Математическое описание вертикальной динамики колебательных процессов вагонов трамвая и их элементов

Губенко В.Д.

Харьковская национальная академия городского хозяйства

Губенко Н.А.

Украинская государственная академия железнодорожного транспорта, г. Харьков

Специфические условия эксплуатации вагонов трамвая характеризуются частыми пусками, торможениями, движением с высокими ускорениями и остановкой. К числу особенностей, которые отличают подвижной состав (ПС) трамвая от магистрального транспорта, следует также отнести непостоянную /в зависимости от пассажирообмена/ массу каждого вагона, которая приводит к изменению весовой нагрузки всех элементов системы. Соответственно будут, в определенных диапазонах, изменяться параметры вибраций элементов этой сложной системы, а также излучаемый ими шум.

Условно разграничим между собой три вида нагрузки колесных пар: Статическое, связанное с действием недвижимой массы единицы ПС; Кинетостатическое, обусловленное инерционным перераспределением сил статики через ускоренное (замедленное) движение вагонов; Динамическое, возникающее (дополнительно) вследствие колебаний и вибраций вагона при движении вагона по неровностям рельсового пути.

Для оценки статической и кинетостатической нагрузок колеса и рельса нет сложностей расчетного характера. Достаточно рассмотреть на уровне статической определимости схему нагрузки всего экипажа, чтобы получить достоверные легко проверяемые экспериментальным путем результаты, Таким образом устанавливаются и законы кинетостатического перераспределения сил взаимодействия подсистемы "колесо-рельс" при движении системы с ускорением (с).

До сих пор одной из наиболее трудных является задача определения динамических составных сил взаимодействия колеса и рельса. Отмечая такие объективные данные, как сравнительно плохое содержание дорожного пути трамвая, насыщенное кривыми участками пути, радиусом от 16 м;

относительно невысокие скорости движения и др., следует признать, что в первом приближении решения задачи определения уровней вибраций достаточно ограничиться рассмотрением лишь вертикальной динамики.

Авторами выведены дифференциальные уравнения, которые описывают процесс динамического взаимодействия пути и подвижного состава трамвая.

В таблице приведены данные по ориентировочному расчету сил кинетостатической нагрузки системы, которая отвечает условному положению равновесия для разных случаев движения динамической модели.

Данные кинетостатического расчета

Наполнение вагона	Силы, которые действуют со стороны колеса на рельс, $H ext{к} 10^3$			
пассажирами	Для среднего ускорения		Для макс. ускорения	
	R_1	R_2	R_1	R_2
Пустой	80,6	81,9	82,0	80,2
Номинальное	89,2	90,8	89,0	80,5
Максимальное	130,0	126,0	129,7	126,0

Определены резонансные режимы движения вагона т. е. определены собственные частоты колебаний вагона взависимости от скорости движения вагона.