвами областей Стародавньої Греції) та різновиди їх (гос-канський і композитний, або складний).

Пандус – прямокутна або криволінійна в плані похила площадка, призначена для забезпечення плавного переходу з позначки ґрунту на позначку підлоги будівлі. Найчастіше пандуси роблять у громадських, промислових будівлях, транспортних спорудах і гаражах, різних підземних переходах та ін.

Паркет – невисока суцільна стінка, що огороджує покриття будівлі, терасу, балкон, набережну, шляхопровід міст та ін.

Пассаж – тип торговельної будівлі, в якій магазини розташовується ярусами обабіч широкого проходу з заскленим покриттям.

Підкліт – нижній, не житловий поверх кам’яного або дерева житлового будинку в народній архітектурі.

Півятра – плоский вертикальний прямокутний виступ у стіні або стовпі, який найчастіше повторює всі частини й пропорції ордерної колони.
Портал – горизонтальний конструктивний елемент покриття будівлі або споруди, що спирається на основні несучі конструкції покриття (балки, ферми, арки або рами). По прогонах укладають захищені елементи покриття. Бувають металеві, залізобетонні і дерев'яні.

Романський стиль – художній і архітектурний стиль, що панував у Західній Європі в X - XII ст., один із найважливіших етапів розвитку ранньохристиянського мистецтва й архітектури. Він увібрав до себе численні елементи ранньохристиянського мистецтва і на відміну від передуючих йому тенденцій середньовічного мистецтва був першою системою середньовіччя, яка охопила більшість європейських країн. Основою єдності цього стилю була система розвинутих феодальних відносин і інтернаціональна сутність католицької церкви, що була в ту епоху найзначнішою ідеологічною силою суспільства й мала основний економічний і політичний вплив.

Зовнішній вигляд будівель романського стилю позначений спокійною й урочисто-суровою силою. У створенні цього неабияку роль відіграли масивні стіни, ваговитість і товщина яких підкреслювалась вузькими прорізами вікон і східчасте заглибленнями порталами, а також башти, які стають одними з найважливіших елементів архітектурних композицій. Романські будівлі являли собою систему простих стереометричних об’ємів (кубів, паралелепіпедів, прямих, циліндрів), поверхня яких хоч і розчленовувалась лопатками, фризами, галереями, що ритмують масив стіни, але не порушувала монолітної цілісності їх (наприклад, церква Нотр-Дам у Жюмьєзі, Франція, 1010-1250).

Стілобат – верхня поверхня східчастого цоколю.

Стилістичність основи будівлі або споруди чинити опір випиранню грунту (з під підошви фундаменту) під впливом передаваних навантажень.

Тамбур – невелика прибудова до будівель і споруд перед зовнішніми дверима, прохідний простір між ними або вигороджений усередині будівлі об’єм приміщення, призначений для захисту від холодного повітря, вітру та ін.
6. Дехтяр С.Б. Архитектурные конструкции гражданских зданий. – К.: Будівельник.
15. Журнал „Будівництво та архітектура“. – К.
Навчальне видання

Котеньова Зоя Іванівна

АРХІТЕКТУРА БУДІВЕЛЬ І СПОРУД

Навчальний посібник

Редактор М.З.Аляб’єв
Коректор З.І.Зайцева

План 2007, поз.129
Підп. до друку 27.03.2007 р. Формат 60×84/16.
Папір офісний. Друк на ризографі.
Ум.-друк. арк.7,23. Обл.-вид. арк. 7,73. Тираж 100 прим.
Зам. №.......