- 7.Пичугин С.Ф. Надежность стальных конструкций производственных зданий: Автореф. дис. ... д-ра техн. наук: 05.23.01 / КГТУСА. К., 1994. 32 с.
- 8.Пичугин С.Ф., Махинько А.В. Ветровая нагрузка на строительные конструкции. Полтава, 2005. 342 с.
- 9.Пичугин С.Ф., Махинько А.В. Сравнительный анализ спектров пульсаций скорости ветра // Зб. наук. праць III міжнар. наук.-практ. конф. "Баштові споруди: матеріали, конструкції і технології". Вип.8 (56). Макіївка: ДонДАБА, 2005. С. 18-25.
- 10.Махінько А.В. Надійність елементів металоконструкцій під дією випадкових змінних навантажень: Автореф. дис. ... канд. техн. наук / ПолтНТУ. Полтава, 2006. 24 с.
- 11.Симиу Э., Сканлан Р. Воздействие ветра на здания и сооружения: Пер. с англ. Б.Е.Маслова, А.В.Швецовой; Под. ред. Б.Е.Маслова. М.: Стройиздат, 1984. 360 с.
- 12.Davenport A.G. The Relationship of Wind Structure to Wind Loading. Proceeding of the Symposium on Wind Effects on Buildings and Structures, Teddington, vol.1, 1963. P.54-102.
- 13.Davenport A.G. The Response of Slender Line-like Structures to a Gusty Wind. Proc Inst Civil Engineers 1962, №23. P.369-408.
- 14.Davenport A.G. The Spectrum of Horizontal Gustiness Near the Ground in High Winds, Ouart J Roy Meteorol Soc 1961, №87. P.184-211.
- 15.Eurocode 1: Actions on Structures Part 1-4: General actions Wind Actions.–Brussels: CEN, 2002.–155 p.
- 16.Simiu E. Toward a New Generation of Standards for Wind Loads: Implications for Design Practice, Insurance, and Research // The Eight U.S. National Conf. on Wind Engineering. Baltimore (USA). 1997. CD.
- 17.Simiu E., Filliben J.J. Probability Distributions of Extreme Wind Speeds // Proc. Amer. Soc. Civ. Eng. 1980. vol. 106. P.2365-2374.
- 18. Solari G, Piccardo G. Probabilistic 3-D Turbulence Modeling for Gust Buf-feting of Structures // Probabilistic Engineering Mechanics. No. 16. 2001. P.73-86.
- 19.Solari G. Wind Speed Statistics // International Atomic Energy Agency. 1996. P.637-657.
- 20.Solari G., Pagnini L.C. Gust Buffeting and Aeroelastic Behavior of Poles and Monotubular Towers // Journal of Fluids and Structures. No.13. 1999. P.877-905.

Отримано 27.01.2009

УДК 699.841.001.2

МАЗЕН РАДВАН

Харьковский государственный технический университет строительства и архитектуры

К ВОПРОСУ О ВЛИЯНИИ СЛОИСТОСТИ ОСНОВАНИЯ НА УСИЛИЯ В ЭЛЕМЕНТАХ ПЕРЕКРЫТИЙ ДЛЯ МНОГОЭТАЖНЫХ МОНОЛИТНЫХ ЖЕЛЕЗОБЕТОННЫХ ЗДАНИЙ ПРИ СЕЙСМИЧЕСКИХ ВОЗДЕЙСТВИЯХ

Анализируется влияние слоистости основания на усилия в элементах перекрытий монолитных каркасно-стеновых железобетонных зданий, выполненных для сейсмических условий Сирийской Арабской Республики.

Сейсмостойкость сооружения – это та часть общей динамики со-

оружения, в которой изучается поведение конструкции при сейсмических воздействиях и разрабатываются методы расчета сооружений, обеспечивающих их надежность при землетрясениях [1].

Одним из главных факторов по обеспечению сейсмостойкости конструкции и сооружения в целом является более точное моделирование процесса землетрясения и прогнозирование изменения прочностных характеристик основания (ρ , E, ν – соответственно плотность, модуль упругости, коэффициент Пуассона), вызванного распространением сейсмических волн, являющихся следствием вызванных тектонических толчков.

При учете сейсмических воздействий следует определить, требуется ли увеличение армирования в конструктивных элементах. Также следует оценить, в каких именно элементах увеличиваются усилия и какая конструктивная система целесообразнее при действии сейсмической нагрузки.

Безусловно, каждое здание работает по-разному в условиях сейсмических воздействий. Это обусловлено многими факторами, один из которых – взаимодействие между сооружением и основанием.

Здания повышенной этажности часто проектируются с монолитным железобетонным каркасом. При этом горизонтальные нагрузки воспринимаются в основном диафрагмами и ядрами жесткости.

В настоящей работе сделана попытка оценить изменение усилий в элементах перекрытия от влияния слоистости основания на сооружение при сейсмических воздействиях, поскольку перекрытия являются важными и материалоемкими элементами здания. Для оценки влияния слоистости основания на усилия в элементах перекрытий проведен численный эксперимент с помощью программного комплекса SCAD [2], основанного на МКЭ.

На рис.1-3 приведены конечно-элементные модели расчетных схем многоэтажных каркасно-стеновых монолитных железобетонных зданий, возведенных в Сирийской Арабской Республике.

Сборно-монолитные железобетонные перекрытия состоят из главных и второстепенных балок, плит перекрытия, блоков-вкладышей. Интервал расположения второстепенных балок составляет 50 см. Для здания варианта А толщина перекрытий – 27 см, плит перекрытия – 7 см; для здания варианта В толщина перекрытий – 26 см, плит перекрытия – 8 см; для здания варианта С толщина перекрытий – 26 см, плит перекрытия – 6 см. Индексы 1, 2, 3, 4, 5 обозначают вариант споистости основания.

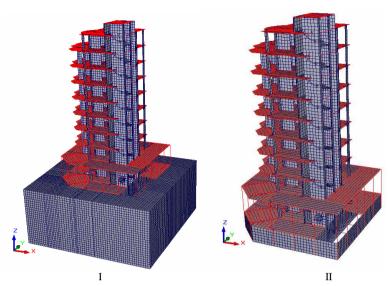


Рис.1 — Вариант А — конечно-элементные модели расчетных схем 10-этажных каркасно-стеновых монолитных железобетонных зданий с подвалом: I — здание с основанием (A_1 , A_2 , A_3 , A_4 , A_5); II — здание без основания (A_6).

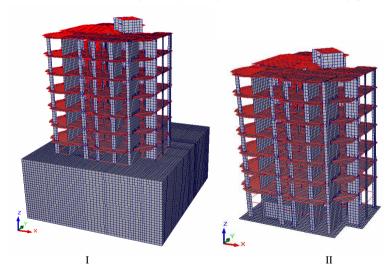


Рис.2 — Вариант В — конечно-элементные модели расчетных схем 7-этажных каркасно-стеновых монолитных железобетонных зданий с подвалом: I — здание с основанием (B_1 , B_2 , B_3 , B_4 , B_5); II — здание без основания (B_6).

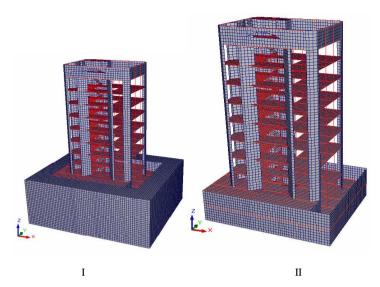
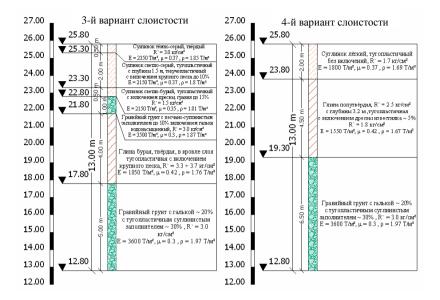
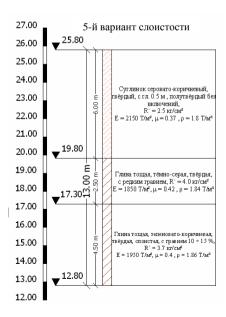




Рис.3 — Вариант С — конечно-элементные модели расчетных схем 8-этажных каркасно-стеновых монолитных железобетонных зданий с двумя подвалами: I — здание с основанием (C_1 , C_2 , C_3 , C_4 , C_5); II — здание без основания (C_6).

Рассмотрено пять вариантов слоистости основания, принятых по данным инженерно-геологических изысканий грунтов в Сирийской Арабской Республике.

27.00	1 × populari anouaraceu	27.00 _ 2-й вариант слоистости
26.00	1-й вариант слоистости 25.80	26.00
25.00	E Суптинок серай, твёрдый R = 3.5 кт/с м² с пт 1.0 м - полутеёрдый с экппочениями по 10%, R = 2.5 кт/с м² E = 2200 Тмг², μ = 0.37, р = 1.78 Т/м²	25.00 S Cymmox cepai, reignai R = 3.5 xrfcm c rai 1.0 m - nonyrri puni c axravientumi c producti no 10%, R = 2.5 xrfcm c rai 1.0 m - nonyrri puni c axravientumi
24.00		T E = 2400 1/M, μ = 0.57, μ = 1.8 1/M
23.00	22.80 Гранийно-галечиновый групт с песчаным заполнителем - 25% с пт. 13 м нодовессищенный, г. = 40 кг/см² Е = 3500 Т/м², µ = 0.3, ρ = 1.8 Т/м²	23.00 Σ22.80 Γρακιάκοι-των ενικουκομά τηματ ο πενεμακών επιοπικτιστικών - 25% ο τπ. 1.8 m επιοπικτιστικών - 25% ο τπ. 1.8 m επιοπικτιστικών τηματία το πενεμακών επιοπικτιστικών τηματία το πενεμακών Ε = 3700 T/m², μ = 0.3 , ρ = 1.89 T/m²
22.00	Глина коричневато-бурая, тощая, от тутопластичной до полутвёрдой, без виточений R:=32 кг/см²	22,00 Глина коричневато-бурая, тощая, от тут опластичной до полутвёрдой, без
21.00	Вклю чений , R: = 3.2 кг/см² E = 1600 Т/м², μ = 0.42 , ρ = 1.75 Т/м²	21.00 включений , R: = 3.2 кп/см² E = 1900 T/м², μ = 0.42 , ρ = 1.84 T/м²
20.00	Суглинок светло-коричневый,	20.00
19.00	тяжёлый, твёрдый, R: = 3.2 кг/см² с гл. 7.2м - тугопластичный, с мелкими	19.00 тяжёлый, твёрдый, R`= 3.2 кг/см² с гл. 7.2м - тутопластичный, с мелкими
18.00	προсποσινικι πεσκα μ супеси, R ≥ 1.5 κг/cm² Ε = 2500 Τ/ω², μ = 0.38 , ρ = 1.76 Τ/ω²	18.00 ποισκα μ σχισκα, κ' = 1.5 κτ/σм² 17.30 Ε = 2500 Τ/м², μ = 0.37 , ρ = 1.86 Τ/м²
17.00	Гравийный грунт с галькой ~ 20%	17.00 Гравийный грунт с гелькой ~ 20%
16.00	тут опластичным з яп опнителем ~ 30% R` = 3.0 кг/см² E = 5000 Т/м², µ = 0.3 , р = 1.84 Т/м²	E стугоппастичным суптинистым загоппиненным суптинистым загоппиненным суптинистым такжен док, R = 30 кг/см² Е = 3800 Тмс, µ = 03, µ = 1.92 Тмс²
15.00		15.00
14.00	Е Глина тощая, пестроцветная, твёрдая, песчанистая, R` = 3.4 кг/см² В Е = 2050 Т/м², µ = 0.42, р = 1.79 Т/м³	14.00 Ε ΓΙΜΗ Α ΤΟΙΙΑΝ, ΠΕΟΤΡΟΙΙΘΈΤΗΜΑ, ΤΒΕΡ ΠΑΝ, ΠΕΟΨΑΙΚΙΚΤΑΚ, Γ. * 3.4 ΑΥΙ/CMF* Ε = 2000 ΤΛω*, μ = 0.42 , ρ = 1.83 ΤΛω*
13.00	12.80 Ω L 2030 1/M, μ = 0.42, μ = 1.79 1/M	13.00 12.80 12.80
12.00		12.00

На рис. 4, 11, 18 рассмотрены нижний и верхний участки выбранных монолитных железобетонных главных балок всех вариантов зданий, в которых было проведено сравнение значений усилий и напряжений.

На рис.5-10 рассматриваются значения усилий в нижних (а) и верхних (б) главных балках здания варианта A, выбранных для сравнения.

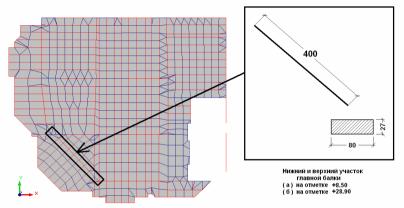
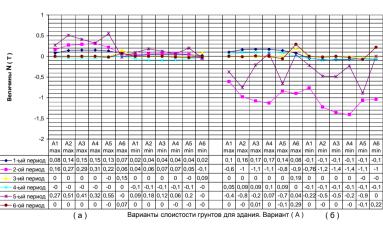



Рис.4 – Расположение и размеры выбранных главных балок здания – вариант А

Сравнение величин осевых усилий N (T) от расчётных периодов свободных колебаний для многоэтажных железобетонных зданий. Вариант (A)

Рис.5 – Значения осевых усилий N (T) для здания – вариант A

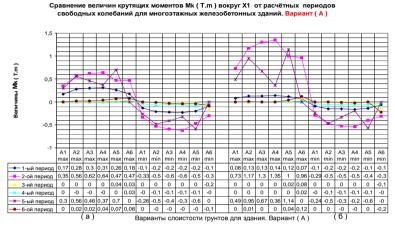


Рис.6 – Значения крутящих моментов M_k (T.m) вокруг X1 для здания – вариант A

Сравнение величин изгибающих моментов Му (Т.т) относительно Y1 от расчётных

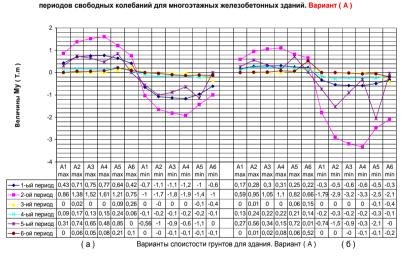


Рис.7 – Значения изгибающих моментов $M_y(T.m)$ относительно Y1 для здания – вариант A

Сравнение величин перерезывающих сил, действующих на сечение стержня Qz (Т) вдоль оси Z1 от расчётных периодов свободных колебаний для многоэтажных железобетонных зданий. Вариант (А)

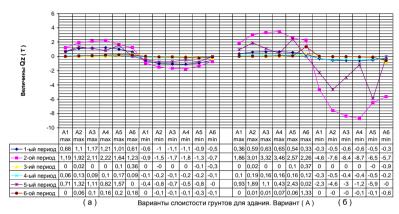


Рис.8 – Значения перерезывающих сил, действующих на сечение стержня Q_z (T), влоль оси Z1 лля злания – вариант A

Сравнение величин изгибающих моментов Mz (Т.m.) относительно Y1 от расчётных периодов свободных колебаний для многоэтажных железобетонных зданий. Вариант (А)

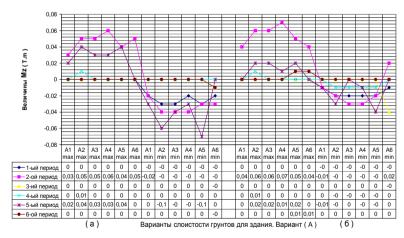
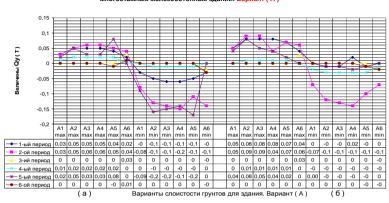



Рис.9 – Значения изгибающих моментов $M_z(T.m)$, относительно Y1 для здания – вариант A

Сравнение величин перерезывающих сил, действующих на сечение стержня Qy (T) вдоль оси Z1 от расчётных периодов свободных колебаний для многоэтажных железобетонных заланий. Вармант (A)

Рис. 10-3начения перерезывающих сил, действующих на сечение стержня $Q_y(T)$ вдоль оси Z1 для здания – вариант A

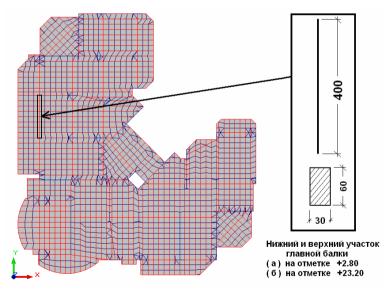


Рис.11 – Расположение и размеры выбранных главных балок здания – вариант В

На рис.12-17 рассматриваются значения усилий в нижних (a) и верхних (б) главных балках здания варианта B, выбранных для сравнения.

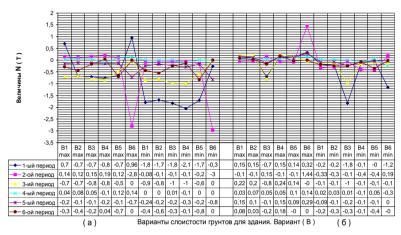


Рис.12 – Значения осевых усилий N (T) для здания – вариант В

Сравнение величин крутящих моментов Мk (Т.m) вокруг X1 от расчётных периодов свободных колебаний для многоэтажных железобетонных зданий. Вариант (В)

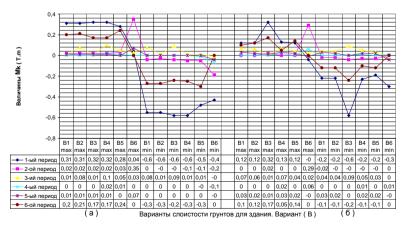


Рис. 13 — Значения крутящих моментов M_k (Т.m) вокруг X1 для здания — вариант В

Зеличины Му (Т.m) Λ -2 B3 B4 B5 B6 B1 B2 B3 B4 B2 B3 B4 B5 B6 B1 B2 B3 BA B5 max | max | max | max | max | max | min min min min max max max max max max min min min min min ◆ 1-ый период | 2,18 | 2,28 | 2,43 | 1,92 | 1,31 | 4,46 | -3,1 | -3,2 | -3,4 | -2,9 | -2,2 | -5,1 0.18 0.21 2.43 0.1 -0 1.09 -1.3 -1.3 -3.4 -1.3 -1 - 2-ой период | 1,63 | 1,5 | 1,56 | 2 | 2,07 | 3,57 | -2 | -1,5 | -1,6 | -2 | -2,1 | -4,2 0,47 0,44 1,56 0,58 0,6 0,72 0,39 0,4 -1,6 0,5 0,5 -0,5 -1,9 3-ий период 1,69 1,6 1,86 1,89 1,14 0,22 -1,8 -1,7 -1,9 -2 -1,2 -0,3 0,43 0,4 1,86 0,48 0,29 0,09 -0,5 -0,4 -1,9 -0,5 -0,3 -0,2 4-ый период 0,2 0,46 0,16 0,07 0,63 0,68 -0,2 -0,4 -0,1 -0,1 -0,6 -0,8 0,02 0,07 0,16 0,11 0,1 0,42 -0 -0,1 -0,1 -0,1 -0,2 -0,2 ж— 5-ый период 0,76 0,52 0,77 1 0,49 0,41 -0,75 -0,5 -0,8 -1 -0,5 -0,5 0,3 0,21 0,77 0,3 0,17 0,37 0 -0,2 -0,8 -0,3 -0,2 -0 6-ой период 2,41 2,55 2,35 2,07 3 0,02 -1,8 -2 -1,7 -1,4 -2,5 -0 0,86 0,87 2,35 0,84 0,97 0 -0,5 -0,5 -1,7 -0,4 -0,5 Варианты слоистости грунтов для здания. Вариант (В)

Сравнение величин изгибающих моментов My (Т.m) относительно Y1 от расчётных периодов свободных колебаний для многоэтажных железобетонных зданий. Вариант (В)

Рис. 14 — Значения изгибающих моментов M_y (T.m) относительно Y1 для здания — вариант B

Сравнение величин перерезывающих сил, действующих на сечение стержня Qz (T) вдоль оси Z1 от расчётных периодов свободных колебаний для

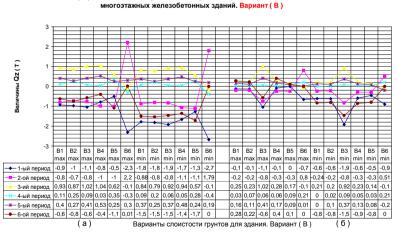


Рис. 15 — Значения перерезывающих сил, действующих на сечение стержня Q_z (T), вдоль оси Z1 для здания — вариант B

ж— 5-ый период 0,01

0 0 0 0 0.02 0 0 0 0 0

(a)

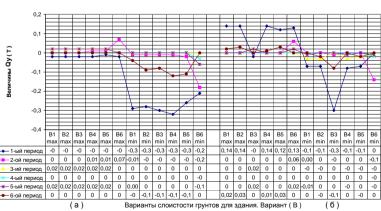
0 0 -0,1 -0,1 -0 -0,1 -0,1 0 0

6-ой период 0,01 0,01 0,01 0

0,05 Зеличины Мz (Т.m) -0,05 -0.1 -0,15 -0.2 B3 B4 B5 B6 B1 B2 B6 B1 max max max max max min min min min min min min max max max max max min min min min min min min 0 0 0,01 0 0 0,09 -0,1 -0,1 -0,1 -0,2 -0,1 -0,1 0 1-ый период 0 0 0 0 0,06 0,00 0 0 0 0 0 0 0,00 0 0 0 0 2-ой период 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 -0 0 -0 0 3-ий период 0 0 0 0 0 0 0 0 0 0 0 0 0 4-ый период Λ 0 0,01 Λ 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

Варианты слоистости грунтов для здания. Вариант (В)


0 0,01 0 0 0

-0 -0 0 -0

(f)

Сравнение величин изгибающих моментов Mz (Т.m) относительно Y1 от расчётных периодов свободных колебаний для многоэтажных железобетонных зданий. Вариант (В)

Рис. 16 - 3начения изгибающих моментов $M_z(T.m)$, относительно Y1 для здания — вариант B

Сравнение величин перерезывающих сил, действующих на сечение стержня Qy (T) вдоль оси Z1 от расчётных периодов свободных колебаний для многоэтажных железобетонных зданий. Вариант (B)

Рис.17 – Значения перерезывающих сил, действующих на сечение стержня $Q_y(T)$ вдоль оси Z1 для здания – вариант В

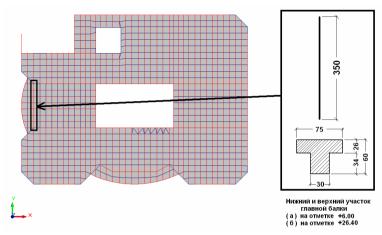


Рис. 18 – Расположение и размеры выбранных главных балок здания – вариант С

На рис.19-24 рассматриваются значения усилий в нижних (а) и верхних (б) главных балках здания варианта C, выбранных для сравнения.

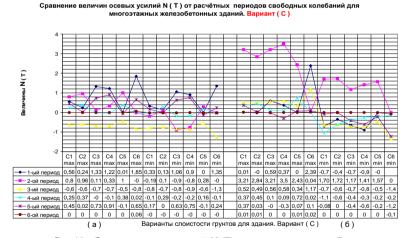


Рис.19 – Значения осевых усилий N (T) для здания – вариант С

(a)

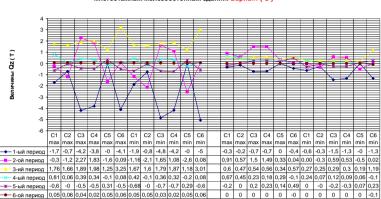
зеличины МК (Т.m) -0.5 -1.5 -2 -3 C2 C3 C4 C5 C6 C1 C2 C4 C2 C3 C4 C5 C6 C1 C2 СЗ C6 C5 max max max max max min min min min min min min ◆ 1-ый период -0,2 -0,1 -0,3 -0,3 0 0 -0,4 -0,2 -1,6 -1,3 0 -2,5 0,16 0,07 0,34 0,32 0 0,31 -0 0 -0,2 -0,2 0 — 2-ой период 0,78 0,65 0,88 0,95 0,54 0,01 0,34 0,35 0,22 0,28 0,33 -2 -1,9 -0,6 -0,9 -1,9 0 -0,5 -0,5 -0,4 -0.4 -0,4 3-ий период 0,6 0,47 0,53 0,56 0,37 1,01 0,34 0,32 0,36 0,38 0,23 0,48 0,06 0,06 0,06 0,07 0,05 0,16 -0,1 -0,1 -0,1 -0,1 -n 2 -0 4-ый период 0,34 0,32 0,11 0,11 0,35 0,02 -0,1 -0,4 0,09 0,06 -0,5 0 0,13 0,06 0,04 0,03 0,03 0,03 -0,1 -0 -0 -0 0 0,04 0 0,08 0,12 0,02 0,17 -0,04 ж-5-ый период -0.1 0 0.11 0,05 0.1 -0 0 -0 -0 -0.5 -0.4 0,06 -0.3 -6-ой период 0 0.01 0 0 0 0.02 0 0 0 0 0 0 0 0 -0,1 -0,1 -0 -0,1

Сравнение величин крутящих моментов Мк (Т.т) вокруг X1 от расчётных периодов свободных колебаний для многоэтажных железобетонных зданий. Вариант (С)

Рис. 20 - 3начения крутящих моментов M_k (T.m) вокруг X1 для здания – вариант С

Сравнение величин изгибающих моментов Му (Т.т.) относительно Y1 от расчётных

Варианты слоистости грунтов для здания. Вариант (С)


0 0 0 0 0 0,02 0

0 0

(f)

периодов свободных колебаний для многоэтажных железобетонных зданий. Вариант (С) 10 6 зеличины Му (Т.m) -2 -4 -6 -8 C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6 max max max max max max min min min min max max max max max min min min min 3,19 -1,3 8,11 7,3 0,06 8,35 -3,1 -1,3 -8 -7.2 -0.1 -8.2 0,82 0,35 1,75 1,66 0,02 1,23 -0,8 -0,3 -1,7 -1,6 1-ый период 2-ой период 1,27 3,01 3,39 2,5 3,8 0,15 1,32 -3 -3,5 -2,6 -3,8 -0,2 0.56 0.45 1.47 1.37 0.42 0.04 -0.66 -0.2 -1.6 -1.5 -0.2 -0.1 0,62 0,58 0,66 0,69 0,43 1,24 -0,7 -0,6 -0,7 -0,7 -0,5 -1,4 3-ий период 3 2,82 3,22 3,37 2,13 5,46 -3,1 -2,9 -3,3 -3,5 -2,2 -5,6 4-ый период 0,98 0,17 0,66 0,58 0,42 0,14 -0,9 -0 -0,7 -0,6 -0,3 -0,1 0,68 0,39 0,27 0,22 0,27 0,15 -0,6 -0,3 -0,3 -0,2 -0,2 -0,1 ж—5-ый период 1,21 0,06 1,13 1,19 0,52 0,98 -1 -0,1 -0,9 -1 -0,6 -1 0,39 0,02 0,09 0,09 0,61 0,52 0 -0 -0,2 -0,2 -0,2 -0,6 — 6-ой период 0,09 0,1 0,07 0,04 0,09 0,1 -0,1 -0,1 -0,1 -0,1 -0,1 -0,1 0 0 0 0 0,01 0,09 0 0 0 0 -0 -0,1 Варианты слоистости грунтов для здания. Вариант (С)

Рис.21 – Значения изгибающих моментов M_v (T.m) относительно Y1 для здания – вариант С

Сравнение величин перерезывающих сил, действующих на сечение стержня Qz (Т) вдоль оси Z1 от расчётных периодов свободных колебаний для многоэтажных железобетонных зданий. Вариант (С)

Рис.22 – Значения перерезывающих сил, действующих на сечение стержня Q_z (T), вдоль оси Z1 для здания – вариант C

Сравнение величин изгибающих моментов Мz (Т.m) относительно Y1 от расчётных

Варианты слоистости грунтов для здания. Вариант (С)

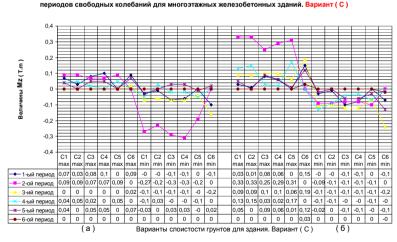
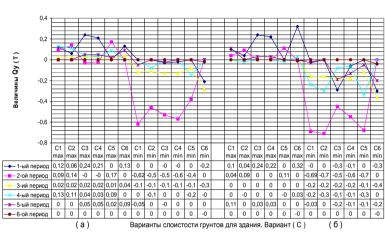



Рис.23 – Значения изгибающих моментов $M_z(T.m)$ относительно $Y1\,$ для здания – вариант C

Сравнение величин перерезывающих сил, действующих на сечение стержня Qy (Т) вдоль оси Z1 от расчётных периодов свободных колебаний для многоэтажных железобетонных зданий. Вармант (С)

Рис.24 – Значения перерезывающих сил, действующих на сечение стержня $Q_y(T)$ вдоль оси Z1 для здания – вариант C

В табл.1-6 приведена разница (в %) между усилиями для участков выбранных монолитных железобетонных главных балок сооружений с учетом и без учета оснований для максимальных и минимальных значений с 1-го по 6-й периоды свободных колебаний.

Суммирование вкладов отдельных форм колебаний нормами рекомендуется выполнять с использованием среднеквадратичной оценки типа «корень из суммы квадратов» [3]:

$$S_k = \sqrt{\sum_{j=1}^n S_{kj}^2} , (1)$$

где S_{kj} — сейсмические воздействия при колебаниях сооружения по j-й форме.

На основании выполненных нами исследований можно сделать следующие выводы:

 При анализе усилий в отдельных элементах, возникающих при сейсмическом воздействии, следует учитывать конструктивную схему и конфигурацию здания, грунтовые особенности площадки строительства, глубину заложения фундамента, жесткость самой конструкции, ее месторасположение в здании, оптимальные параметры моделирования и др.

Таблица 1 – Соотношение осевых усилий N (T) (pnc.5, 12, 19)

€,	3дания			Варнант А	нт А					Вариант В	ант В					Вариант С	нт С		
Зна	Значения	A_1	A ₂	A ₃	A4	Aş	A_6	B ₁	B ₂	B ₃	B4	Bs	\mathbf{B}_{6}	Cı	C	C3	7	ű	Ç
	max	0,32	0,59	0,52	0,47	19'0	0,19	1,06	1,06	1,1	1,16	1,08	3,05	1,27	1,21	1,66	1,7	1,16	2,13
	%	+70,3	+212,4	+175,9	+147,63	+218,7		-65,27	-65,36	-63,89	-62,06	-64,43		-40,4	-43,06	-21,9	-19,96	-45,5	- 00
a	min	0,117	0,21	0,17	0,14	0,22	0,12	2,05	1,96	2,09	2,3	1,99	3,09	68'0	0,81	1,75	1,66	9,0	1,85
	%	+0,72	+81,32	+44,44	+15,68	+87,18		-33,78	-36,54	-32,37	-25,55	-35,68			-56,27	-5,57	-10,64	-64,8	
	max	0,73	1,25	1,12	1,15	1,08	0,97	0,32	0,28	1,1	0,37	0,25	1,51		2,91	3,31	3,58	2,56	2,19
ų	%	-24,91	+28,81	+15,32	+18,65	+11,79		-78,73	-81,18	-27,1	-75,13	-83,28			+33,1	+51,2	+63,4	+16,7	
0	min	0,79	1,33	1,45	1,43	1,39	1,07	0,45	0,45	2,09	0,47	0,55	1,2	2,22	1,96	1,61	1,87	1,67	2,28
	%	-25.66	+24.1	+35.6	+34.1	+30.09		-62.65	-62.11	+74.26	-60.48	-53,5		-2,58	-13,9	-29,1	-17.9	-26,7	

Габлица 2 — Соотношение моментов, крутящих сечение $M_k\left(T.m\right)$ вокруг X1 (рис.6, 13, 20)

Значения A1 max 0,49 % 3,92 min 0,44 % 4,11,54 max 0,88	A,		Бариант А					рария	Вариант В					Бариант (ELC		
	•	A3	A4	As	\mathbf{A}_{6}	$\mathbf{B_1}$	B ₂	B ₃	B4	B,	Be	Cı	C	ပိ	7	Ç	ప
	0,84	0,83	8,0	98'0	0,51	0,369	0,383	0,363	0,377	0,373	96,0	1,057	998'0	1,09	1,147	0,749	1,01
	+64,32	+62,03	+56,97	+73,26		+2,58	+6,41	+0,77	+4,63	+3,63		+4,61	-14,26	+7,86	+13,5	-25,89	
	0,75	0,75	0,74	0,79	9,36	0,62	19'0	0,635	0,633	0,57	0,48	1,78	1,97	1,78	1,68	1,98	2,58
H	+106,05	+107,44	+103,18	+116,5		+29,79	+28,6	+33,18	+32,82	+19,15		-31	-23,97	-31,17	-35,01	-23,43	
_	1,51	1,47	1,4	1,52	0,97	0,17	0,189	698'0	0,16	0,19	0,3	0,404	0,367	0,419	0,448	0,336	0,23
Ľ	+55,39	+50,82	+44,24	+56,33		-42,01	-39,56	+21,2	-46,61	-36,68		+71,07	+55,3	+77,4	8,68+	+42,11	
U min 0,39	89'0	0,64	0,59	0,71	6,4	0,256	0,255	0,63	0,26	0,23	0,3	0,46	0,46	0,437	0,445	0,44	2,53
% -3,77	+69,17	+57,48	+47,83	+76,28		-15,36	-12,68	+109,8	-14,65	-24,19		-81,7	-81,7	-82,7	-82,5	-82,6	

Таблица 3 — Соотношение изгибающих моментов M_y (Т.m) относительно $Y1 \,$ (рис.7, 14, 21)

10	Здания			Вариант А	нт А					Вари	Вариант В					Вариант С	нт С		
3нг	чения	A_1	A_2	A3	A 4	As	A_6	$\mathbf{B_1}$	B ₂	B ₃	B4	B,	\mathbf{B}_{6}	$\mathbf{C_1}$	C2	C3	C4	Ç	Ce
	max	1,01	1,73	1,82	1,86	1,64	0,91	4,085	4,12	4,236	4,068	4,12	5,77	4,81	4,33	9,45	8,52	14,41	10,02
	%	+11,99	+90,91	+101,05	+104,94	+81,65		-29,22	-28,58	-26,62	-29,52	-28,69		-51,94	-56,76	-5,73	-14,99	-56,03	
. u	min	1,35	2,22	2,32	2,35	2,09	1,23	4,403	4,44	4,599	4,38	4,16	6,67	4,79	4,38	6,39	8,46	4,43	86'6
	%	+9,22	+79,63	+88,03	+90,08	+69,05		-33,96	-33,44	-31,02	-34,25	-37,58		-51,96	-56,03	-5,93	-15,26	9,55-	
	max	89'0	1,16	1,16	1,18	1,14	68'0	1,126	1,023	4,235	1,176	1,19	1,42	1,41	69'0	2,39	2,27	68'0	8,45
U	%	-23,45	+30,29	+30,51	+31,78	+27,97		-20,92	-28,14	+197	-17,37	-16,19		-83,3	-91,8	-71,68	-73,13	-89,38	
>	min	1,97	3,33	3,37	3,41	3,27	2,16	1,529	1,44	4,599	1,542	1,27	2,73	1,41	0,49	2,48	2,36	0,54	8,34
	%	-8,91	+54,16	+55,95	+57,4	+51,22		-44,05	-47,3	+68,3	-43,57	-53,59		-83,1	-94,1	-70,24	-71,69	-93,48	

Таблица 4 — Соотношение перерезывающих сял, действующих на сечение стержия О, (Т), вдоль оси Z1 (рис. 8, 15, 22)

				Donuour	A					Rangaur	Bur B					Вапиант С	ПТС		
n 	Дания			Бариа						Danie									
Зна	начения	A_1	\mathbf{A}_2	A ₃	4	As	\mathbf{A}_{6}	$\mathbf{B_{l}}$	\mathbf{B}_2	B3	B4	Bş	$_{6}$	\mathbf{C}_1	\mathbf{C}_2	င်	ڻ	င်	రి
	max	1,54	2,58	2,66	2,66	2,5	1,43	1,71	1,72	1,79	1,77	1,73	3,22	2,664	2,164	5,161	4,704	2,08	5,26
	%	+7.75	+80,02	+85,49	+85,88	+74,44		-46,79	-46,7	-44,18	-45,1	-46,18		-49,4	-58,89	-1,97	-10,65	-60,45	
æ	min	1,21	1,98	2,11	2,15	1,82	96'0	2,65	2,66	2,74	2,62	2,51	3,25	2,87	2,78	5,47	4,76	2,83	5,9
	%	+26,34	+106,25	+119,72	+124,31	+90,04		-18,49	-18,36	-15,67	-19,52	-22,99		-51,37	-52,85	-7,27	-19,3	-51,97	
	max	2,11	3,61	3,56	3,55	3,58	2,67	0,47	0,41	1,79	0,58	0,34	1,06	1,33	0,87	1,77	1,75	0,57	98'0
-	%	-20,91	+35,05	+33,16	+32,92	+34,13		-55,54	-60,93	9,69+	-44,84	-67,63		+53,3	+0,92	+104	+102	-34,14	
0	min	5,24	8,91	8,89	8,82	8,79	5,76	1,094	1,067	2,75	1,11	86'0	1,08	0,78	0,51	1,61	1,48	0,55	1,805
	%	86'8-	+54.8	+54,33	+53,13	+52,77		+1,59	98'0-	+155	+3,6	-8,59		-56,4	9,17-	-10,6	-17,5	-69,4	

Таблица 5 – Состношение изгибающих моментов M_z (T.m) относительно Y1 (рис.9, 16, 23)

																,			
m	Здания			Вари	Вариант А					Вариант В	нт В					Вариант С	HLC		
Зна	начения	A ₁	A ₂	A3	Α4	As	A_6	$\mathbf{B_1}$	B ₂	B3	B4	Bs	B ₆	\mathbf{C}_1	C_2	C3	C4	ర	రి
	max	0,036	90,0	0,058	0,067	0,057	0,05	0,014	10'0	0,014	0	0	0,11	0,127	0,107	0,12	0,132	0,11	0,116
	%	-27,89	+29,62	+16,62	+34,16	+13,14		-87,19	-90,94	-87,19	-100	-100		+9,5	-3,6	+6,4	+3,9	-3,6	
æ	min	0,041	0,078	0,064	0,054	0,082	0,039	0,14	0,14	0,146	91,0	0,13	0,082	0,286	0,239	0,308	0,325	0,203	0,19
	%	+6,46	+101,66	+65,33	+39,04	+111,34		6,89+	6,89+	+76,6	+95,9	+57,6		+51	+26,4	+62,6	+1,51	+9,7	
	max	0,04	0,064	0,063	0,071	0,055	0,0412	0	0	0,014	0	0	0,01	0,37	0,373	0,296	0,319	0,358	0,272
·	%	-2,99	+55,3	+53,4	+71,5	+32,84		-100	-100	+41,42	-100	-100		+36,3	+37,4	90,6+	+17,3	+31,9	
0	mim	0,017	0,042	0,037	0,039	0,05	0,046	0,061	0,061	0,145	0,063	0,051	0,085	961,0	0,16	0,189	0,178	0,14	0,28
	%	-62,7	-7,42	-18,35	-15,48	+9,11		-27,35	-27,35	65,17+	-25,46	-39,9	-	-30,67	-42,62	-32,88	-37,01	-49,1	

Таблица 6 — Соотношение перерезывающих сил, действующих на сечение стержня Q_y (T) вдоль оси Z1 (рис.10, 17, 24)

8	Здания			Вариант А	инт А					Вариант В	нт В					Вариант С	нт С		
Зна	начения	$\mathbf{A_1}$	A ₂	A3	A 4	As	A ₆	Bı	B ₂	B ₃	B4	Bs	B ₆	Cı	\mathbf{C}_2	C_3	C4	Cs	ပိ
	max	0,048	680,0	980'0	0,086	0,105	0,055	0,035	0,035	0,035	0,036	0,032	0,073	0,199	0,188	0,251	0,219	0,193	0,163
	%	-12,44	+62,27	+57,05	+57,05	+91,48		-52,41	-52,41	-52,41	-50,47	-56,56		+22,3	+15,8	+53,9	+34,7	+18,7	
æ	mim	0,12	0,212	0,214	0,214	0,209	0,15	0,292	0,294	0,31	0,34	0,283	0,284	0,633	0,479	0,546	0,585	0,416	0,358
_	%	-15,95	+43,83	+44,94	+44,94	+41,42		+2,92	+3,4	+9,14	+20,13	-0,55		+76,6	+33,7	+52,4	+63	+16	
	max	0,081	0,14	0,13	860'0	0,1	820,0	0,141	0,143	0,034	0,14	0,12	0,144	0,154	0,101	0,242	0,222	0,112	0,321
•	%	+4,01	+85,54	+67,43	+26,1	+29,94		-2,17	96'0-	-76,04	-2,91	-14,44		-52,12	-68,74	-24,78	-30,95	-65,23	
0	mim	0,073	0,124	0,134	0,146	0,106	9,0076	0,077	0,079	0,31	980,0	0,075	0,14	0,748	0,787	0,601	0,599	0,771	0,511
	%	-4,41	+63,47	+76,17	+91,63	+38,96		-45,9	-44,6	+118,6	-39,47	-46,9	-	+46,5	+54	+17,6	+17,2	+50,9	

- 2. Сравнивая усилия, возникающие в главных балках (на отметках +8.5, +28.50) здания А, следует отметить следующее: в большинстве случаев в зданиях при учете грунтового основания (A_1 - A_5) имеет место увеличение абсолютных значений усилий по сравнению со зданием A_6 – без учета основания. Осевые усилия N увеличиваются в 1,68-3,21 раза для нижних балок и в 1,11-1,18 – для верхних. Значения крутящих моментов M_{ν} увеличиваются приблизительно в 1,7 раза для нижних балок и в 1,56 раза – для верхних. Значения изгибающих моментов M_{ν} увеличиваются приблизительно в два раза для нижних балок, в 1,3 раза – для верхних. Значения изгибающих моментов M_z увеличиваются в 1,34 раза для нижних балок, в 1,72 раза – для верхних. Значения перерезывающих сил Q_v увеличиваются в 1,91 раза для нижних балок, в 1,8 раза – для верхних. Значения перерезывающих сил $Q_{\scriptscriptstyle {\it T}}$ увеличиваются приблизительно в 1,9 раза для нижних балок, в 1,35 раза – для верхних.
- 3. Усилия в главных балках здания В (на отметках +2.80, +23.20) распределяются следующим образом. При анализе значений осевых усилий N,т, видно, что они уменьшаются в зданиях с учетом основания (B_1 - B_5) по сравнению со зданием без учета основания B_6 . Абсолютные значение в нижних балках уменьшились приблизительно в 2,9 раза, в верхних – в 6 раз. Крутящие моменты в нижних балках примерно на одном уровне для всех вариантов «здание - основание», для верхних балок - резко изменяются от слоистости основания. Изгибающие моменты M_{ν} в нижних балках уменьшаются в 1,4 раза, в верхних – резко изменяются в зависимости от слоистости. Изгибающие моменты $M_{_{\it T}}$ для нижних балок уменьшаются в 10 раз, для верхних - резко меняются. Перерезывающие силы Q_z уменьшаются приблизительно в два раза для нижних балок, и резко меняются для верхних балок при разной слоистости. Перерезывающие силы $Q_{_{\mathrm{V}}}$ уменьшаются приблизительно в два раза для нижних балок, и в 2-4 раза – для верхних балок.
- 4. Усилия в главных балках таврового сечения (на отметках +6.0, +26.4) здания С с учетом основания (C_1 C_5) распределяются так:

осевые усилия N , т, в нижних балках уменьшаются в диапазоне от 1,25 до 1,83 раза по сравнению со зданием без учета основания (C_6), в верхних балках — увеличиваются в 1,2-1,6 раза. Значения крутящих моментов M_k ($\mathbf{T} \cdot \mathbf{m}$) резко меняются в зависимости от слоистости для нижних балок, и увеличиваются приблизительно в два раза для верхних балок. Значения изгибающих моментов M_y ($\mathbf{T} \cdot \mathbf{m}$) уменьшаются для верхних и нижних балок в зависимости от слоистости в 5-10 раз по сравнению со зданием без учета основания. Значения изгибающих моментов M_z ($\mathbf{T} \cdot \mathbf{m}$) резко изменяются в зависимости от слоистости основания для нижних балок, и увеличиваются в 1,1-1,2 раза для верхних балок. Перерезывающие силы Q_z (\mathbf{T}) уменьшаются от 1,1 до 2,5 раза для нижних балок, и резко изменяются для верхних в зависимости от слоистости. Перерезывающие силы Q_y (\mathbf{T}) увеличивают свои значения для всех балок от 1,2 до 1,5 раза.

- 5. Абсолютные значения усилий при их сопоставлении для разных вариантов зданий также различны. Наибольшие значения для N, Q_z , Q_y характерны для здания типа C (балки таврового сечения) для верхних и нижних балок, тах M_k для верхних балок здания A и нижних балок здания C, M_z для нижних (здание типа C) и верхних (здание типа A) балок. В здании типа В значения всех усилий намного меньше тех же значений для зданий типа A и C. Исходя из этого, можно рекомендовать наиболее оптимальные сечения конструктивных элементов для различного типа зданий в различных грунтовых условиях.
- 6. Анализ показывает, что для здания типа А все усилия в балках (в основном) увеличиваются при учете грунтового основания. В здании типа В все усилия (в основном) уменьшаются, несмотря на слоистость. В здании типа С усилия в балках могут увеличиваться и уменьшаться в зависимости от состава грунтового основания.
- 7. Очевидно, на такое распределение усилий очень влияет и принятая ферма сооружения и его конструктивная схема, которые непосредственно связаны со способностью здания противостоять возможному землетрясению. Критерием этого противостояния может служить такое свойство здания, как регулярность [4]: регулярность

- сооружения в плане; регулярность сооружения по высоте; регулярность применяемого конструктивного решения. Именно регулярность здания наряду с другими факторами определяет его чувствительность к сейсмическим воздействиям.
- 8. Только тщательный многофакторный учет всех факторов, влияющих на поведение здания при сейсмических воздействиях, и влияние удельного веса каждого из этих факторов может дать полную картину напряженно-деформированного состояния здания при возможном землетрясении.
- 1. Амосов А.А., Синицын С.Б. Основы теории сейсмостойкости сооружений. М.: Изд-во Ассоциации строительных вузов, 2001. 95 с.
- 2.Корниловский В.С. и др. Вычислительный комплекс SCAD. М.: ABC, 2004. 592 с.
- 3. Гордеев В.Н., Лантух-Лященко А.И., Пашинский В.А., Перельмутер А.В., Пичугин С.Ф. Нагрузки и воздействия на здания и сооружения. М.: Изд-во Ассоциации строительных вузов, 2006. 478 с.
- 4. Немчинов Ю.И. Сейсмостойкость зданий и сооружений. К.: НИИСК, 2008. 480 с.

Получено 13.01.2009

УДК 624.012

Д.Ф.ГОНЧАРЕНКО, д-р техн. наук, О.В.СТАРКОВА, канд. техн. наук, ХАЙНРИХ ВЕВЕЛЕР

Харьковский государственный технический университет строительства и архитектуры

ТЕХНОЛОГИЯ ВОССТАНОВЛЕНИЯ СТАЛЬНЫХ ТРУБОПРОВОДОВ СЕТЕЙ ВОДОСНАБЖЕНИЯ

Анализируется состояние стальных трубопроводов сетей водоснабжения. Перечислены основные методы их восстановления после повреждения. Приведен один из прогрессивных методов восстановления трубопровода путем протаскивания в трубопровод секций из пластмассовых труб.

Переход к рыночной экономике, реформирование жилищнокоммунального комплекса в условиях значительного износа и старения инженерных систем жизнеобеспечения городов и населенных пунктов Украины, отсутствие достаточных материальных и финансовых ресурсов на их реновацию значительно обострили в последние годы проблему обеспечения требуемой надежности и экологической безопасности инженерных коммуникаций городов Украины.

Трубопроводные системы – неотъемлемая часть инфраструктуры современных городов, а городские водопроводные и водоотводящие сети являются не только наиболее функционально значимым элемен-