• як базисні елементи для кубічних сплайнів доцільно використовувати В-сплайни.

Отримані результати дозволяють продовжити дослідження в цьому напрямку й одержати апроксимацію функцій кривих сили світла для різних світильників зовнішнього освітлення міст, а також одержати при цьому похибки апроксимації.

- 1.Справочная книга для проектирования электрического освещения / Под ред. Г.М. Кноринга. СПб.: Энергоатомиздат, 1992. 448 с.
- 2. Справочная книга по светотехнике / Под ред. Ю.Б.Айзенберга. – М.: Энергоатомиздат, 1995. – 528 с.
- 3.Алберг Дж., Нильсон Э., Уолш Дж. Теория сплайнов и ее приложения. М: Мир, 1972. 320 с.
 - 4.К. Де Бор. Практическое руководство по сплайнам. М.: Радио и связь, 1985. 104 с.
- 5.Завьялов Ю. С., Леус В. А., Скороспелов В. А. Сплайны в инженерной геометрии. М.: Машиностроение, 1985. 224 с.
- 6.Калиткин Н. Н., Кузьмина Л. В. Среднеквадратичная аппроксимация сплайнами // Математическое моделирование. 1997. Т.9, № 9. С. 107-116.

Отримано 22.06.2004

УДК 581.132

И.А.ВЕЛИТ, Ю.П.ПЕТРЕНКО, канд. техн. наук Полтавская государственная аграрная академия

ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК НАТРИЕВЫХ ЛАМП, ПРЕДНАЗНАЧЕННЫХ ДЛЯ СВЕТОКУЛЬТУРЫ РАСТЕНИЙ

Обосновывается значение КПД ФАР для натриевых ламп высокого давления различных фирм-изготовителей. Анализируются пути повышения этого параметра и способы достижения этой цели.

Интенсивность света, его спектральный состав, а также совокупность технико-экономических показателей источников света предназначенных для светокультуры растений являются одними из многих факторов, определяющих продуктивность растений [1, 2].

На первых этапах онтогенеза растений уровень освещенности влияет на формирование раннего и обильного цветения, увеличение количества цветущих побегов, качество и урожайность овощных культур, выращивание продукции к определенному сроку [3-9].

Сравнительная эффективность источников различного типа для выращивания растений в закрытом грунте приведена в работе [10] с позиции расчетно-экспериментальных оценок КПД источников излучения в области фотосинтетически активной радиации (ФАР). КПД ФАР определялся на основании известного излучения в спектральных

интервалах: $\Delta\lambda_1$ =380-500 нм, $\Delta\lambda_2$ =500-600 нм, $\Delta\lambda_3$ =600-720 нм. Полученные результаты позволили сформулировать основные требования, предъявляемые к растениеводческим лампам: спектр должен быть равноэнергетичным или обедненным в зеленой области.

Среди изученных источников натриевые лампы высокого давления (НЛВД) занимают одно из приоритетных мест, в том числе и по достаточно высокому КПД ФАР. Эти источники света в последнее время находят практическое применение при дополнительном освещении растениеводческих культур без особого теоретического обоснования. НЛВЛ различных мошностей и типов (различные значения светового потока, спектрального состава излучения, индекса цветопередачи, цветовой температуры и т.д.) выпускают все ведущие светотехнические фирмы мира, а также крупные специализированные предприятия развитых государств. И если потребителю, который использует лампы для освещения зданий, сооружений и т.п., достаточно посмотреть каталог, чтобы определить приоритет того или иного типа лампы, то использование НЛВД в светокультуре растений затрудняет отсутствие каких-либо данных по эффективности того или иного типа ламп для растениеводства. Сложность проблемы усугубляется и тем, что каждая фирма в силу тех или иных причин использует свои материалы, свою конструкцию, оригинальные технологические решения, что также приводит к значительным отличиям ламп различных изготовителей. Учитывая, что четких и однозначных критериев к растениеводческим лампам еще не сформулировано, с нашей точки зрения, универсальным показателем может (в настоящее время) являться именно КПД в области ФАР.

Целью настоящей работы явилась расчетная оценка КПД ФАР НЛВД различных типов и различных фирм-изготовителей, их сравнительного сопоставления и выбора наиболее подходящих именно для целей растениеводства.

Преследуя эту цель, представим, что сам по себе выбор КПД ФАР в качестве базового показателя достаточно спорен и неоднозначен, однако правильность или ошибочность выводов в результате проведенных расчетов и особенно их сравнение с иными данными, полученными другими способами, позволит создать очередной аргумент «за» либо «против» использования этого параметра для оценки лучистой эффективности растениеводческих ламп.

В эксперименте использовали типовые представители наиболее распространенных ламп, имеющих стандартные характеристики: ДНаТ-400, SON-T, HOC-1, HOC-2, OSRAM-NaVT, SON, HPI, SON-H.

Спектр излучения и технические характеристики измеряли на спектрометре СДЛ-1 при работе ламп в номинальных режимах (см. таблицу). В основе расчета лежат следующие выражения и определения.

КПД ФАР рассчитывается как:

$$\eta_{\text{DAP}} = F / P, \tag{1}$$

где F – поток излучения в области Φ AP; P – мощность лампы.

В соответствии с [10]

$$F = \frac{\Phi_{\mathcal{J}}(S_{\Delta\lambda 1} + S_{\Delta\lambda 2} + S_{\Delta\lambda 3})}{683(0,02S_{\Delta\lambda 1} + S_{\Delta\lambda 2} + 0,015S_{\Delta\lambda 3})},$$
 (2)

где $S_{\Delta\lambda 1}$ — относительная энергия излучения в спектральном интервале $\Delta\lambda i$, %; 683 — световая эффективность излучения, лм/Вт.

Из (1), (2) следует, что

$$\eta_{\Phi AP} = \frac{\Phi}{P} \cdot \frac{1}{683(0,02S_{\Delta\lambda 1} + S_{\Delta\lambda 2} + 0.015S_{\Delta\lambda 3})}.$$
 (3)

Так как $S_{\Delta\lambda1}+S_{\Delta\lambda2}+S_{\Delta\lambda3}=1$, а учитывая, что Φ л / P =H – световая отдача, то

$$\eta_{\Phi AP} = \frac{H}{683(0,02S_{\Delta\lambda 1} + S_{\Delta\lambda 2} + 0,015S_{\Delta\lambda 3})}.$$
 (4)

Анализ полученного выражения не дает однозначного ответа на вопрос, какой должна быть растениеводческая лампа по спектральному составу. Он лишь подтверждает следующие предположения:

- лампа должна иметь как можно большую световую отдачу;
- спектр излучения должен быть или равноэнергетичным, или обедненным в зеленой области.

А поскольку эти пункты противоречат друг другу, для оценки КПД ФАР любых источников, а особенно близких по характеристикам, в настоящее время, по-видимому, не существует иного пути, кроме экспериментально-расчетного.

Результаты проведенных нами расчетных оценок приведены в таблице.

Расчет КПД ФАР для упомянутых источников показал, что в подавляющем большинстве случаев у всех натриевых ламп, работающих в стандартном режиме, этот параметр находится в пределах 27±2%, что соизмеримо с погрешностью измерений и расчетов и в принципе может быть оценено величиной постоянной для любого типа лампы, работающей с номинальными параметрами. Следовательно, при выборе натриевых ламп для растениеводческих целей приоритетными тре-

бованиями (в порядке следования) являются:

- световая отдача лампы;
- надежность работы лампы;
- срок службы и стабильность параметров в процессе горения;
- стоимость и экономические показатели.

Основные характеристики натриевых ламп высокого давления различных типов

Тип	Тип Тип Ток, пряже-				Спектральное распределение			F,	Ф,	кпд,
ламп	дросселя	A	ние на лампе, В	ность, Вт	S_1	S_2	S_3	Вт	клм	%
ДНАТ-400	1ДБИ-	4,3	130	415	0,10	0,44	0,46	124	38	29
SON-T	400ДНАТ	4,7	110	410	0,10	0,56	0,34	121	47	29
HOC-1	/2200-H-	5,1	95	380	0,10	0,50	0,40	102	35	27
HOC-2	009УХЛ1	4,95	98	340	0,09	0,51	0,40	100	35	29
OSRAM-		4,5	125	410	0,08	0,50	0,42	109	38	26
NaVT										
SON		4,75	105	385	0,10	0,55	0,35	102	39	27
HPI	ВН	3,55	130	380	0,30	0,58	0,12	92	37	25
SON-H	400L 11	3,3	145	345	0,10	0,45	0,45	89	28	26

Как следует из проведенного анализа, повышение световой отдачи может существенно улучшить КПД ФАР применительно к натриевым лампам высокого давления. Один из самых эффективных способов решения данной задачи – использование в качестве материала разрядной оболочки не поликристаллической окиси алюминия (поликора), а монокристаллического сапфира. Более высокая рабочая температура и механическая прочность позволяют эксплуатировать горелку НЛВД при больших значениях светового потока либо при той же рабочей температуре, но с большим сроком службы, а запас механической прочности позволяет уменьшить толщину стенки, т.е. повысить пропускание оболочки, а соответственно и светового потока.

Следует отметить еще один важный аспект данной проблемы. Поскольку стандартные изменения конструктивно-технологического характера не дают возможности улучшить КПД ФАР, имеет смысл исследовать НЛВД с различными излучающими добавками в синей и красной областях спектра. Подобные спектральные изменения могут быть достигнуты введением в разряд таких металлов, как цезий и т.д., однако, это тема уже иных исследований.

Таким образом, в результате выполненных исследований рассчитан КПД ФАР для НЛВД различных типов и по полученным результатам можно считать, что этот параметр находится в пределах 27%. Проанализированы возможности получения растениеводческой лампы с

позиций ее световых и спектральных характеристик.

- 1. Леман В.М. Курс светокультуры растений. М.: Высшая школа, 1976. 271с.
- 2. Тихомиров А.А., Лисовский Г.М., Сидько Ф.Я. Спектральный состав света и продуктивность растений. Новосибирск: Наука, 1991. 168 с.
- 3.Biermann W. Assimilationsbelichtung von Elatior-Begonien // Dt. Gartenbau. 1990 V.44, N919. S.1264-1265.
- 4.Gruber G. Neu-Guinea Impatiens // Gartnerborse Gartenwelt. 1989. T. 89. №5. S. 231-233.
- 5.Potter R.; Noble R. Lighting up winter pot "mums for uniformity // Grower. 1989. T. 112. N 12. P. 41, 47.
- 6.Strauch K.-H. Einsatzdauer der Assimilationsbelichtung // Gartnerborse Gartenwelt. 1989. T. 89. N_246 . S. 2259-2262 .
- 7.Ganninger-Hauck D. Ohne Licht geht nichts // Dt. Gartenbau. 1988. T. 42. №17. S.1075-1076.
- 8.Tazawa~S. Effects of various radiant sources on plant growth. Pt 1 // JARQ. 1999. V.33, N23. P.163-176.
- 9.Rey F.A.; Tsujita M.J. Copper nutrition of greenhouse roses relative to supplementary irradiation and growing medium // J. Plant Nutrit. − 1987. − T.10. − №1. − P.47-65.
- 10.Вассерман А.Л., Квашин Г.Н., Малышев В.В. Об оценке эффективности действия источников излучения на растения // Светотехника. 1986. №7. С.14-16.

Получено 17.05.2004

УДК 711.7

€.О.РЕЙЦЕН, канд. техн. наук

Київський національний університет будівництва і архітектури

Н.М.КУЧЕРЕНКО

Державна академія житлово-комунального господарства, м.Київ

ПРОБЛЕМИ МІСЬКОГО ТРАНСПОРТУ ЦЕНТРІВ МІСТ УКРАЇНИ І ЛОГІСТИКА

Розглядається необхідність упорядкування класифікації систем міського пасажирського транспорту з урахуванням сучасних поглядів і у зв'язку з логістикою як наукою, що дозволяє забезпечити системний підхід до проблеми міського транспорту в центрах міст, починаючи ще зі стадії його проектування.

Сучасний етап функціонування транспортної системи характеризується кризовим станом і розглядається як перехідний до ринкових відносин. За багатьма ознаками він нагадує енергетичну кризу, яка мала місце в першій половині 70-х років у капіталістичних країнах. Ця криза дала потужний поштовх удосконаленню техніки та технологій перевезень у Західній Європі і США. Виходу з такої ситуації сприяло використання логістики при плануванні, розподілі та управлінні перевезеннями і їх забезпеченням. В першу чергу це відносилось до вантажних перевезень.

У Франції завдяки системному підходу до організації перевезень продукції шляхом автоматизованої інтеграції транспортних потоків у